Supporting Information

"Dissecting substrate specificities of the mitochondrial AFG3L2 protease"

Bojian Ding[†], Dwight W. Martin^{‡§}, Anthony J. Rampello[†] and Steven E. Glynn^{†*} [†]Department of Biochemistry and Cell Biology, [‡]Department of Medicine, [§]Proteomics Center, Stony Brook University, Stony Brook, NY.

*Corresponding Author:

email: <u>steven.glynn@stonybrook.edu;</u> tel: 1-631-632-1055; fax: 1-631-632-9730

Figure S1. Figure S2. Figure S3. Figure S4. Figure S5. Table S1.

Supporting Information References.

Figure S1. (A) Full uncropped SDS-PAGE gels showing expression of ^{core}AFG3L2 and ^{cchex}AFG3L2. Levels of ^{core}AFG3L2 increase after induction followed by a steady decrease, whereas levels of ^{cchex}AFG3L2 do not decrease after induction. (B) Size exclusion chromatography profiles of ^{core}AFG3L2 constructs. ^{core}AFG3L2^{E408Q} and ^{core}AFG3L2^{E408Q/E575Q} migrate largely as hexamers whereas ^{core}AFG3L2^{E575Q} migrates largely as unassembled protomers. Incubation of ^{core}AFG3L2^{E575Q} with 30 µM AMPPNP shifts the migration profile towards the hexameric species. (C) Size exclusion chromatography profile of ^{cchex}AFG3L2 showing the protein largely migrates as a hexamer (D) Full uncropped representative SDS-PAGE gels from Fig. 1C. showing degradation of ^{mut}GFP- β 20 by ^{cchex}AFG3L2 in the presence and absence of ATP and by ^{cchex}AFG3L2^{E408Q} in the presence of ATP.

Figure S2. (A) Full uncropped representative SDS-PAGE gel showing proteolysis of ^{Δ30}MrpL32 and ^{Δ50}MrpL32 by ^{cchex}AFG3L2 in the presence of ATP. Loss of ^{Δ30}MrpL32 occurs rapidly and occurs concurrently with accumulation of a smaller molecular weight fragment (m). (B) Full uncropped representative SDS-PAGE gels showing proteolysis of ^{Δ30}MrpL32_{swap40-50} and ^{Δ30}MrpL32_{swap31-39} by ^{cchex}AFG3L2. (C) Full uncropped representative SDS-PAGE gels showing proteolysis of ⁵¹⁻⁵⁹I27^{CD} and ⁵¹⁻⁶¹I27^{CD} by ^{cchex}AFG3L2.

Figure S3. Full uncropped representative SDS-PAGE gels showing degradation of $I27^{CD}$ and Tim9^{ΔN} constructs bearing sequences derived from MrpL32 at the N-terminus.

Figure S4. (A) Eight substrates used to generate the AFG3L2 peptidase specificity profile by degradation followed by LC/MS/MS. References for each substrate are given in parantheses. (B) Sequence logos showing individual peptidase specificity profiles from eight protein substrates as determined by LC/MS/MS.

Figure S5. (A) Plot showing rapid cleavage of the reporter peptide Leu-(3-NO2-Tyr)-Phe-Gln-(Lys-Abz) by hexameric ^{core}AFG3L2^{E408Q}, whereas unassembled coreAFG3L2E408Q does not cleave the peptide comparable to hexameric ^{core}AFG3L2^{E408Q/575Q}. (B) Plot showing total number of peptides identified by LC/MS/MS resulting from cleavage from HspQ^{Y20} and HspQ^{Y20} variants bearing substitutions of Phe15 to Leu or Gly. (C) Plot showing percentage of total peptides identified by LC/MS/MS resulting from cleavage between residues 65 and 66 of HspQ^{Y20} and HspQ^{Y20} variants bearing substitutions of Phe15 to Leu or Gly.

Protein Substrates	
Substrate	Initial Degradation Rate (min ⁻¹ enz ₆ -1)
^{∆30} MrpL32	0.79 ± 0.04
^{∆50} MrpL32	0.38 ± 0.04
Δ30MrpL32 _{swap31-39}	0.78 ± 0.06
Δ30MrpL32 _{swap40-50}	0.29 ± 0.02
I27 ^{CD}	0.14 ± 0.02
³¹⁻⁵⁰ I27 ^{CD}	0.76 ± 0.10
⁴⁰⁻⁶⁰ I27 ^{CD}	0.43 ± 0.07
⁵¹⁻⁷⁰ I27 ^{CD}	0.18 ± 0.03
⁶¹⁻⁸⁰ I27 ^{CD}	0.32 ± 0.03
³¹⁻⁴⁰ I27 ^{CD}	0.24 ± 0.02
⁴⁰⁻⁵⁰ I27 ^{CD}	0.65 ± 0.01
⁵¹⁻⁶¹ I27 ^{CD}	0.18 ± 0.03
⁵¹⁻⁵⁹ I27 ^{CD}	0.33 ± 0.06
Tim9 ^{∆N}	0.24 ± 0.04
⁴⁰⁻⁵⁰ Tim9 ^{∆N}	0.41 ± 0.03
Reporter Peptides	
Sequence	Initial Cleavage Rate (min ⁻¹ enz ₆ ⁻¹)
LYFQK	0.99 ± 0.05
LYLQK	0.24 ± 0.02
LYSQK	0.098 ± 0.004
LYGQK	- 0.0021 ± 0.002

Table S1. Initial rates for all degradation assays \pm s.d.

Supporting Information References

- [1] Iosefson, O., Nager, A. R., Baker, T. A., and Sauer, R. T. (2015) Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine, *Nat Chem Biol 11*, 201-206.
- [2] Wohlever, M. L., Nager, A. R., Baker, T. A., and Sauer, R. T. (2013) Engineering fluorescent protein substrates for the AAA+ Lon protease, *Protein engineering, design & selection : PEDS* 26, 299-305.
- [3] Gur, E., and Sauer, R. T. (2008) Recognition of misfolded proteins by Lon, a AAA(+) protease, *Genes & development 22*, 2267-2277.
- [4] Rampello, A. J., and Glynn, S. E. (2017) Identification of a Degradation Signal Sequence within Substrates of the Mitochondrial i-AAA Protease, *J Mol Biol 429*, 873-885.
- [5] Puri, N., and Karzai, A. W. (2017) HspQ Functions as a Unique Specificity-Enhancing Factor for the AAA+ Lon Protease, *Molecular cell* 66, 672-683 e674.