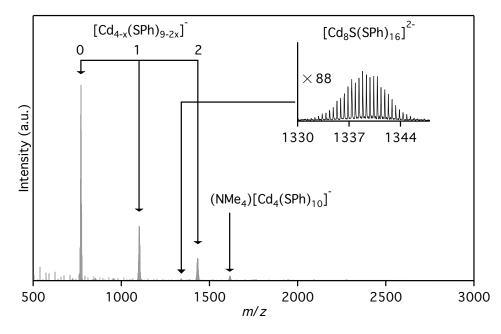
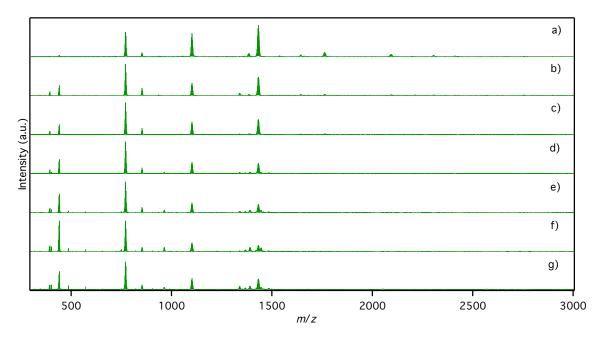

Supporting information for:


Site-Specific Doping of Mn²⁺ in a CdS-based Molecular Cluster

Fumitoshi Kato and Kevin R. Kittilstved*


Department of Chemistry, University of Massachusetts Amherst, 374 Lederle GRT, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States

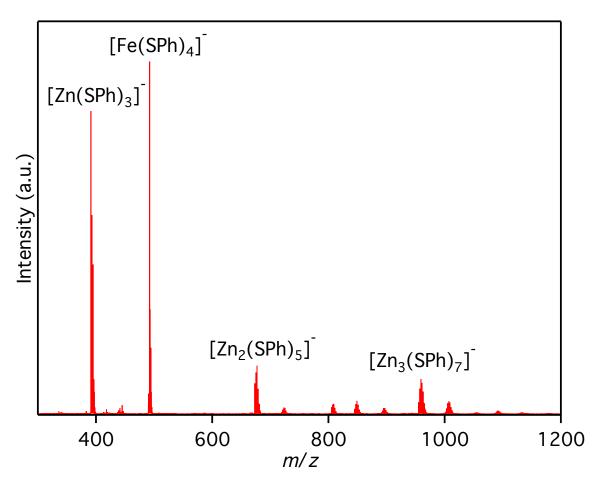

Figure S1. Negative ion mode ESI-MS of undoped Cd₁₀ dissolved in CH₃CN collected at a cone voltage of -40V. The inset shows an overlay of the collected mass spectrum (green) and simulated [Cd₈S(SPh)₁₆]²⁻ peak (red).

Figure S2. Negative-ion mode ESI-MS of the supernatant isolated after the synthesis of pure Cd_{10} was collected at a cone voltage of -40V. The dominant species detected by MS were the singly charged ions derived from Cd_4 . The numerical values shown in the graph corresponds to 'x' in $[Cd_{4-x}(SPh)_{9-2x}]^{-}$. No peaks corresponding to fragments from Cd_{10} were observed.

Figure S3. Negative-ion mode ESI-MS of the aliquots collected during the synthesis of undoped cluster. All the spectra were collected at a cone voltage of -20V. Mass spectra were collected after 2.14 mmol of Cd(NO₃)₂ (a), 240 µmol of Na₂S (b), 480 µmol of Na₂S (c), 720 µmol of Na₂S (d), 960 µmol of Na₂S (e), 1.20 mmol of Na₂S (f), and another 405 µmol of Cd(NO₃)₂ (g) was added a solution of 5.20 mmol of SPh⁻.

Figure S4. ESI-MS of thiophenol collected at -40V in CH₃CN. The ESI-MS exhibits a significant fraction of Zn²⁺ and Fe³⁺ contamination in the as-purchased bottle.

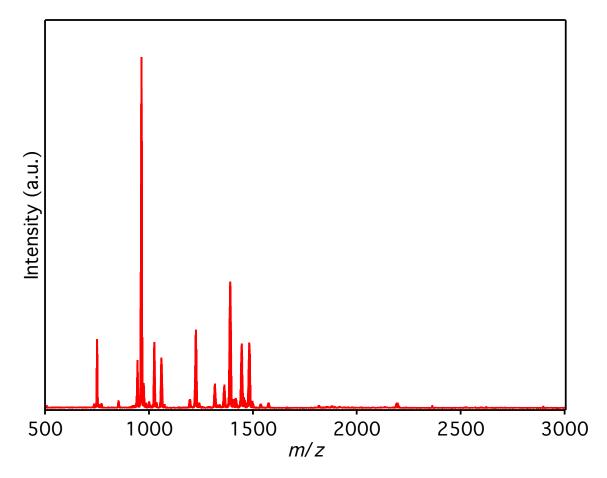
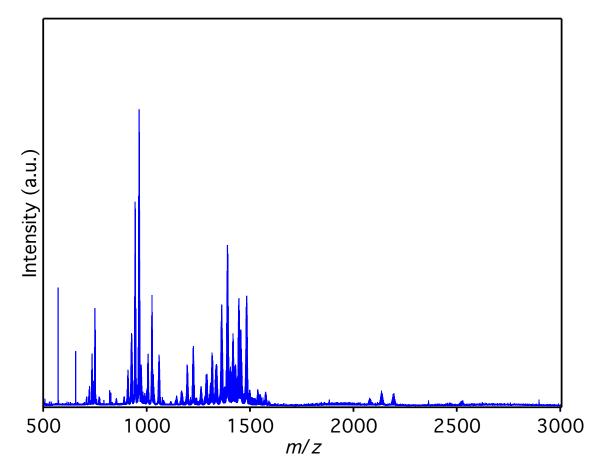
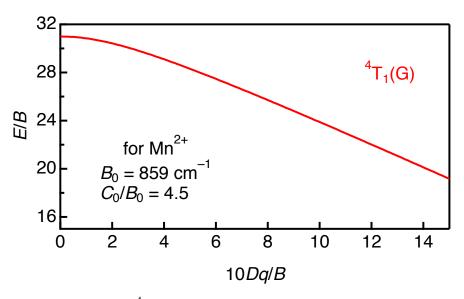




Figure S5. Mass spectrum of cluster prepared from $Mn:Cd_{10}-1$. The sample was dissolved in degassed acetonitrile and the spectrum was collected at a cone voltage of -40V.

Figure S6. Mass spectrum of cluster prepared from **Mn:Cd₁₀-2**. The sample was dissolved in degassed acetonitrile and the spectrum was collected at a cone voltage of -40V.

Figure S7. Expanded view of the lowest ${}^{4}T_{1}$ excited state energy (relative to the ground state) vs ligand field strength (10*Dq/B*) for a d⁵ ion in a cubic field. The energies of the ground state and excited state was calculated using the Tanabe-Sugano energy matrices (see: Y. Tanabe, S. Sugano, On the Absorption Spectra of Complex Ions. I. *J. Phys. Soc.-Jpn* **1954**, *9*, 753-766).

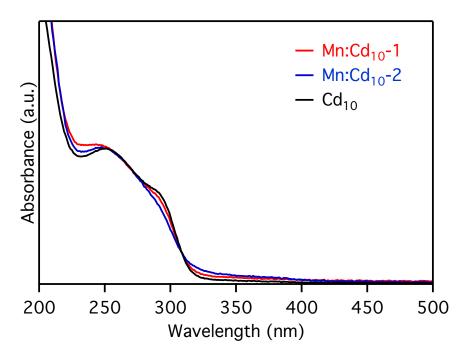


Figure S8. Room-temperature UV-Vis absorption spectra of the synthesized clusters dissolved in degassed acetonitrile.

Figure S9. Room-temperature, steady-state PL spectra of the synthesized clusters dissolved in degassed acetonitrile. Samples were excited at 230 nm.

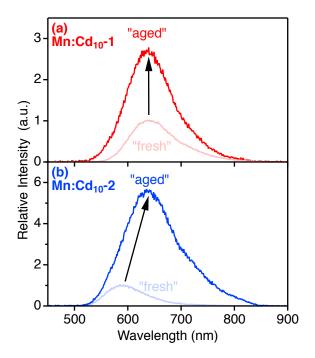
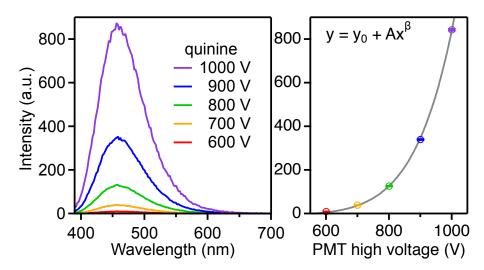



Figure S10. Room-temperature gated PL spectra of the Mn:Cd₁₀-1 clusters collected immediately after the cluster was dissolved in degassed acetonitrile (red) and two hours later (yellow).

Figure S11. (Left panel) Steady-state PL spectra of a quinine sulfate dihydrate solution as a function of detector sensitivity (PMT high voltage). (Right panel) The intensity follows a power law dependence (gray line is the fit to the equation) \sim 6.7× enhancement in signal intensity upon increasing the PMT HV from 800 V to 1000 V. This scaling factor has been accounted for when normalizing the spectrum of the fresh Mn:Cd₁₀-2 shown in Figure 5 of the manuscript.

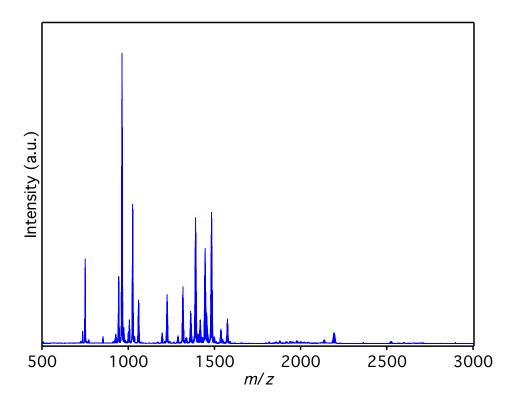


Figure S12. ESI mass spectrum of cluster prepared from $Mn:Cd_{10}-2$. The sample was dissolved in degassed acetonitrile for two hours before the spectrum was collected at a cone voltage of -40V.

Table S1. Anionic species observed in the mass spectra of clusters prepared by $Mn:Cd_{10}-1$ or $Mn:Cd_{10}-2$. The cone voltage was set to -40V.

Fragments	<i>m/z</i> (calc.)	<i>m/z</i> (exp.)
[NC ₄ H ₁₂][Cd ₈ S ₄ (SPh) ₁₀] ⁻	2193	2193
[NC ₄ H ₁₂][Cd ₇ MnS ₄ (SPh) ₁₀]	2136	2136
[NC ₄ H ₁₂][Cd ₆ Mn ₂ S ₄ (SPh) ₁₀]	2078	2078
[Cd ₁₀ S ₃ (SPh) ₁₆] ³⁻	1484	1484
[Cd₀MnS₃(SPh) ₁₆] ^{3−}	1455	1455
[Cd ₁₀ S ₄ (SPh) ₁₅ + H ⁺] ²⁻	1446	1446
$[Cd_9MnS_4(SPh)_{15} + H^+]^{2^-}$	1417	1417
[Cd ₁₀ S ₄ (SPh) ₁₄] ²⁻	1390	1390
[Cd ₉ MnS₄(SPh) ₁₄] ^{2−}	1362	1362
[Cd ₈ Mn ₂ S ₄ (SPh) ₁₄] ²⁻	1333	1333
$[Cd_7Mn_3S_4(SPh)_{14}]^{2-}$	1304	1304
[Cd ₈ S(SPh) ₁₆] ²⁻	1339	1339
[Cd ₇ MnS(SPh) ₁₆] ²⁻	1310	1310
[Cd ₆ Mn ₂ S(SPh) ₁₆] ²⁻	1282	1282
[Cd ₇ S(SPh) ₁₄] ²⁻	1174	1174
$\left[Cd_{6}MnS(SPh)_{14}\right]^{2-}$	1145	1145
[Cd₅Mn₂S(SPh) ₁₄] ^{2−}	1117	1117
[NC ₄ H ₁₂][Cd ₉ S ₄ (SPh) ₁₃] ²⁻	1317	1317
[NC ₄ H ₁₂][Cd ₈ MnS ₄ (SPh) ₁₃] ²⁻	1288	1288
[Cd ₉ S ₄ (SPh) ₁₂] ²⁻	1225	1225
[Cd ₈ MnS ₄ (SPh) ₁₂] ²⁻	1196	1196
[Cd ₇ Mn ₂ S ₄ (SPh) ₁₂] ²⁻	1168	1168
[Cd ₆ Mn ₃ S ₄ (SPh) ₁₂] ²⁻	1139	1139
[Cd ₇ S(SPh) ₁₄] ²⁻	1174	1174
[Cd ₆ MnS(SPh) ₁₄] ²⁻	1145	1145
[Cd ₈ S₄(SPh) ₁₀] ^{2−}	1060	1060
[Cd ₇ MnS(SPh) ₁₀] ²⁻	1031	1031
[Cd ₁₀ S ₃ (SPh) ₁₇] ²⁻	1025	1025
[Cd ₉ MnS ₃ (SPh) ₁₇] ²⁻	1006	1006
[Cd₁₀S₄(SPh)₁₅] ^{3−}	963	963
[Cd ₉ MnS₄(SPh) ₁₅] ^{3−}	944	944
[Cd ₈ Mn ₂ S ₄ (SPh) ₁₅] ³⁻	925	925
[Cd ₇ Mn ₃ S ₄ (SPh) ₁₅] ³⁻	906	906
[Cd₀S(SPh)₁ァ] ^{3−}	929	929
[Cd ₇ MnS(SPh) ₁₇] ³⁻	910	910
[Cd ₆ Mn ₂ S(SPh) ₁₇] ³⁻	891	891
[Cd ₁₀ S ₄ (SPh) ₁₆] ⁴⁻	750	750
[Cd ₉ MnS ₄ (SPh) ₁₆] ⁴⁻	735	735
[Cd ₈ Mn ₂ S ₄ (SPh) ₁₆] ⁴⁻	721	721
[Cd ₇ Mn ₃ S ₄ (SPh) ₁₆] ⁴⁻	707	707
[Cd ₈ S(SPh) ₁₈] ⁴⁻	724	724
[Cd7MnS(SPh)18] ⁴⁻	710	710
$\left[Cd_{6}Mn_{2}S(SPh)_{18}\right]^{4-}$	695	695

 Table S2. Comparison of measured Mn and Zn contents for clusters prepared by method 1 and 2.

Mn 20.7% 20.1%	Elements	Mn:Cd ₁₀ -1	Mn:Cd ₁₀ -2
7~ 0% 0%	Mn	20.7%	20.1%
ZII 0% 0%	Zn	0%	0%

Parameters	Mn:Cd ₁₀ -1	Mn:Cd ₁₀ -2
α ₁ (a.u.)	0.090 ± 0.002	0.378 ± 0.045
τ_1 (ms)	0.120 ± 0.002	0.551 ± 0.039
α ₂ (a.u.)	0.216 ± 0.002	1.169 ± 0.082
$\tau_2 \ (ms)$	0.880 ± 0.016	3.141 ± 0.426
$\langle \tau \rangle$ (ms)	0.66	2.5

Table S3. Results from the double-exponential fit of the PL decay shown in Figure 4b using eq 1. Units are given next to the parameter.