Electronic Supplementary Information (ESI) for

Structural Characterization of Lignins from Willow Bark and Wood

Jinze Dou,^{a,b} Hoon Kim,^b Yanding Li,^b Dharshana Padmakshan,^b Fengxia Yue,^b John Ralph,^b Tapani Vuorinen^a*

^a Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Post Office Box 16300, FI-00076 Aalto, Finland

^b Department of Biochemistry and United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin—Madison, Madison, Wisconsin 53726, United States

Label	δC/δ H (ppm) Assignment		
Β _β	53.2/3.57	C_{β} -H _{β} in phenylcoumaran substructures (B)	
C_{β}	53.4/3.03	C_{β} – H_{β} in β – β' resinol substructures (C)	
-OCH ₃	55.3/3.67	C–H in methoxyls	
$\mathbf{A}_{\mathbf{v}}$	60.0/3.69 and 60.8/3.59	$C_{\gamma}\text{-}H_{\gamma}$ in $\gamma\text{-}hydroxylated\ \beta\text{-}O\text{-}4'\ substructures\ \textbf{(A)}$	
SD_{β}	60.0/2.82	C_{β} – H_{β} in spirodienone substructures (SD)	
$X1_{\gamma}$	61.5/4.17	C_{γ} – H_{γ} in cinnamyl alcohol end-groups (X1)	
${\bm B}_{\gamma}$	62.8/3.74	C_{γ} – H_{γ} in phenylcoumaran substructures (B)	
C_{γ}	70.9/4.15	C_{γ} – H_{γ} in β – β' resinol substructures (C)	
$\bm{A}_{\alpha(S)}$	71.9/4.97	$C_{\alpha}\text{-}H_{\alpha}$ in $\beta\text{-}O\text{-}4'$ substructures (A) linked to a S-unit	
SD_{lpha}	81.1/5.14	C_{α} – H_{α} in spirodienone substructures (SD)	
$\bm{A}_{\beta(H/G)}$	83.6/4.38	$C_{\beta}\text{-}H_{\beta}$ in $\beta\text{-}O\text{-}4'$ substructures (A) linked to a H-unit and G- unit	
C_{α}	84.9/4.66	C_{α} – H_{α} in β – β' resinol substructures (C)	
$\mathbf{A}_{\beta(S)}$	86.1/4.15 and 87.3/4.02	$C_{\beta}\text{-}H_{\beta}$ in $\beta\text{-}O\text{-}4'$ substructures linked (A) to a S unit	
\mathbf{B}_{lpha}	86.9/5.55	C_{α} – H_{α} in phenylcoumaran substructures (B)	
S _{2,6}	103.9/6.76 and 106.3/7.10	C_2 -H ₂ and C_6 -H ₆ in etherified syringyl units (S)	
G_2	110.8/7.02 and 111.0/7.29 C ₂ -H ₂ in guaiacyl units (G)		
G ₅ / G ₆	114.7/6.71; 114.9/6.95 and 6.84/119.1	C_5 – H_5 and C_6 – H_6 in guaiacyl units (G)	
$X1_{\beta}$	128.4/6.29	C_{β} –H _{β} in cinnamyl alcohol end-groups (X1)	
$X1_{\alpha}$	128.4/6.49	C_{α} – H_{α} in cinnamyl alcohol end-groups (X1)	

Table S1. Assignments of the Lignin ¹H-¹³C Correlation Peaks in the 2D-HSQC Spectra of Willow

Bark and Isolated EL.^a

^a Signals were assigned in comparison with the literature.

Saccharide	Unit	δC/δ H (ppm)	Full name
Cellulose (blue)	β-D-Glc <i>p</i>	102.8-103.6/ 4.23-4.41	β-D-glucopyranoside
	α-D-Xylp (R)	92.2/5.04	α-D-xylopyranoside
	β-D-Xylp (R)	96.7/4.47	β-D-xylopyranoside
Xylan (green)	2- <i>Ο</i> -Ac-β-D-Xyl <i>p</i>	99.5/4.58	acetylated β-D-Xylp
	2,3-di- <i>O</i> -Ac-β-D-Xylp	99.1/4.78	acetylated β-D-Xylp
	4-O-MeGlcA	97.4/5.27	4- <i>O</i> -methyl-α-D-glucuronic acid
	α-L-Rha <i>p</i>	100.3/5.20	α -L-rhamnopyranose
	β-D-Galp (R)	93.0-105.5/4.38-5.05	β -D-galactopyranoside
Pectin (red)	α-D-GalpA	100.3/5.10	α -D-galactopyranuronic acid
	α-L-Araf	107.0-107.8/ 4.88-4.99	α -L-arabinofuranoside
	β-L-Araf	101.9-102.7/ 5.11-5.26	β-L-arabinofuranoside

Table S2. NMR Data for Polysaccharide Components in the Willow Bark WCW in DMSO d_6 /pyridine- d_5 (4:1).^a

^a Signals were assigned by comparison with the literature

Figure S1. Aromatic (δ_C/δ_H 96-150/6.0-8.2 ppm) (top) and side-chain (δ_C/δ_H 48-92/2.0-6.0 ppm) (bottom) regions of 2D HSQC NMR spectra of WCW preparations from bark (left), inner bark (middle), and wood (right).

