Supporting Information

Liquid-liquid equilibrium for the ternary systems (methyl isobutyl ketone

+ quinoline or isoquinoline + water) at 298.15, 318.15, and 338.15 K

Yinshuang Zhang, Bokun Chen, Siyu Yang*

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China

*E-mail: cesyyang@scut.edu.cn *Phone: +86-20-87112056, +86-18588887467 The reliability of the experimental tie-line data was evaluated by using the Hand²⁷ and Bachman²⁸ equations, given by equations (S1) and (S2), respectively.

$$\ln\left(\frac{w_2}{w_1}\right)^o = a_1 + b_1 \ln\left(\frac{w_2}{w_3}\right)^w$$
(S1)

$$w_1^o = a_2 + b_2 \left(\frac{w_1^o}{w_3^w}\right)$$
(S2)

where a_1 , b_1 and a_2 , b_2 are the parameters of the Hand and Bachman equations. The subscript 1, 2 and 3 represents methyl isobutyl ketone, quinoline or isoquinoline and water, respectively. The superscript *O* and *W* represents organic phase and aqueous phase, respectively. The fitting parameters of straight lines calculated from Hand or Bachman equations, together with corresponding linear correlation coefficients (R^2), are given in Table S3.

Figures

Figure S1. Distribution coefficients plotted versus mass fraction of quinoline in the aqueous phase at different temperatures. (**•**) T = 298.15 K, (**•**) T = 318.15 K, (**•**) T = 338.15 K.

Figure S2. Distribution coefficients plotted versus mass fraction of isoquinoline in the aqueous phase at different temperatures. (**•**) T = 298.15 K, (**•**) T = 318.15 K, (**•**) T = 338.15 K.

Figure S3. Separation factors plotted versus mass fraction of quinoline in the aqueous phase at different temperatures. (**•**) T = 298.15 K, (**•**) T = 318.15 K, (**•**) T = 338.15 K.

Figure S4. Separation factors plotted versus mass fraction of isoquinoline in the aqueous phase at different temperatures. (**•**) T = 298.15 K, (**•**) T = 318.15 K, (**•**) T = 338.15 K.

Figure S5. $\ln D$ plotted versus $1000/T/K^{-1}$ in quinoline extraction.

Figure S6. $\ln D$ plotted versus $1000/T/K^{-1}$ in isoquinoline extraction.

Figure S7. NRTL binary parameter boundary for total and partial miscibility for the ternary system {methyl isobutyl ketone (1) + quinoline (2) + water (3)} at 298.15 K.

Figure S8. NRTL binary parameter boundary for total and partial miscibility for the ternary system {methyl isobutyl ketone (1) + isoquinoline (2) + water (3)} at 298.15 K.

Tables

Organic pollutant	COD(mg/L)
Quinoline	596.00
Isoquinoline	258.80
4-Methyl-2-quinolone	15.60
7,8-Benzoquinoline	30.68
Alkyl quinoline	105.60
Copper quinolate	14.56
Methylquinoline	286.40
Alkyl pyridine	13.00
5-Ethyl-5-methylhydantoin	346.80
Pyridine	60.40
Benzoylpyridine	28.60
Dimethyl pyrrole	3.12
Hydantoin	358.50
Benzimidazole	20.40
Nitrophthalic acid	48.60
Malonylurea	250.30
Phenylacetonitrile	57.60
Indole	80.00
6(5H)-Phenanthridone	23.40
Carbazole	18.20
Benzonitrile	39.60
5,5-Dimethylhydantoin	435.65

 Table S1. Chemical Oxygen Demand (COD) of Nitrogen-Containing Compounds in the Lurgi

 Coal Gasification Wastewater.^a

^a from reference 3

Table S2. Experimental and Literature Values of Mutual Solubility (Mass Fraction) of Methy	l
Isobutyl Ketone and Water at <i>T</i> = (298.15, 318.15 and 338.15) K and <i>p</i> = 0.1 Mpa. ^a	

<i>T</i> /K	Water in methyl i	sobutyl ketone (w_3°)	Methyl isobutyl ketone in water (w_i^w)		
	This work Reference ²³		This work	Reference ²³	
298.15	0.0237	0.0230	0.0163	0.0161	
318.15	0.0275	0.0268	0.0152	0.0149	
338.15	0.0334	0.0340	0.0137	0.0139	

^a Standard uncertainties u are u(T) = 0.1 K, u(p) = 1 kPa, u(w) = 0.0048.

t t	(P	ť		1	,	
T/K	Hand			Bachman		
	a_l	b_I	R^2	a_2	b_2	R^2
methyl isobutyl ketone (1) + quinoline (2) + water (3)						
298.15	5.4119	1.0913	0.9902	-0.0041	0.9879	1.0000
318.15	4.8469	0.9895	0.9880	-0.0034	0.9888	1.0000
338.15	4.5939	0.9657	0.9879	-0.0044	0.9906	1.0000
methyl isobutyl ketone (1) + isoquinoline (2) + water (3)						
298.15	5.0369	1.0316	0.9863	-0.0041	0.9880	1.0000
318.15	4.7502	0.9854	0.9865	-0.0040	0.9894	1.0000
333.15	4.7900	0.9977	0.9860	-0.0043	0.9905	1.0000

Table S3. Hand and Bachman Equations Parameters and Regression Coefficients R^2 for the Ternary Systems (Methyl Isobutyl Ketone + Quinoline or Isoquinoline + Water).

^c a_1 and b_1 are the parameters of the Hand equations, and a_2 and b_2 are the parameters of the Bachman equations.

	Different lemperatures					
	<i>T</i> /K	D	$1000/T/K^{-1}$	lnD		
methyl isobutyl ketone + quinoline + water						
	298.15	98.15	3.3540	4.5865		
	308.15	96.03	3.2452	4.5647		
	318.15	93.48	3.1432	4.5377		
	328.15	90.71	3.0474	4.5077		
	338.15	88.36	2.9573	4.4814		
methyl isobutyl ketone + isoquinoline + water						
	298.15	99.23	3.3540	4.5974		
	303.15	96.54	3.2452	4.5700		
	318.15	93.50	3.1432	4.5380		
	328.15	90.49	3.0474	4.5052		
	338.15	87.93	2.9573	4.4765		

 Table S4. Distribution Coefficient for Quinoline and Isoquinoline in Methyl Isobutyl Ketone at

 Different Temperatures