Visible-light-mediated nickel(II)-catalyzed C-N cross-coupling in water: a green and regioselective access for the synthesis of pyrazole-containing compounds

Guirong You, Kai Wang, Xiaodan Wang, Guodong Wang, Jian Sun, Guiyun Duan and Chengcai Xia*

Pharmacy College, Taishan Medical University, Taian 271016 (China).
E-mail: xiachc@163.com

Supporting Information

General Information 2

1. Experimental Section 2
2. Characterization of Products 5
3. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra 14

General Information

All commercial reagents were used as received. All products were isolated by short chromatography on a silica gel (200-300 mesh) column using petroleum ether (60-90 ${ }^{\circ} \mathrm{C}$) and ethyl acetate. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker Advance DRX-500 spectrometers at ambient temperature with CDCl_{3} as solvent and tetramethylsilane (TMS) as the internal standard. All chemical shift values are quoted in ppm and coupling constants quoted in Hz . Compounds for HRMS were analyzed by positive mode electrospray ionization (ESI) using Agilent 6530 QTOF mass spectrometer. The ICP-MS measurement was performed in an Inductively Coupled Plasma Mass Spectrometer of the Elan DRC-e series (PerkinElmer Instruments, USA).

1. Experimental Section

General procedure for the synthesis of substrates 1

A mixture of naphthylamine (10 mmol), pyridine-2-carbonyl chloride (1.05 equiv), NEt_{3} (3.0 equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred at room temperature overnight. Water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography to give the desired amide products.

General procedure for the synthesis of products 3a-x

Amides 1 (0.2 mmol), pyrazole derivatives 2 (0.4 mmol), $\mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($15 \mathrm{~mol} \%$), Acr ${ }^{+}$-Mes $\mathrm{ClO}_{4}{ }^{-}(5 \mathrm{~mol} \%), \mathrm{H}_{2} \mathrm{O}_{2}(0.4 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ were combined in a 25 mL tube. The mixture was then stirred for 24 hours at room temperature under the radiation of 12 W blue LED. After the conversion was completed as indicated by TLC, the mixture was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The collected organic layer was washed with brine, dried with MgSO_{4}, filtered and concentrated in vacuo. The residue was purified directly by flash column chromatography to give the products 3a-x.

General procedure for the synthesis of products 3aa-ad

Amides 1 (0.2 mmol), pyrazole 2a (0.8 mmol), $\mathrm{NiSO}_{4} \bullet 6 \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mol} \%)$, $\mathrm{Acr}^{+}-\mathrm{Mes}^{2} \mathrm{ClO}_{4}{ }^{-}$ ($5 \mathrm{~mol} \%), \mathrm{H}_{2} \mathrm{O}_{2}(0.8 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ were combined in a 25 mL tube. The mixture was then stirred for 48 hours at room temperature under the radiation of 12 W blue LED. After the conversion was completed as indicated by TLC, the mixture was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The collected organic layer was washed with brine, dried with MgSO_{4}, filtered and concentrated in vacuo. The residue was purified directly by flash column chromatography to give the products 3aa-ad.

General procedure for the synthesis of product 4a

Compound $3 \mathbf{a}$ (1.0 mmol), $\mathrm{NaOH}(6.0 \mathrm{mmol})$ and $\mathrm{EtOH}(10.0 \mathrm{~mL})$ were combined in a 25 mL tube. The mixture was then stirred for 8 hours at $90^{\circ} \mathrm{C}$. After the conversion was completed as indicated by TLC, the mixture was cooled to room temperature and poured into water, extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The collected organic layer was washed with brine, dried with MgSO_{4}, filtered and concentrated in vacuo. The residue was purified
directly by flash column chromatography to give the product $4 \mathbf{a}$. Then 1 M HCl was added in aqueous layer until pH 4. The aqueous layer was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine, dried with MgSO_{4}, filtered and concentrated in vacuo. The residue was purified directly by flash column chromatography to afford the 2-picolinic acid.

General procedure for the synthesis of product 5a

Compound $4 \mathbf{a}(1.0 \mathrm{mmol})$, concentrated $\mathrm{HCl}(1.5 \mathrm{mmol})$ and water (5.0 mL) were combined in a 25 mL tube at $0^{\circ} \mathrm{C}$. Then, a solution of $\mathrm{NaNO}_{2}(1.5 \mathrm{mmol})$ in water $(1.0 \mathrm{~mL})$ was slowly added. After stirring for 15 min , a solution of $\mathrm{KI}(1.5 \mathrm{mmol})$ in water $(1.0 \mathrm{~mL})$ was slowly added. Then the mixture was warmed to room temperature and stirred for 24 h . Subsequently, the solution was neutralized by adding 2 N NaOH and the organic phase was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The collected organic layer was washed with brine, dried with MgSO_{4}, filtered and concentrated in vacuo. The residue was purified directly by flash column chromatography to give the product $\mathbf{5 a}$.

General procedure for the cycle experiment of catalyst-in-water

Amides 1a (0.2 mmol), pyrazole derivatives 2a (0.4 mmol), $\mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mol} \%$), Acr ${ }^{+}$-Mes $\mathrm{ClO}_{4}^{-}(5 \mathrm{~mol} \%), \mathrm{H}_{2} \mathrm{O}_{2}(0.4 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ were combined in a 25 mL tube. The mixture was then stirred for 24 hours at room temperature under the radiation of 12 W blue LED. After the conversion was completed as indicated by TLC, the water in the flask was extracted directly, using EtOAc ($3 \times 5 \mathrm{~mL}$) in which the nickel(II) salt is insoluble. According to the difference of the solubility to nickel(II) salt and organic product in $\mathrm{H}_{2} \mathrm{O}$ and EtOAc, catalyst-in-water (contains nickel(II) salt and $\mathrm{H}_{2} \mathrm{O}$) could be retrieved by an easy phase separation from the organic layer. And the retrieved catalyst-in-water was reutilized in the next round by the addition of starting materials.

Table S1 Conditions screening ${ }^{\text {a,b }}$

entry	photocatalyst	light source	yield [\%] ${ }^{\text {b }}$
1	$\mathrm{Acr}^{+}-\mathrm{Mes} \mathrm{ClO}_{4}^{-}$	white LED	31
2	$\mathrm{Acr}^{+}-\mathrm{Mes} \mathrm{ClO}_{4}^{-}$	green LED	28
3	$\mathrm{Acr}^{+}-\mathrm{Mes} \mathrm{ClO}_{4}^{-}$	red LED	0
4	$\mathrm{Acr}^{+}-\mathrm{Mes} \mathrm{ClO}_{4}^{-}$	dark	0
5	$\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}$	blue LED	0
6	$\operatorname{lr}(\mathrm{ppy})_{3}$	blue LED	18
7	Vitamin B2	blue LED	23
8	rhodamine B	blue LED	41

Table S2 ICP-Ms analysis on product for Ni content

product	Ni Content (ppm)
$\mathbf{3 a}$	3.6
3w	3.0

2. Characterization of Products

N-(4-(1H-pyrazol-1-yl)naphthalen-1-yl)picolinamide (3a)

Faint yellow solid ($45 \mathrm{mg}, 72 \%$ yield), M.p. $148-149{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.89(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ $-7.51(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.41,149.84$, 148.27, 140.91, 138.00, 134.23, 133.27, 132.00, 130.10, 127.38, 127.10, 126.88, 126.84, 124.29, 123.73, 122.70, 120.75, 117.51, 106.61. HRMS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}^{+}$: $315.1241[\mathrm{M}+\mathrm{H}]^{+}$, Found: 315.1243.

N-(4-(1H-pyrazol-1-yl)naphthalen-1-yl)pyrazine-2-carboxamide (3b)

Faint yellow solid ($43 \mathrm{mg}, 69 \%$ yield), M.p. $153-154{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.40(\mathrm{~s}, 1 \mathrm{H}), 9.52(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.81(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{dd}, J=2.2,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=11.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 160.05,146.87,143.86,143.36,141.54,139.94,133.71$, $131.43,130.82,128.99,126.38,126.18,125.79,123.39,122.49,119.33,117.03,105.58$. HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}^{+}: 316.1193[\mathrm{M}+\mathrm{H}]^{+}$, Found: 316.1188.

N-(4-(1H-pyrazol-1-yl)naphthalen-1-yl)-3-methylpicolinamide (3c)

Faint yellow solid ($39 \mathrm{mg}, 60 \%$ yield), M.p. $155-156{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $11.09(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.77 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=7.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 162.80,145.65,144.52,140.51,139.75,135.50$, $133.28,132.90,132.57,130.88,129.05,126.17,125.84,125.31,123.08,122.63,119.83$,
116.22, 105.41, 19.84. HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}^{+}: 329.1397[\mathrm{M}+\mathrm{H}]^{+}$, Found: 329.1394.

N -(4-(1H-pyrazol-1-yl)naphthalen-1-yl)isoquinoline-1-carboxamide (3d)

Faint yellow solid ($34 \mathrm{mg}, 47 \%$ yield), M.p. $148-149{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $11.27(\mathrm{~s}, 1 \mathrm{H}), 9.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 8.23 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.75(\mathrm{~m}, 5 \mathrm{H}), 7.67(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, CDCl_{3}) $\delta 162.93,146.25,139.82,139.09,136.77,133.19,132.47,130.87,129.79,129.09$, 128.15, 126.80, 126.47, 126.24, 126.14, 126.01, 125.94, 124.25, 123.16, 122.62, 119.92, 116.65, 105.45. HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}^{+}: 365.1397[\mathrm{M}+\mathrm{H}]^{+}$, Found: 365.1392.

N-(4-(1H-pyrazol-1-yl)naphthalen-1-yl)quinoline-2-carboxamide (3e)

Faint yellow solid ($38 \mathrm{mg}, 52 \%$ yield), M.p. $169-170{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $11.10(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 8.30 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 3 \mathrm{H}), 7.81(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 161.49, 148.59, 145.32, 139.84, 137.08, 133.24, 132.20, 130.86, 129.47, 129.07, 128.86, 128.60, 127.36, 126.87, 126.27, 126.03, 125.90, 123.26, 122.65, 119.64, 117.82, 116.54, 105.48. HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}^{+}: 365.1397[\mathrm{M}+\mathrm{H}]^{+}$, Found: 365.1391.
N-(4-(3-methyl-1H-pyrazol-1-yl)naphthalen-1-yl)picolinamide (3i)

Faint yellow solid ($43 \mathrm{mg}, 66 \%$ yield), M.p. $160-161{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 10.88 (s, 1H), 8.73 (d, J = $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.49$ (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.37$ (d, J=7.7 Hz, 1H), $8.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=1.9$
$\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 3 \mathrm{H}), 6.32(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 162.34,150.14,149.85,148.22,137.88,134.35,132.86$, $132.59,130.06,127.21,126.93,126.77,126.75,124.37,123.55,122.60,120.60,117.50$, 106.30, 13.75. HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}^{+}$: $329.1397[\mathrm{M}+\mathrm{H}]^{+}$, Found: 329.1391.

N-(4-(3-phenyl-1H-pyrazol-1-yl)naphthalen-1-yl)picolinamide (3j)

Faint yellow solid ($48 \mathrm{mg}, 62 \%$ yield), M.p. $173-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $10.91(\mathrm{~s}, 1 \mathrm{H}), 8.76-8.73(\mathrm{~m}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=10.3,3.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.81(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 162.36,152.87,149.83,148.24,137.90$, 134.22, 133.37, 133.24, 133.22, 130.05, 128.69, 127.98, 127.33, 127.06, 126.83, 126.79, 125.91, 124.37, 123.72, 122.62, 120.63, 117.47, 103.91. HRMS (ESI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}^{+}: 391.1553[\mathrm{M}+\mathrm{H}]^{+}$, Found: 391.1546.

Faint yellow solid ($48 \mathrm{mg}, 74 \%$ yield), M.p. $148-149{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.87(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.15 (d, J = 8.5 Hz, 1H), $7.96-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 2 \mathrm{H})$, $7.57-7.53(\mathrm{~m}, 4 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 162.35,149.82,148.22$, $141.56,137.86,134.43,132.85,130.54,129.91,127.14,126.93,126.81,126.75,124.39$, 123.34, 122.58, 120.62, 117.53, 117.03, 8.96. HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}^{+}$: $329.1397[\mathrm{M}+\mathrm{H}]^{+}$, Found: 329.1398.

N-(4-(4-bromo-1H-pyrazol-1-yl)naphthalen-1-yl)picolinamide (3n)

Faint yellow solid ($40 \mathrm{mg}, 51 \%$ yield), M.p. $172-173{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.93(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.18 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H})$, 7.59 (d, J = $8.1 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.33,148.73,147.22,140.41$, 136.90, 132.65, 132.46, 132.42, 130.87, 128.69, 126.51, 126.14, 125.81, 125.65, 122.79, 121.62, 119.70, 116.16, 93.43. HRMS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{BrN}_{4} \mathrm{O}^{+}: 393.0346$ $[\mathrm{M}+\mathrm{H}]^{+}$, Found: 393.0345.

N-(4-(4-iodo-1H-pyrazol-1-yl)naphthalen-1-yl)picolinamide (3o)

Faint yellow solid ($53 \mathrm{mg}, 60 \%$ yield), M.p. $144-145{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $10.95(\mathrm{~s}, 1 \mathrm{H}), 8.76$ (d, J=4.2 Hz, 1H), $8.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.20(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 1H), $7.71-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.32$, 149.71, 148.21, 145.85, 137.93, 136.13, 133.65, 133.28, 129.69, 127.52, 127.15, 126.83, 126.65, 123.83, 123.78, 122.65, 120.71, 117.17, 57.57. HRMS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{IN}_{4} \mathrm{O}^{+}: 441.0207[\mathrm{M}+\mathrm{H}]^{+}$, Found: 441.0200.

N -(4-(3,5-dimethyl-1 H-pyrazol-1-yl)naphthalen-1-yl)picolinamide (3p)

Faint yellow solid ($44 \mathrm{mg}, 65 \%$ yield), M.p. $155-156{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 10.92 (s, 1H), 8.72 (dd, $J=4.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.16$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.96 (td, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (dd, $J=10.1,5.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.37$ (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.08(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.07$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.26,148.82,147.99,147.19,140.74,136.84,132.38$, $131.79,130.55,126.31,125.85,125.72,125.60,124.70,123.16,121.56,119.53,116.19$, 104.35, 12.65, 10.43. HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}^{+}: 343.1553[\mathrm{M}+\mathrm{H}]^{+}$, Found: 343.1549 .

N-(4-(4-bromo-3,5-dimethyl-1H-pyrazol-1-yl)naphthalen-1-yl)picolinamide (3q)

Faint yellow solid ($50 \mathrm{mg}, 60 \%$ yield), M.p. $179-180^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.95(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=14.2$, $8.0 \mathrm{~Hz}, 3 \mathrm{H}$), 7.37 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.36(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 162.32, 149.74, 148.24, 147.64, 139.89, 137.91, 133.86, 132.53, 131.17, 127.58, 127.06, 126.83, 126.58, 125.78, 123.84, 122.62, 120.69, 117.08, 94.97, 12.53, 10.91. HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{BrN}_{4} \mathrm{O}^{+}: 421.0659[\mathrm{M}+\mathrm{H}]^{+}$, Found: 421.0644.

N-(4-(4-iodo-3,5-dimethyl-1H-pyrazol-1-yl)naphthalen-1-yl)picolinamide (3r)

Faint yellow solid ($60 \mathrm{mg}, 64 \%$ yield), M.p. $182-183{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.94(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $8.16(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 3 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 162.32, 150.85, 149.70, 148.24, 143.34, 137.91, 133.86, 132.71, 131.11, 127.60, 127.08, 126.84, 126.56, 125.74, 123.83, 122.61, 120.70, 117.07, 63.59, 14.29, 12.56. HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}^{+}: 469.0520[\mathrm{M}+\mathrm{H}]^{+}$, Found: 469.0521 .

N-(4-(1H-benzo[d][1,2,3]triazol-1-yl)naphthalen-1-yl)picolinamide (3s)

Faint yellow solid ($32 \mathrm{mg}, 44 \%$ yield), M.p. $152-153^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $11.05(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.27 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.57$ (m, 1H), 7.53 (dd, J = 14.8, $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.42,149.68$,
148.29, 145.74, 137.98, 134.95, 134.60, 130.00, 129.03, 128.21, 127.74, 127.39, 126.93, 126.77, 125.17, 124.34, 123.67, 122.70, 120.88, 120.18, 117.23, 110.37. HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}^{+}: 366.1349[\mathrm{M}+\mathrm{H}]^{+}$, Found: 366.1343 .

Faint yellow solid ($37 \mathrm{mg}, 49 \%$ yield), M.p. $159-160{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $11.24(\mathrm{~s}, 1 \mathrm{H}), 9.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 8.21 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.90$ (m, 3H), 7.77 (ddd, $J=7.8,6.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.68 $7.63(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{dd}, \mathrm{J}=11.7,7.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 162.94, 146.28, 140.53, 139.10, 136.75, 133.44, 132.14, 129.76, 129.54, 129.51, 128.97, 128.12, 126.80, 126.45, 126.19, 126.10, 126.00, 125.87, 124.21, 123.32, 122.32, 119.90, 116.77, 7.93. HRMS (ESI): Calculated for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}^{+}$: $379.1554[\mathrm{M}+\mathrm{H}]^{+}$, Found: 379.1559.
N-(4-(4-bromo-1H-pyrazol-1-yl)naphthalen-1-yl)isoquinoline-1-carboxamide (3u)

Faint yellow solid ($29 \mathrm{mg}, 33 \%$ yield), M.p. $184-185{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $11.24(\mathrm{~s}, 1 \mathrm{H}), 9.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $8.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J=13.4,8.9 \mathrm{~Hz}, 5 \mathrm{H}), 7.61(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (dd, $J=7.6,5.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 162.93, 146.12, 140.40, 139.09, 136.77, 132.99, 132.41, 131.58, 130.90, 129.82, 128.74, 128.21, 126.75, 126.51, 126.47, 126.11, 126.03, 124.33, 122.77, 122.74, 120.02, 116.38, 93.42. HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{BrN}_{4} \mathrm{O}^{+}: 443.0502[\mathrm{M}+\mathrm{H}]^{+}$, Found: 443.05009.
N-(4-(4-iodo-1H-pyrazol-1-yl)naphthalen-1-yl)isoquinoline-1-carboxamide (3v)

Faint yellow solid (38 mg, 39\% yield), M.p. $169-170{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $11.23(\mathrm{~s}, 1 \mathrm{H}), 9.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 8.15 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 3 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $\left.)^{2}\right) \delta$ 162.91, 146.11, 144.82, 139.08, 136.76, 135.12, 132.97, 132.25, 129.81, 128.72, 128.19, 126.74, 126.48, 126.45, 126.09, 126.02, 126.00, 124.31, 122.76, 122.74, 119.99, 116.34, 56.52. HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{IN}_{4} \mathrm{O}^{+}:[\mathrm{M}+\mathrm{H}]^{+}$491.0364, Found: 491.0368.

N-(4-(4-iodo-1H-pyrazol-1-yl)naphthalen-1-yl)-3-methylpicolinamide (3w)

Faint yellow solid ($26 \mathrm{mg}, 29 \%$ yield), M.p. $167-168{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $11.19(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.83(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=7.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.70,145.49,144.76,144.42,140.58,135.53,135.11,133.02,131.99$, 128.65, 126.40, 125.98, 125.78, 125.35, 122.71, 122.67, 119.91, 115.95, 56.48, 19.80. HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{IN}_{4} \mathrm{O}^{+}: 455.0364[\mathrm{M}+\mathrm{H}]^{+}$, Found: 455.0361 .

N-(4-(4-iodo-1H-pyrazol-1-yl)naphthalen-1-yl)quinoline-2-carboxamide (3x)

Faint yellow solid ($30 \mathrm{mg}, 31 \%$ yield), M.p. $173-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $11.14(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{q}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.29(\mathrm{dd}, J=15.6,8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 161.52, 148.52, 144.86, 139.77, 137.16, 135.21, 135.13, 133.00, 132.35, 129.52, 128.87, 127.42, 126.90, 126.54, 126.21, 125.82, 124.05, 122.88, 122.81, 119.74, 117.84, 116.34, 56.55. HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{IN}_{4} \mathrm{O}^{+}: 491.0364[\mathrm{M}+\mathrm{H}]^{+}$, Found: 491.0359.

N-(4-(1H-pyrazol-1-yl)phenyl)picolinamide (3aa)

White solid ($22 \mathrm{mg}, 42 \%$ yield), M.p. $143-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.12$ (s, $1 \mathrm{H}), 8.63(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.88(\mathrm{~m}, 4 \mathrm{H}), 7.73-7.70(\mathrm{~m}$, $3 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 1 \mathrm{H}), 6.47(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $)^{2}$ ס 161.00, 148.58, 146.99, 139.94, 136.75, 135.51, 135.19, 125.67, 125.57, 121.43, 119.46, 118.91, 106.52. HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}^{+}: 265.1084[\mathrm{M}+\mathrm{H}]^{+}$, Found: 265.1084.

N-(2-chloro-4-(1H-pyrazol-1-yl)phenyl)picolinamide (3ab)

White solid (22 mg, 37\% yield), M.p. $152-153{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.75$ (s, 1 H), 8.77 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.31$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=11.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=9.0,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, \mathrm{J}=7.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49-6.47(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 162.19, 149.51, 148.33, 141.33, 137.71, 136.38, 133.08, 126.75, 126.67, 124.26, 122.47, 121.47, 120.19, 117.95, 107.96. HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{CIN}_{4} \mathrm{O}^{+}$: 299.0694 $[\mathrm{M}+\mathrm{H}]^{+}$, Found: 299.0697.

N-(5-(1H-pyrazol-1-yl)-[1,1'-biphenyl]-2-yl)picolinamide (3ac)

White solid (33 mg, 48% yield), M.p. $158-159{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.36$ (s, $1 \mathrm{H}), 8.77(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.49-7.46$ (m, 1H), 7.39 (ddd, $J=7.5,4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.49-6.47(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 161.01,148.77,146.97,139.98,136.51,136.25,135.26,132.63,132.33,128.44$, 128.01, 127.24, 125.72, 125.23, 121.23, 120.42, 120.14, 117.85, 106.55. HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}^{+}: 341.1397[\mathrm{M}+\mathrm{H}]^{+}$, Found: 341.1392.

N -(4-(1H-pyrazol-1-yl)phenyl)-3-methylpicolinamide (3ad)

White solid ($28 \mathrm{mg}, 51 \%$ yield), M.p. $131-132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.36$ (s, $1 \mathrm{H}), 8.46(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H})$, $7.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50-$ $6.44(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.50,146.48,145.26,141.44$, 140.87, 136.57, 136.31, 136.29, 126.67, 126.14, 120.39, 119.86, 107.44, 20.80. HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}^{+}$: $279.1241[\mathrm{M}+\mathrm{H}]^{+}$, Found: 279.1247.

4-(1H-pyrazol-1-yl)naphthalen-1-amine (4a)

Light brown solid (186 mg, 89\% yield), M.p. $88-89{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{t}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.10,139.29,130.95,129.58$, 128.07, 126.13, 124.47, 123.41, 122.59, 122.44, 119.96, 107.03, 104.92. HRMS (ESI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3}{ }^{+}: 210.1026[\mathrm{M}+\mathrm{H}]^{+}$, Found: 210.1031.

1-(4-iodonaphthalen-1-yl)-1H-pyrazole (5a)

Faint yellow solid ($240 \mathrm{mg}, 75 \%$ yield), M.p. $123-124{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.72(\mathrm{~m}$, $2 \mathrm{H}), 7.61(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.55-6.51(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.13$, 137.24, 135.55, 133.91, 131.55, 130.73, 128.76, 127.43, 126.99, 123.02, 122.90, 105.81, 99.03. HRMS (ESI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{IN}_{2}^{+}: 320.9886[\mathrm{M}+\mathrm{H}]^{+}$, Found: 320.9883.

3. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

$3 a^{1} \mathrm{H}$ NMR

3a ${ }^{13} \mathrm{C}$ NMR

3b ${ }^{1} \mathrm{H}$ NMR

3b ${ }^{13}$ C NMR

3c ${ }^{1} \mathrm{H}$ NMR
$\stackrel{\circ}{i}$

$3 c{ }^{13} \mathrm{C}$ NMR

$$
-19.84
$$

3d ${ }^{13}$ C NMR

$3 e^{13} \mathrm{C}$ NMR

$3 i^{13} \mathrm{C}$ NMR

3j ${ }^{1} \mathrm{H}$ NMR

$3 \mathrm{j}^{13} \mathrm{C}$ NMR

-

$3 \mathrm{~m}^{1} \mathrm{H}$ NMR

$3 m{ }^{13} \mathrm{C}$ NMR

$3 n{ }^{13} \mathrm{C}$ NMR

$30{ }^{1} \mathrm{H}$ NMR

$30{ }^{13} \mathrm{C}$ NMR
언 す ず

$3 p{ }^{13} \mathrm{C}$ NMR

$$
\begin{aligned}
& \text { n } \\
& \text { i } \\
& \\
& 1
\end{aligned}
$$

$3 q^{1} \mathrm{H} N M R$

$3{ }^{1} \mathrm{H}$ NMR

$3 r^{13} \mathrm{C}$ NMR
ion ion

3s ${ }^{1} \mathrm{H}$ NMR

3s ${ }^{13} \mathrm{C}$ NMR

3t ${ }^{1} \mathrm{H}$ NMR

$3 t{ }^{13} \mathrm{C}$ NMR
$\stackrel{\cong}{\stackrel{\pi}{1}}$

$3 u^{1} \mathrm{H}$ NMR

$3 u{ }^{13}$ C NMR

$3 v{ }^{1} \mathrm{H}$ NMR

$3 v{ }^{13} \mathrm{C}$ NMR

$3 w{ }^{1} \mathrm{H}$ NMR

$3 w^{13} \mathrm{C}$ NMR

	$\stackrel{+}{+}$

$3 \mathbf{x}{ }^{1} \mathrm{H}$ NMR

$3 x{ }^{13} \mathrm{C}$ NMR

3aa ${ }^{1} \mathrm{H}$ NMR

$\underbrace{}_{13.0}$

3aa ${ }^{13} \mathrm{C}$ NMR

3ab ${ }^{13} \mathrm{C}$ NMR

3ac ${ }^{1} \mathrm{H}$ NMR

$\underbrace{\substack{12.0}}_{\substack{13.5}} \underbrace{8}_{10.5}$

3ac ${ }^{13} \mathrm{C}$ NMR

3ad ${ }^{1} \mathrm{H}$ NMR

3ad ${ }^{13} \mathrm{C}$ NMR

$\stackrel{\circ}{\circ}$

4a ${ }^{13} \mathrm{C}$ NMR

5a ${ }^{1} \mathrm{H}$ NMR

5a ${ }^{13} \mathrm{C}$ NMR

