Visible-light-mediated nickel(II)-catalyzed C-N cross-coupling in water: a green and regioselective access for the synthesis of pyrazole-containing compounds

Guirong You, Kai Wang, Xiaodan Wang, Guodong Wang, Jian Sun, Guiyun Duan and Chengcai Xia*

Pharmacy College, Taishan Medical University, Taian 271016 (China). E-mail: <u>xiachc@163.com</u>

Supporting Information

	General Information	2
1.	Experimental Section	2
2.	Characterization of Products	5
3.	Copies of ¹ H and ¹³ C NMR Spectra	14

General Information

All commercial reagents were used as received. All products were isolated by short chromatography on a silica gel (200-300 mesh) column using petroleum ether (60-90°C) and ethyl acetate. ¹H and ¹³C NMR spectra were recorded on Bruker Advance DRX-500 spectrometers at ambient temperature with CDCl₃ as solvent and tetramethylsilane (TMS) as the internal standard. All chemical shift values are quoted in ppm and coupling constants quoted in Hz. Compounds for HRMS were analyzed by positive mode electrospray ionization (ESI) using Agilent 6530 QTOF mass spectrometer. The ICP-MS measurement was performed in an Inductively Coupled Plasma Mass Spectrometer of the Elan DRC-e series (PerkinElmer Instruments, USA).

1. Experimental Section

General procedure for the synthesis of substrates 1

A mixture of naphthylamine (10 mmol), pyridine-2-carbonyl chloride (1.05 equiv), NEt₃ (3.0 equiv) in anhydrous CH_2CI_2 (20 mL) was stirred at room temperature overnight. Water was added and the mixture was extracted with CH_2CI_2 . The combined organic layer was washed with water and brine, dried over anhydrous Na_2SO_4 , and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography to give the desired amide products.

General procedure for the synthesis of products 3a-x

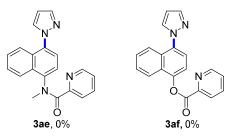
Amides **1** (0.2 mmol), pyrazole derivatives **2** (0.4 mmol), NiSO₄•6H₂O (15 mol %), Acr⁺-Mes ClO₄⁻ (5 mol%), H₂O₂ (0.4 mmol) and H₂O (4 mL) were combined in a 25 mL tube. The mixture was then stirred for 24 hours at room temperature under the radiation of 12 W blue LED. After the conversion was completed as indicated by TLC, the mixture was extracted with EtOAc (3 × 5 mL). The collected organic layer was washed with brine, dried with MgSO₄, filtered and concentrated *in vacuo*. The residue was purified directly by flash column chromatography to give the products **3a-x**.

General procedure for the synthesis of products 3aa-ad

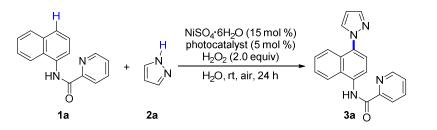
Amides **1** (0.2 mmol), pyrazole **2a** (0.8 mmol), NiSO₄•6H₂O (15 mol %), Acr⁺–Mes ClO₄⁻ (5 mol%), H₂O₂ (0.8 mmol) and H₂O (4 mL) were combined in a 25 mL tube. The mixture was then stirred for 48 hours at room temperature under the radiation of 12 W blue LED. After the conversion was completed as indicated by TLC, the mixture was extracted with EtOAc (3 × 5 mL). The collected organic layer was washed with brine, dried with MgSO₄, filtered and concentrated *in vacuo*. The residue was purified directly by flash column chromatography to give the products **3aa-ad**.

General procedure for the synthesis of product 4a

Compound **3a** (1.0 mmol), NaOH (6.0 mmol) and EtOH (10.0 mL) were combined in a 25 mL tube. The mixture was then stirred for 8 hours at 90 °C. After the conversion was completed as indicated by TLC, the mixture was cooled to room temperature and poured into water, extracted with EtOAc (3×5 mL). The collected organic layer was washed with brine, dried with MgSO₄, filtered and concentrated *in vacuo*. The residue was purified


directly by flash column chromatography to give the product **4a**. Then 1 M HCl was added in aqueous layer until pH 4. The aqueous layer was extracted with EtOAc (3×5 mL). The combined organic layers were washed with brine, dried with MgSO₄, filtered and concentrated in *vacuo*. The residue was purified directly by flash column chromatography to afford the 2-picolinic acid.

General procedure for the synthesis of product 5a


Compound **4a** (1.0 mmol), concentrated HCI (1.5 mmol) and water (5.0 mL) were combined in a 25 mL tube at 0 $^{\circ}$ C. Then, a solution of NaNO₂ (1.5 mmol) in water (1.0 mL) was slowly added. After stirring for 15 min, a solution of KI (1.5 mmol) in water (1.0 mL) was slowly added. Then the mixture was warmed to room temperature and stirred for 24 h. Subsequently, the solution was neutralized by adding 2 N NaOH and the organic phase was extracted with EtOAc (3 × 5 mL). The collected organic layer was washed with brine, dried with MgSO₄, filtered and concentrated *in vacuo*. The residue was purified directly by flash column chromatography to give the product **5a**.

General procedure for the cycle experiment of catalyst-in-water

Amides **1a** (0.2 mmol), pyrazole derivatives **2a** (0.4 mmol), NiSO₄•6H₂O (15 mol %), Acr⁺–Mes ClO₄⁻ (5 mol %), H₂O₂ (0.4 mmol) and H₂O (4 mL) were combined in a 25 mL tube. The mixture was then stirred for 24 hours at room temperature under the radiation of 12 W blue LED. After the conversion was completed as indicated by TLC, the water in the flask was extracted directly, using EtOAc (3 × 5 mL) in which the nickel(II) salt is insoluble. According to the difference of the solubility to nickel(II) salt and organic product in H₂O and EtOAc, catalyst-in-water (contains nickel(II) salt and H₂O) could be retrieved by an easy phase separation from the organic layer. And the retrieved catalyst-in-water was reutilized in the next round by the addition of starting materials.

Table S1 Conditions screening^{a,b}

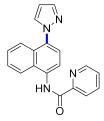
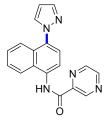
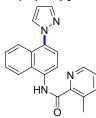

entry	photocatalyst	light source	yield [%] ^b
1	Acr ⁺ -Mes ClO ₄ ⁻	white LED	31
2	Acr ⁺ -Mes ClO ₄ ⁻	green LED	28
3	Acr ⁺ -Mes ClO ₄ ⁻	red LED	0
4	Acr ⁺ -Mes ClO ₄ ⁻	dark	0
5	Ru(bpy) ₃ Cl ₂	blue LED	0
6	lr(ppy) ₃	blue LED	18
7	Vitamin B2	blue LED	23
8	rhodamine B	blue LED	41
1			

Table S2 ICP-Ms analysis on product for Ni content

product	Ni Content (ppm)
3a	3.6
3w	3.0

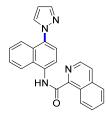

2. Characterization of Products

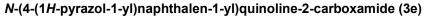
N-(4-(1H-pyrazol-1-yl)naphthalen-1-yl)picolinamide (3a)

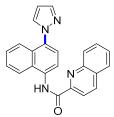

Faint yellow solid (45 mg, 72% yield), M.p. 148-149 °C. ¹H NMR (500 MHz, CDCl₃) $\overline{0}$ 10.89 (s, 1H), 8.70 (d, *J* = 4.2 Hz, 1H), 8.50 (d, *J* = 8.1 Hz, 1H), 8.35 (d, *J* = 7.8 Hz, 1H), 8.15 (d, *J* = 8.5 Hz, 1H), 7.93 (td, *J* = 7.7, 1.7 Hz, 1H), 7.84 (d, *J* = 1.8 Hz, 1H), 7.81 (d, *J* = 8.5 Hz, 1H), 7.78 (d, *J* = 2.3 Hz, 1H), 7.63 (t, *J* = 7.2 Hz, 1H), 7.58 (d, *J* = 8.1 Hz, 1H), 7.56 – 7.51 (m, 2H), 6.54 (t, *J* = 2.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) $\overline{0}$ 162.41, 149.84, 148.27, 140.91, 138.00, 134.23, 133.27, 132.00, 130.10, 127.38, 127.10, 126.88, 126.84, 124.29, 123.73, 122.70, 120.75, 117.51, 106.61. HRMS (ESI): Calculated for C₁₉H₁₄N₄O⁺: 315.1241 [M+H]⁺, Found: 315.1243.

N-(4-(1*H*-pyrazol-1-yl)naphthalen-1-yl)pyrazine-2-carboxamide (3b)

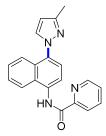
Faint yellow solid (43 mg, 69% yield), M.p. 153-154 °C. ¹H NMR (500 MHz, CDCl₃) $\overline{0}$ 10.40 (s, 1H), 9.52 (d, *J* = 1.1 Hz, 1H), 8.81 (d, *J* = 2.4 Hz, 1H), 8.63 (dd, *J* = 2.2, 1.6 Hz, 1H), 8.39 (d, *J* = 8.1 Hz, 1H), 8.03 (d, *J* = 8.5 Hz, 1H), 7.80 – 7.75 (m, 2H), 7.72 (d, *J* = 2.2 Hz, 1H), 7.58 (dd, *J* = 11.3, 4.0 Hz, 1H), 7.53 (d, *J* = 8.1 Hz, 2H), 6.48 (t, *J* = 2.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) $\overline{0}$ 160.05, 146.87, 143.86, 143.36, 141.54, 139.94, 133.71, 131.43, 130.82, 128.99, 126.38, 126.18, 125.79, 123.39, 122.49, 119.33, 117.03, 105.58. HRMS (ESI): Calculated for C₁₈H₁₃N₅O⁺: 316.1193 [M+H]⁺, Found: 316.1188.


N-(4-(1H-pyrazol-1-yl)naphthalen-1-yl)-3-methylpicolinamide (3c)

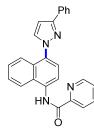

Faint yellow solid (39 mg, 60% yield), M.p. 155-156 °C. ¹H NMR (500 MHz, CDCl₃) δ 11.09 (s, 1H), 8.50 (d, *J* = 4.1 Hz, 1H), 8.40 (d, *J* = 8.1 Hz, 1H), 8.09 (d, *J* = 8.5 Hz, 1H), 7.77 (d, *J* = 1.8 Hz, 1H), 7.71 (d, *J* = 2.2 Hz, 2H), 7.63 (d, *J* = 7.7 Hz, 1H), 7.56 (d, *J* = 7.7 Hz, 1H), 7.52 – 7.47 (m, 2H), 7.37 (dd, *J* = 7.7, 4.6 Hz, 1H), 6.47 (t, *J* = 2.0 Hz, 1H), 2.80 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.80, 145.65, 144.52, 140.51, 139.75, 135.50, 133.28, 132.90, 132.57, 130.88, 129.05, 126.17, 125.84, 125.31, 123.08, 122.63, 119.83,


116.22, 105.41, 19.84. HRMS (ESI): Calculated for $C_{20}H_{16}N_4O^+$: 329.1397 [M+H]⁺, Found: 329.1394.

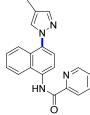
N-(4-(1H-pyrazol-1-yl)naphthalen-1-yl)isoquinoline-1-carboxamide (3d)


Faint yellow solid (34 mg, 47% yield), M.p. 148-149 °C. ¹H NMR (500 MHz, CDCl₃) δ 11.27 (s, 1H), 9.82 (d, *J* = 8.1 Hz, 1H), 8.66 (d, *J* = 5.5 Hz, 1H), 8.53 (d, *J* = 8.1 Hz, 1H), 8.23 (d, *J* = 8.5 Hz, 1H), 7.96 – 7.92 (m, 2H), 7.86 – 7.75 (m, 5H), 7.67 (t, *J* = 7.6 Hz, 1H), 7.63 (d, *J* = 8.1 Hz, 1H), 7.60 – 7.55 (m, 1H), 6.56 (t, *J* = 2.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 162.93, 146.25, 139.82, 139.09, 136.77, 133.19, 132.47, 130.87, 129.79, 129.09, 128.15, 126.80, 126.47, 126.24, 126.14, 126.01, 125.94, 124.25, 123.16, 122.62, 119.92, 116.65, 105.45. HRMS (ESI): Calculated for C₂₃H₁₆N₄O⁺: 365.1397 [M+H]⁺, Found: 365.1392.

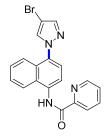
Faint yellow solid (38 mg, 52% yield), M.p. 169-170 °C. ¹H NMR (500 MHz, CDCl₃) $\overline{0}$ 11.10 (s, 1H), 8.55 (d, *J* = 8.1 Hz, 1H), 8.47 (d, *J* = 8.4 Hz, 1H), 8.43 (d, *J* = 8.5 Hz, 1H), 8.30 (d, *J* = 8.4 Hz, 1H), 8.26 (d, *J* = 8.5 Hz, 1H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.85 (d, *J* = 7.7 Hz, 3H), 7.81 (d, *J* = 2.2 Hz, 1H), 7.70 (t, *J* = 6.4 Hz, 2H), 7.62 (d, *J* = 8.1 Hz, 1H), 7.60 (d, *J* = 7.4 Hz, 1H), 6.56 (t, *J* = 2.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) $\overline{0}$ 161.49, 148.59, 145.32, 139.84, 137.08, 133.24, 132.20, 130.86, 129.47, 129.07, 128.86, 128.60, 127.36, 126.87, 126.27, 126.03, 125.90, 123.26, 122.65, 119.64, 117.82, 116.54, 105.48. HRMS (ESI): Calculated for C₂₃H₁₆N₄O⁺: 365.1397 [M+H]⁺, Found: 365.1391.


N-(4-(3-methyl-1H-pyrazol-1-yl)naphthalen-1-yl)picolinamide (3i)

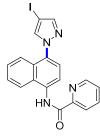
Faint yellow solid (43 mg, 66% yield), M.p. 160-161 °C. ¹H NMR (600 MHz, CDCl₃) $\overline{0}$ 10.88 (s, 1H), 8.73 (d, *J* = 4.5 Hz, 1H), 8.49 (d, *J* = 8.0 Hz, 1H), 8.37 (d, *J* = 7.7 Hz, 1H), 8.15 (d, *J* = 8.5 Hz, 1H), 7.96 (t, *J* = 7.6 Hz, 1H), 7.88 (d, *J* = 8.4 Hz, 1H), 7.67 (d, *J* = 1.9


Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.59 – 7.54 (m, 3H), 6.32 (d, J = 1.9 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.34, 150.14, 149.85, 148.22, 137.88, 134.35, 132.86, 132.59, 130.06, 127.21, 126.93, 126.77, 126.75, 124.37, 123.55, 122.60, 120.60, 117.50, 106.30, 13.75. HRMS (ESI): Calculated for C₂₀H₁₆N₄O⁺: 329.1397 [M+H]⁺, Found: 329.1391.

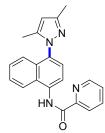
N-(4-(3-phenyl-1H-pyrazol-1-yl)naphthalen-1-yl)picolinamide (3j)


Faint yellow solid (48 mg, 62% yield), M.p. 173-174 °C. ¹H NMR (500 MHz, CDCl₃) $\overline{0}$ 10.91 (s, 1H), 8.76 – 8.73 (m, 1H), 8.55 (d, *J* = 8.1 Hz, 1H), 8.39 (d, *J* = 7.8 Hz, 1H), 8.18 (d, *J* = 8.5 Hz, 1H), 7.96 (dd, *J* = 10.3, 3.4 Hz, 4H), 7.81 (d, *J* = 2.3 Hz, 1H), 7.68 (d, *J* = 8.2 Hz, 2H), 7.58 – 7.54 (m, 2H), 7.43 (d, *J* = 7.8 Hz, 2H), 7.34 (d, *J* = 7.3 Hz, 1H), 6.86 (d, *J* = 2.3 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) $\overline{0}$ 162.36, 152.87, 149.83, 148.24, 137.90, 134.22, 133.37, 133.24, 133.22, 130.05, 128.69, 127.98, 127.33, 127.06, 126.83, 126.79, 125.91, 124.37, 123.72, 122.62, 120.63, 117.47, 103.91. HRMS (ESI): Calculated for C₂₅H₁₈N₄O⁺: 391.1553 [M+H]⁺, Found: 391.1546.

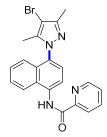
N-(4-(4-methyl-1H-pyrazol-1-yl)naphthalen-1-yl)picolinamide (3m)


Faint yellow solid (48 mg, 74% yield), M.p. 148-149 °C. ¹H NMR (600 MHz, CDCl₃) δ 10.87 (s, 1H), 8.71 (d, *J* = 4.3 Hz, 1H), 8.49 (d, *J* = 8.1 Hz, 1H), 8.36 (d, *J* = 7.8 Hz, 1H), 8.15 (d, *J* = 8.5 Hz, 1H), 7.96 – 7.92 (m, 1H), 7.90 (d, *J* = 8.5 Hz, 1H), 7.66 – 7.62 (m, 2H), 7.57 – 7.53 (m, 4H), 2.23 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.35, 149.82, 148.22, 141.56, 137.86, 134.43, 132.85, 130.54, 129.91, 127.14, 126.93, 126.81, 126.75, 124.39, 123.34, 122.58, 120.62, 117.53, 117.03, 8.96. HRMS (ESI): Calculated for C₂₀H₁₆N₄O⁺: 329.1397 [M+H]⁺, Found: 329.1398.

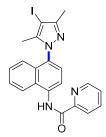
N-(4-(4-bromo-1*H*-pyrazol-1-yl)naphthalen-1-yl)picolinamide (3n)


Faint yellow solid (40 mg, 51% yield), M.p. 172-173 °C. ¹H NMR (500 MHz, CDCl₃) $\overline{0}$ 10.93 (s, 1H), 8.74 (d, *J* = 4.7 Hz, 1H), 8.54 (d, *J* = 8.1 Hz, 1H), 8.38 (d, *J* = 7.8 Hz, 1H), 8.18 (d, *J* = 8.5 Hz, 1H), 7.98 (td, *J* = 7.7, 1.6 Hz, 1H), 7.82 – 7.77 (m, 3H), 7.68 (s, 1H), 7.59 (d, *J* = 8.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) $\overline{0}$ 161.33, 148.73, 147.22, 140.41, 136.90, 132.65, 132.46, 132.42, 130.87, 128.69, 126.51, 126.14, 125.81, 125.65, 122.79, 121.62, 119.70, 116.16, 93.43. HRMS (ESI): Calculated for C₁₉H₁₃BrN₄O⁺: 393.0346 [M+H]⁺, Found: 393.0345.

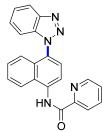
N-(4-(4-iodo-1H-pyrazol-1-yl)naphthalen-1-yl)picolinamide (30)


Faint yellow solid (53 mg, 60% yield), M.p. 144-145 °C. ¹H NMR (600 MHz, CDCl₃) $\overline{0}$ 10.95 (s, 1H), 8.76 (d, *J* = 4.2 Hz, 1H), 8.55 (d, *J* = 8.1 Hz, 1H), 8.40 (d, *J* = 7.8 Hz, 1H), 8.20 (d, *J* = 8.5 Hz, 1H), 8.01 – 7.98 (m, 1H), 7.86 (d, *J* = 7.2 Hz, 2H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.71 – 7.68 (m, 1H), 7.62 – 7.58 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) $\overline{0}$ 162.32, 149.71, 148.21, 145.85, 137.93, 136.13, 133.65, 133.28, 129.69, 127.52, 127.15, 126.83, 126.65, 123.83, 123.78, 122.65, 120.71, 117.17, 57.57. HRMS (ESI): Calculated for C₁₉H₁₃IN₄O⁺: 441.0207 [M+H]⁺, Found: 441.0200.

N-(4-(3,5-dimethyl-1H-pyrazol-1-yl)naphthalen-1-yl)picolinamide (3p)


Faint yellow solid (44 mg, 65% yield), M.p. 155-156 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.92 (s, 1H), 8.72 (dd, *J* = 4.1, 0.6 Hz, 1H), 8.55 (d, *J* = 8.0 Hz, 1H), 8.37 (d, *J* = 7.8 Hz, 1H), 8.16 (d, *J* = 8.5 Hz, 1H), 7.96 (td, *J* = 7.7, 1.6 Hz, 1H), 7.63 (t, *J* = 7.7 Hz, 1H), 7.54 (dd, *J* = 10.1, 5.5 Hz, 3H), 7.37 (d, *J* = 8.4 Hz, 1H), 6.08 (s, 1H), 2.36 (s, 3H), 2.07 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.26, 148.82, 147.99, 147.19, 140.74, 136.84, 132.38, 131.79, 130.55, 126.31, 125.85, 125.72, 125.60, 124.70, 123.16, 121.56, 119.53, 116.19, 104.35, 12.65, 10.43. HRMS (ESI): Calculated for C₂₁H₁₈N₄O⁺: 343.1553 [M+H]⁺, Found: 343.1549.

N-(4-(4-bromo-3,5-dimethyl-1H-pyrazol-1-yl)naphthalen-1-yl)picolinamide (3q)

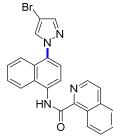

Faint yellow solid (50 mg, 60% yield), M.p. 179-180 °C. ¹H NMR (600 MHz, CDCl₃) δ 10.95 (s, 1H), 8.72 (d, *J* = 4.7 Hz, 1H), 8.57 (d, *J* = 8.0 Hz, 1H), 8.37 (d, *J* = 7.8 Hz, 1H), 8.17 (d, *J* = 8.5 Hz, 1H), 7.96 (t, *J* = 7.7 Hz, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.54 (dd, *J* = 14.2, 8.0 Hz, 3H), 7.37 (d, *J* = 8.4 Hz, 1H), 2.36 (s, 3H), 2.08 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.32, 149.74, 148.24, 147.64, 139.89, 137.91, 133.86, 132.53, 131.17, 127.58, 127.06, 126.83, 126.58, 125.78, 123.84, 122.62, 120.69, 117.08, 94.97, 12.53, 10.91. HRMS (ESI): Calculated for C₂₁H₁₇BrN₄O⁺: 421.0659 [M+H]⁺, Found: 421.0644.

N-(4-(4-iodo-3,5-dimethyl-1H-pyrazol-1-yl)naphthalen-1-yl)picolinamide (3r)

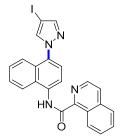
Faint yellow solid (60 mg, 64% yield), M.p. 182-183 °C. ¹H NMR (600 MHz, CDCl₃) $\overline{0}$ 10.94 (s, 1H), 8.70 (d, *J* = 4.3 Hz, 1H), 8.56 (d, *J* = 8.0 Hz, 1H), 8.35 (d, *J* = 7.7 Hz, 1H), 8.16 (d, *J* = 8.5 Hz, 1H), 7.94 (t, *J* = 7.6 Hz, 1H), 7.63 (t, *J* = 7.6 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 3H), 7.35 (d, *J* = 8.4 Hz, 1H), 2.36 (s, 3H), 2.11 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) $\overline{0}$ 162.32, 150.85, 149.70, 148.24, 143.34, 137.91, 133.86, 132.71, 131.11, 127.60, 127.08, 126.84, 126.56, 125.74, 123.83, 122.61, 120.70, 117.07, 63.59, 14.29, 12.56. HRMS (ESI): Calculated for C₂₁H₁₇IN₄O⁺: 469.0520 [M+H]⁺, Found: 469.0521.

N-(4-(1*H*-benzo[d][1,2,3]triazol-1-yl)naphthalen-1-yl)picolinamide (3s)

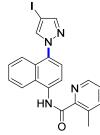
Faint yellow solid (32 mg, 44% yield), M.p. 152-153 °C. ¹H NMR (500 MHz, CDCl₃) δ 11.05 (s, 1H), 8.77 (d, *J* = 4.7 Hz, 1H), 8.70 (d, *J* = 8.1 Hz, 1H), 8.41 (d, *J* = 7.8 Hz, 1H), 8.27 (d, *J* = 8.6 Hz, 1H), 8.22 (d, *J* = 8.1 Hz, 1H), 8.00 (td, *J* = 7.7, 1.6 Hz, 1H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.73 – 7.70 (m, 1H), 7.60 – 7.57 (m, 1H), 7.53 (dd, *J* = 14.8, 7.8 Hz, 2H), 7.47 (d, *J* = 7.8 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 162.42, 149.68,


148.29, 145.74, 137.98, 134.95, 134.60, 130.00, 129.03, 128.21, 127.74, 127.39, 126.93, 126.77, 125.17, 124.34, 123.67, 122.70, 120.88, 120.18, 117.23, 110.37. HRMS (ESI): Calculated for $C_{22}H_{15}N_5O^+$: 366.1349 [M+H]⁺, Found: 366.1343.

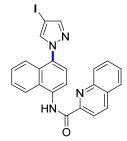
N-(4-(4-methyl-1H-pyrazol-1-yl)naphthalen-1-yl)isoquinoline-1-carboxamide (3t)


Faint yellow solid (37 mg, 49% yield), M.p. 159-160 °C. ¹H NMR (500 MHz, CDCl₃) δ 11.24 (s, 1H), 9.82 (d, *J* = 7.9 Hz, 1H), 8.65 (d, *J* = 5.5 Hz, 1H), 8.50 (d, *J* = 8.0 Hz, 1H), 8.21 (d, *J* = 8.4 Hz, 1H), 7.94 – 7.90 (m, 3H), 7.77 (ddd, *J* = 7.8, 6.3, 1.5 Hz, 2H), 7.68 – 7.63 (m, 2H), 7.59 (dd, *J* = 11.7, 7.9 Hz, 3H), 2.24 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.94, 146.28, 140.53, 139.10, 136.75, 133.44, 132.14, 129.76, 129.54, 129.51, 128.97, 128.12, 126.80, 126.45, 126.19, 126.10, 126.00, 125.87, 124.21, 123.32, 122.32, 119.90, 116.77, 7.93. HRMS (ESI): Calculated for C₂₄H₁₈N₄O⁺: 379.1554 [M+H]⁺, Found: 379.1559.

N-(4-(4-bromo-1H-pyrazol-1-yl)naphthalen-1-yl)isoquinoline-1-carboxamide (3u)

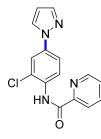

Faint yellow solid (29 mg, 33% yield), M.p. 184-185 °C. ¹H NMR (500 MHz, CDCl₃) δ 11.24 (s, 1H), 9.74 (d, *J* = 8.0 Hz, 1H), 8.59 (d, *J* = 5.5 Hz, 1H), 8.48 (d, *J* = 8.1 Hz, 1H), 8.16 (d, *J* = 8.5 Hz, 1H), 7.87 (t, *J* = 6.0 Hz, 2H), 7.73 (dd, *J* = 13.4, 8.9 Hz, 5H), 7.61 (t, *J* = 7.1 Hz, 1H), 7.54 (dd, *J* = 7.6, 5.1 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 162.93, 146.12, 140.40, 139.09, 136.77, 132.99, 132.41, 131.58, 130.90, 129.82, 128.74, 128.21, 126.75, 126.51, 126.47, 126.11, 126.03, 124.33, 122.77, 122.74, 120.02, 116.38, 93.42. HRMS (ESI): Calculated for C₂₃H₁₅BrN₄O⁺: 443.0502 [M+H]⁺, Found: 443.05009.

N-(4-(4-iodo-1H-pyrazol-1-yl)naphthalen-1-yl)isoquinoline-1-carboxamide (3v)

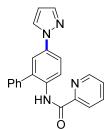

Faint yellow solid (38 mg, 39% yield), M.p. 169-170 °C. ¹H NMR (500 MHz, CDCl₃) δ 11.23 (s, 1H), 9.73 (d, *J* = 7.9 Hz, 1H), 8.58 (d, *J* = 5.5 Hz, 1H), 8.47 (d, *J* = 8.1 Hz, 1H), 8.15 (d, *J* = 8.5 Hz, 1H), 7.85 (d, *J* = 6.7 Hz, 2H), 7.78 (d, *J* = 4.2 Hz, 2H), 7.72 (d, *J* = 8.4 Hz, 3H), 7.60 (t, *J* = 7.1 Hz, 1H), 7.53 (d, *J* = 8.1 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 162.91, 146.11, 144.82, 139.08, 136.76, 135.12, 132.97, 132.25, 129.81, 128.72, 128.19, 126.74, 126.48, 126.45, 126.09, 126.02, 126.00, 124.31, 122.76, 122.74, 119.99, 116.34, 56.52. HRMS (ESI): Calculated for C₂₃H₁₅IN₄O⁺: [M+H]⁺ 491.0364, Found: 491.0368.

N-(4-(4-iodo-1H-pyrazol-1-yl)naphthalen-1-yl)-3-methylpicolinamide (3w)

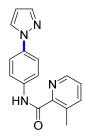
Faint yellow solid (26 mg, 29% yield), M.p. 167-168 °C. ¹H NMR (500 MHz, CDCl₃) δ 11.19 (s, 1H), 8.55 (d, *J* = 4.0 Hz, 1H), 8.48 (d, *J* = 8.1 Hz, 1H), 8.15 (d, *J* = 8.5 Hz, 1H), 7.83 (d, *J* = 9.7 Hz, 2H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.63 (d, *J* = 7.5 Hz, 1H), 7.56 (t, *J* = 7.6 Hz, 2H), 7.43 (dd, *J* = 7.7, 4.6 Hz, 1H), 2.86 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.70, 145.49, 144.76, 144.42, 140.58, 135.53, 135.11, 133.02, 131.99, 128.65, 126.40, 125.98, 125.78, 125.35, 122.71, 122.67, 119.91, 115.95, 56.48, 19.80. HRMS (ESI): Calculated for C₂₀H₁₅IN₄O⁺: 455.0364 [M+H]⁺, Found: 455.0361.


Faint yellow solid (30 mg, 31% yield), M.p. 173-174 °C. ¹H NMR (500 MHz, CDCl₃) $\overline{0}$ 11.14 (s, 1H), 8.57 (d, *J* = 8.1 Hz, 1H), 8.46 (q, *J* = 8.5 Hz, 2H), 8.29 (dd, *J* = 15.6, 8.5 Hz, 2H), 7.97 (d, *J* = 8.2 Hz, 1H), 7.89 – 7.86 (m, 1H), 7.86 (d, *J* = 2.2 Hz, 2H), 7.82 (d, *J* = 8.5 Hz, 1H), 7.72 (d, *J* = 8.2 Hz, 2H), 7.61 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) $\overline{0}$ 161.52, 148.52, 144.86, 139.77, 137.16, 135.21, 135.13, 133.00, 132.35, 129.52, 128.87, 127.42, 126.90, 126.54, 126.21, 125.82, 124.05, 122.88, 122.81, 119.74, 117.84, 116.34, 56.55. HRMS (ESI): Calculated for C₂₃H₁₅IN₄O⁺: 491.0364 [M+H]⁺, Found: 491.0359.

N-(4-(1H-pyrazol-1-yl)phenyl)picolinamide (3aa)


White solid (22 mg, 42% yield), M.p. 143-144 °C. ¹H NMR (500 MHz, CDCl₃) \overline{o} 10.12 (s, 1H), 8.63 (d, *J* = 4.7 Hz, 1H), 8.31 (d, *J* = 7.8 Hz, 1H), 7.92 – 7.88 (m, 4H), 7.73 – 7.70 (m, 3H), 7.52 – 7.49 (m, 1H), 6.47 (t, *J* = 2.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) \overline{o} 161.00, 148.58, 146.99, 139.94, 136.75, 135.51, 135.19, 125.67, 125.57, 121.43, 119.46, 118.91, 106.52. HRMS (ESI): Calculated for C₁₅H₁₂N₄O⁺: 265.1084 [M+H]⁺, Found: 265.1084.

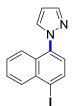
N-(2-chloro-4-(1H-pyrazol-1-yl)phenyl)picolinamide (3ab)


White solid (22 mg, 37% yield), M.p. 152-153 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.75 (s, 1H), 8.77 (d, *J* = 9.0 Hz, 1H), 8.68 (d, *J* = 4.1 Hz, 1H), 8.31 (d, *J* = 7.8 Hz, 1H), 7.94 (d, *J* = 7.7 Hz, 1H), 7.90 (dd, *J* = 11.4, 2.5 Hz, 2H), 7.73 (d, *J* = 1.6 Hz, 1H), 7.62 (dd, *J* = 9.0, 2.5 Hz, 1H), 7.52 (dd, *J* = 7.6, 4.8 Hz, 1H), 6.49 – 6.47 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 162.19, 149.51, 148.33, 141.33, 137.71, 136.38, 133.08, 126.75, 126.67, 124.26, 122.47, 121.47, 120.19, 117.95, 107.96. HRMS (ESI): Calculated for C₁₅H₁₁ClN₄O⁺: 299.0694 [M+H]⁺, Found: 299.0697.

N-(5-(1H-pyrazol-1-yl)-[1,1'-biphenyl]-2-yl)picolinamide (3ac)


White solid (33 mg, 48% yield), M.p. 158-159 °C. ¹H NMR (600 MHz, CDCl₃) δ 10.36 (s, 1H), 8.77 (d, *J* = 9.6 Hz, 1H), 8.38 (d, *J* = 4.1 Hz, 1H), 8.26 (d, *J* = 7.8 Hz, 1H), 7.95 (d, *J* = 2.4 Hz, 1H), 7.88 – 7.85 (m, 1H), 7.73 – 7.71 (m, 3H), 7.52 (d, *J* = 3.2 Hz, 4H), 7.49 – 7.46 (m, 1H), 7.39 (ddd, *J* = 7.5, 4.8, 1.1 Hz, 1H), 6.49 – 6.47 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 161.01, 148.77, 146.97, 139.98, 136.51, 136.25, 135.26, 132.63, 132.33, 128.44, 128.01, 127.24, 125.72, 125.23, 121.23, 120.42, 120.14, 117.85, 106.55. HRMS (ESI): Calculated for C₂₁H₁₆N₄O⁺: 341.1397 [M+H]⁺, Found: 341.1392.

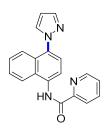
N-(4-(1H-pyrazol-1-yl)phenyl)-3-methylpicolinamide (3ad)

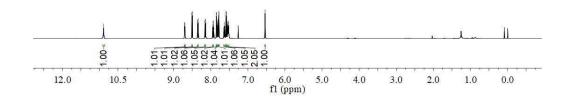

White solid (28 mg, 51% yield), M.p. 131-132 °C. ¹H NMR (600 MHz, CDCl₃) δ 10.36 (s, 1H), 8.46 (d, *J* = 4.0 Hz, 1H), 7.91 (d, *J* = 2.3 Hz, 1H), 7.87 (d, *J* = 8.8 Hz, 2H), 7.72 (s, 1H), 7.70 (d, *J* = 8.8 Hz, 2H), 7.66 (d, *J* = 7.7 Hz, 1H), 7.38 (dd, *J* = 7.7, 4.5 Hz, 1H), 6.50 – 6.44 (m, 1H), 2.83 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 163.50, 146.48, 145.26, 141.44, 140.87, 136.57, 136.31, 136.29, 126.67, 126.14, 120.39, 119.86, 107.44, 20.80. HRMS (ESI): Calculated for C₁₆H₁₄N₄O⁺: 279.1241 [M+H]⁺, Found: 279.1247.

4-(1*H*-pyrazol-1-yl)naphthalen-1-amine (4a)

Light brown solid (186 mg, 89% yield), M.p. 88-89 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 7.7 Hz, 1H), 7.72 (d, *J* = 1.6 Hz, 1H), 7.62 (d, *J* = 2.2 Hz, 1H), 7.50 (d, *J* = 9.5 Hz, 1H), 7.41 (t, *J* = 8.3 Hz, 2H), 7.27 (d, *J* = 7.9 Hz, 1H), 6.70 (d, *J* = 7.9 Hz, 1H), 6.42 (t, *J* = 2.1 Hz, 1H), 4.26 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 142.10, 139.29, 130.95, 129.58, 128.07, 126.13, 124.47, 123.41, 122.59, 122.44, 119.96, 107.03, 104.92. HRMS (ESI): Calculated for C₁₃H₁₁N₃⁺: 210.1026 [M+H]⁺, Found: 210.1031.

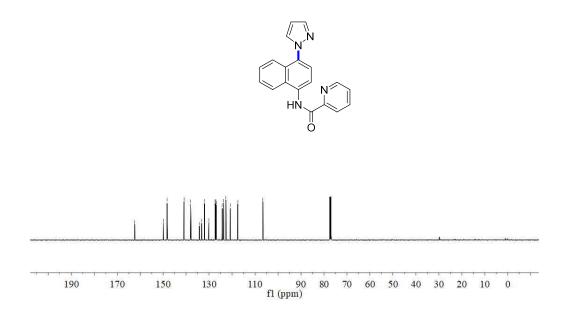
1-(4-iodonaphthalen-1-yl)-1H-pyrazole (5a)

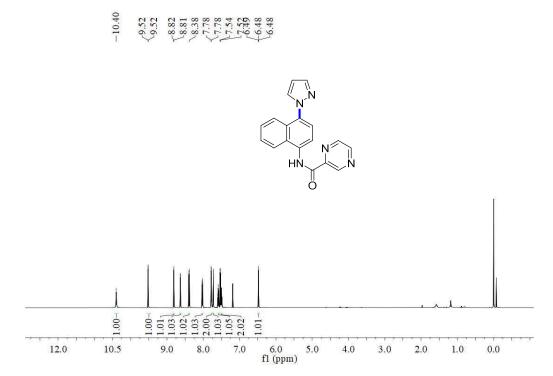


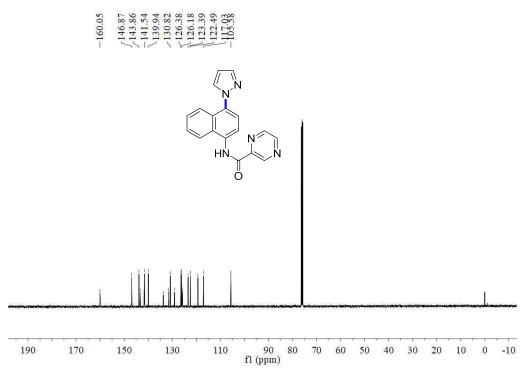

Faint yellow solid (240 mg, 75% yield), M.p. 123-124 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, *J* = 8.5 Hz, 1H), 8.14 (d, *J* = 7.8 Hz, 1H), 7.84 (d, *J* = 1.3 Hz, 1H), 7.77 – 7.72 (m, 2H), 7.61 (t, *J* = 7.7 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.24 (d, *J* = 7.9 Hz, 1H), 6.55 – 6.51 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 140.13, 137.24, 135.55, 133.91, 131.55, 130.73, 128.76, 127.43, 126.99, 123.02, 122.90, 105.81, 99.03. HRMS (ESI): Calculated for C₁₃H₉IN₂⁺: 320.9886 [M+H]⁺, Found: 320.9883.

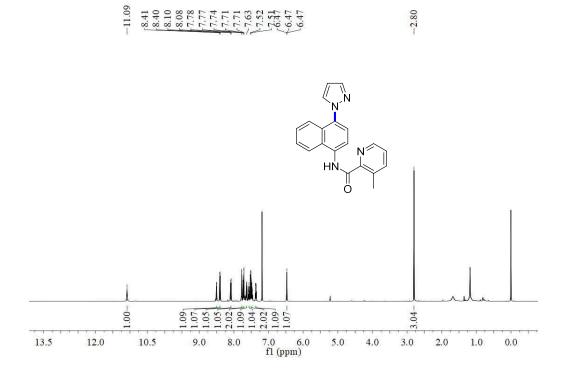
3. Copies of ¹H and ¹³C NMR Spectra

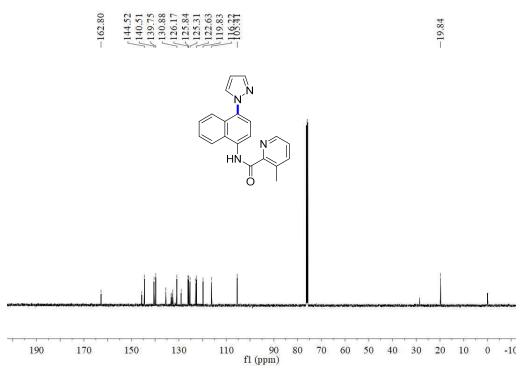
3a ¹H NMR

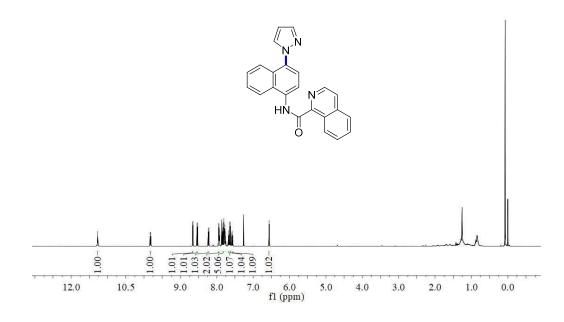


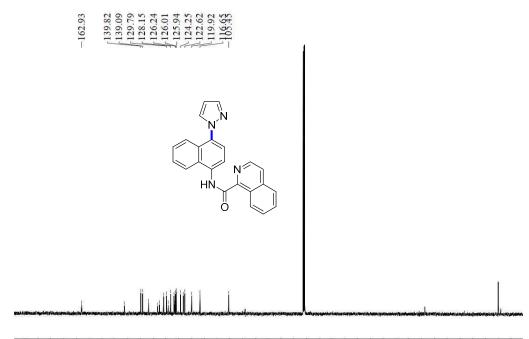


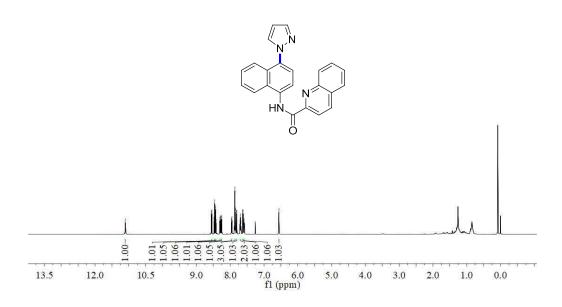

³a ¹³C NMR

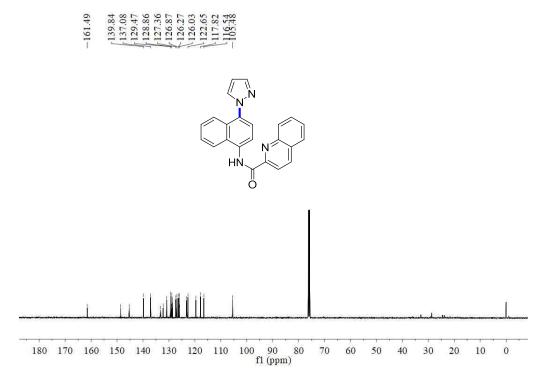



3b ¹³C NMR

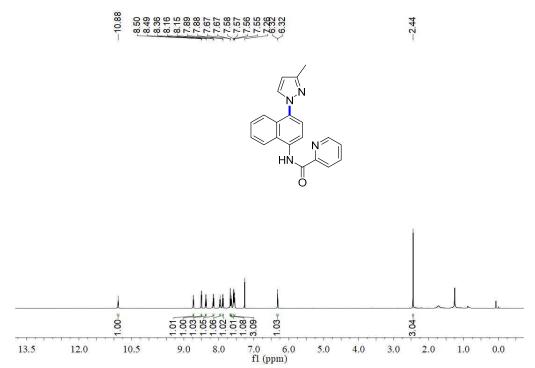

3c¹H NMR

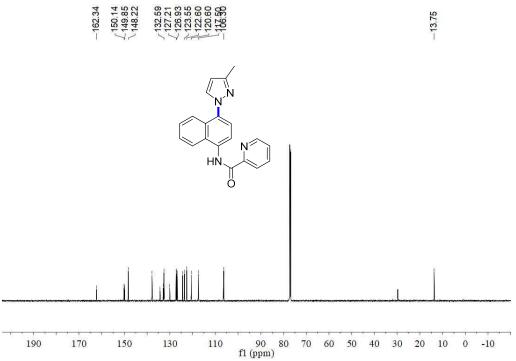

3c¹³C NMR

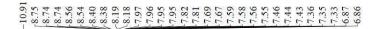

3d ¹³C NMR

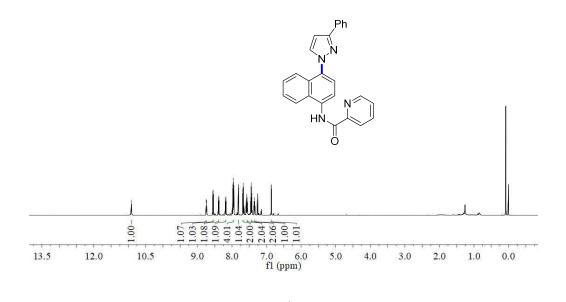

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

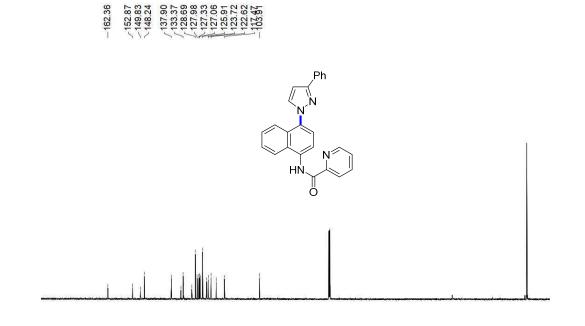
3e¹H NMR

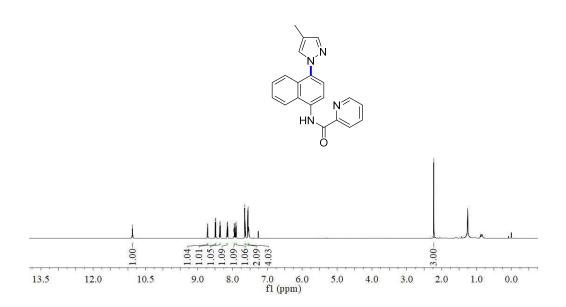


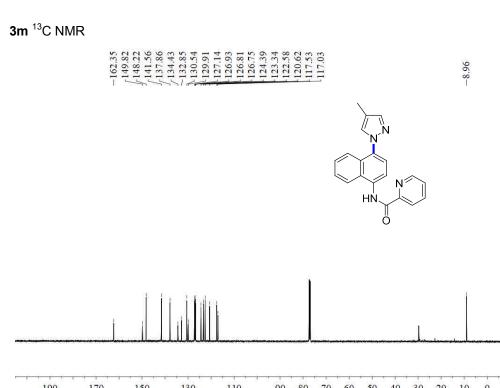

3e¹³C NMR



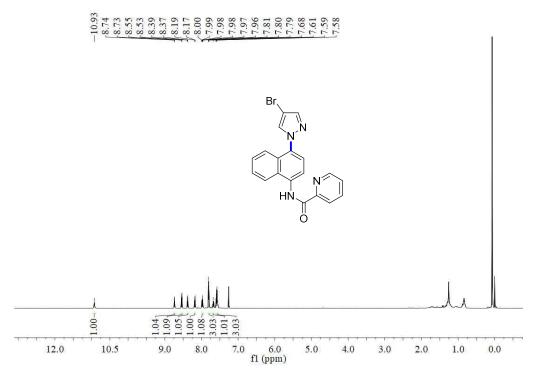

3i¹H NMR

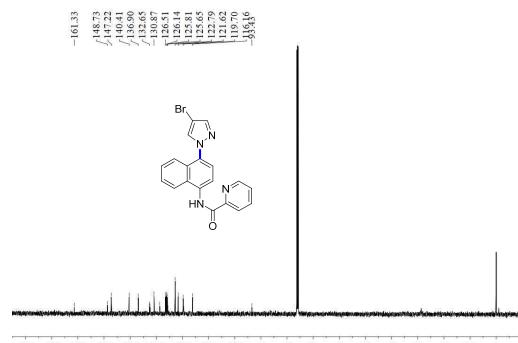

3i¹³C NMR

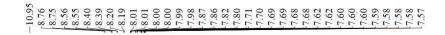

3j¹³C NMR

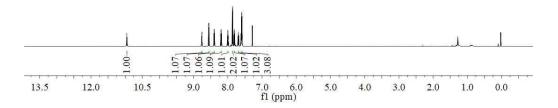


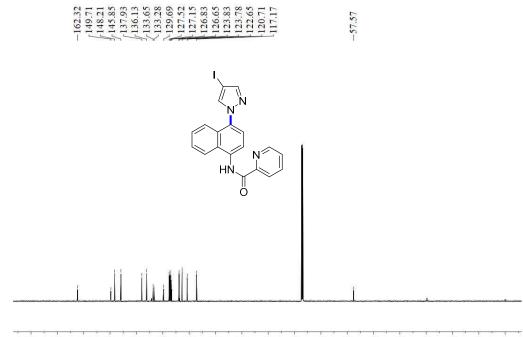
180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

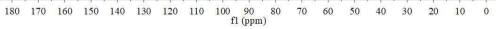

3m¹H NMR

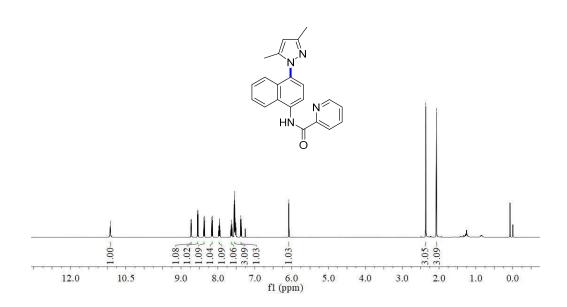


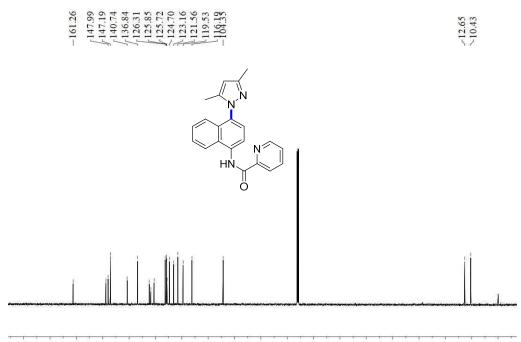

190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 fl (ppm)


3n¹³C NMR

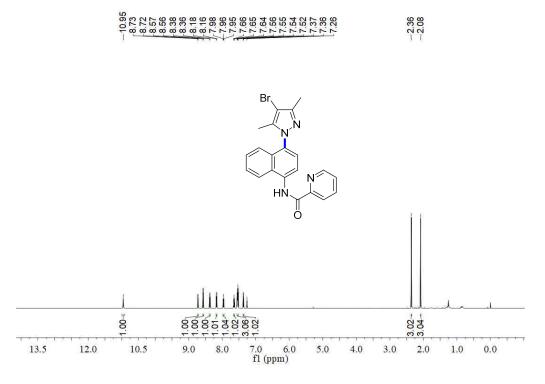

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)



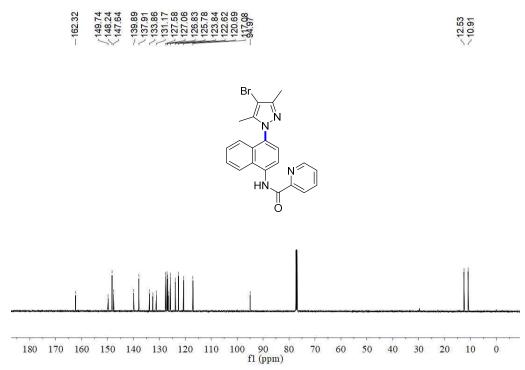

30¹³C NMR

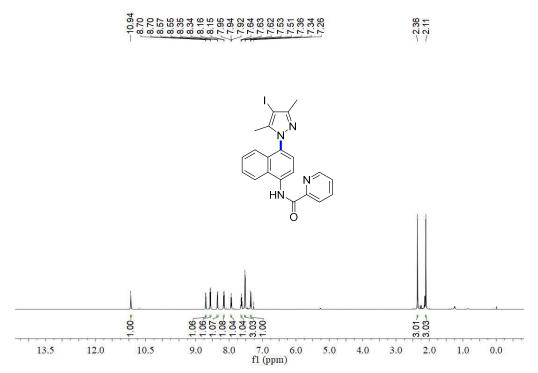


3p ¹H NMR

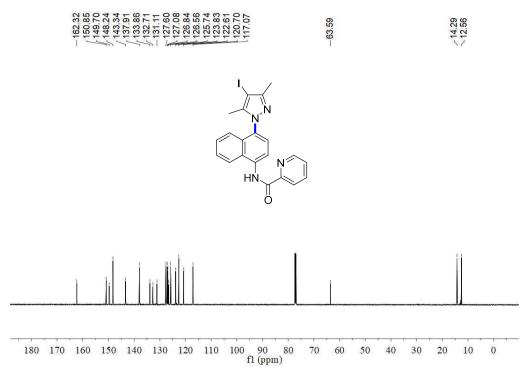


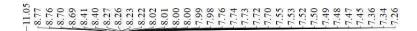
3p¹³C NMR

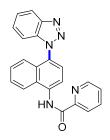


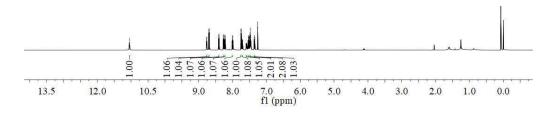

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

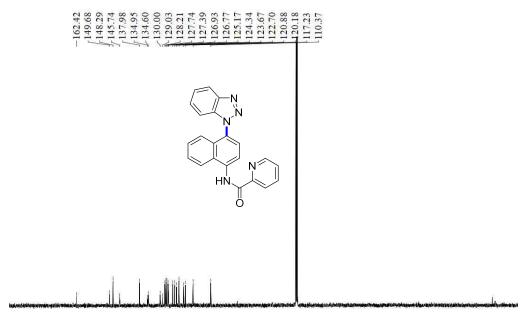
3q ¹H NMR

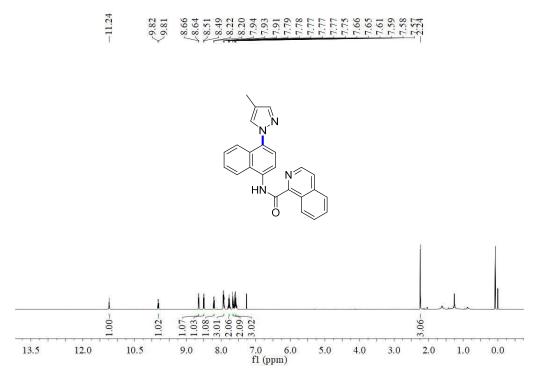


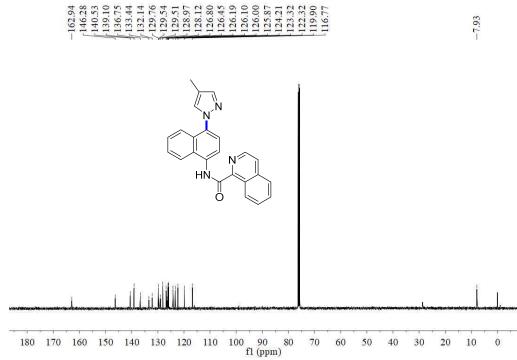


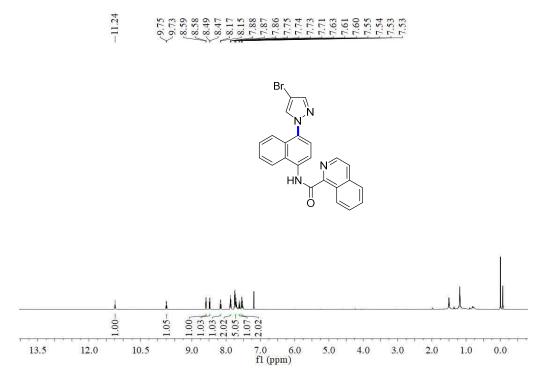



3r¹³C NMR

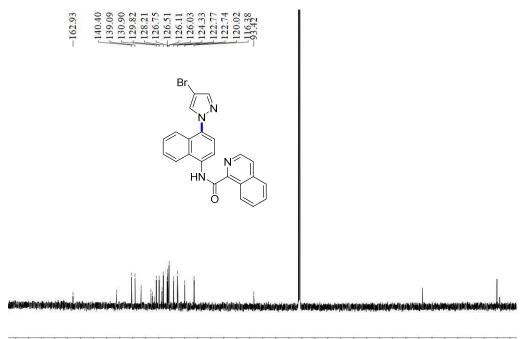

3s ¹H NMR

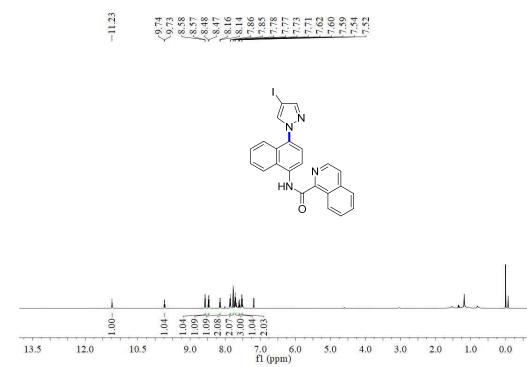



3s ¹³C NMR

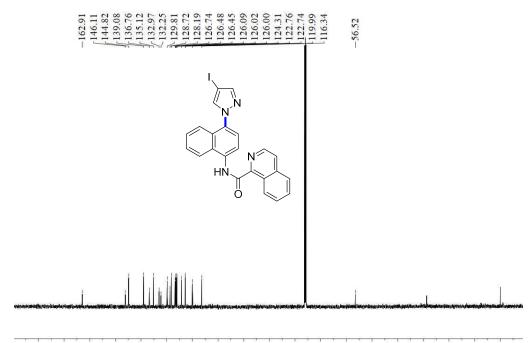


180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

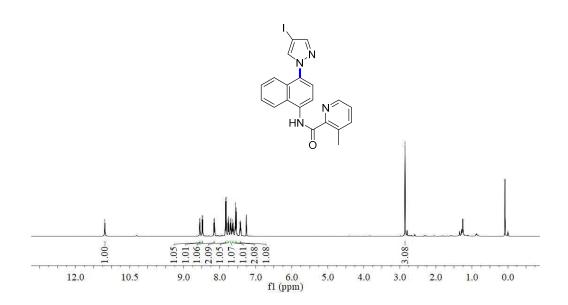


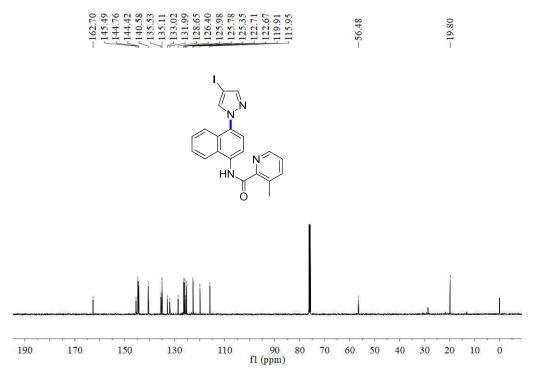


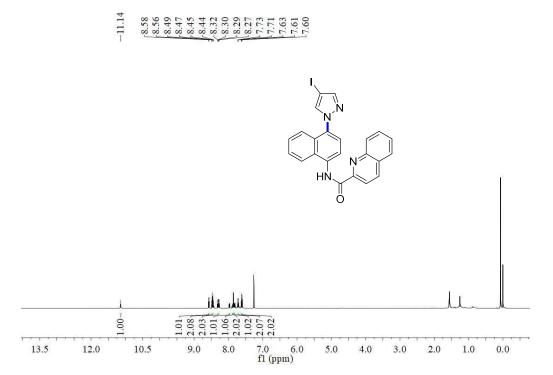
3u¹³C NMR

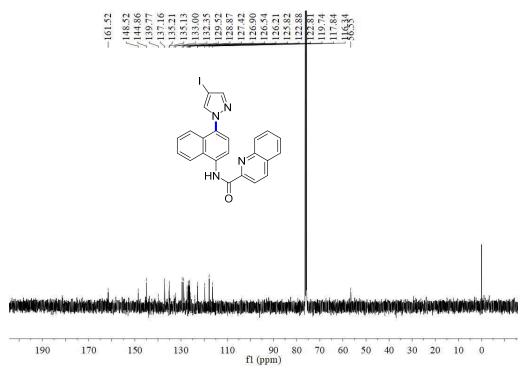


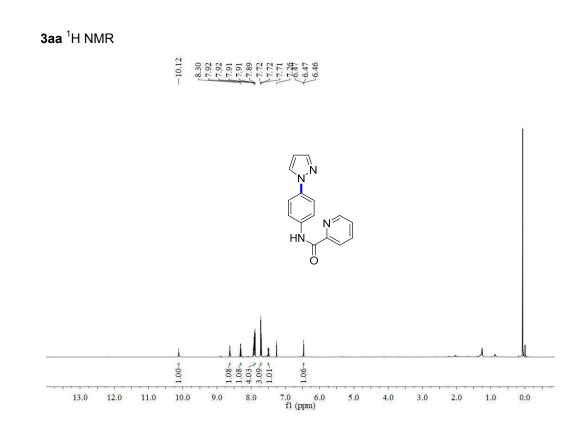
180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

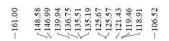

3v ¹³C NMR

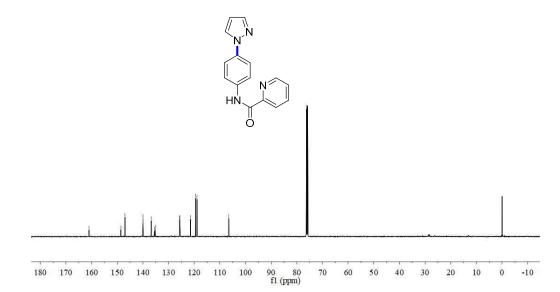

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

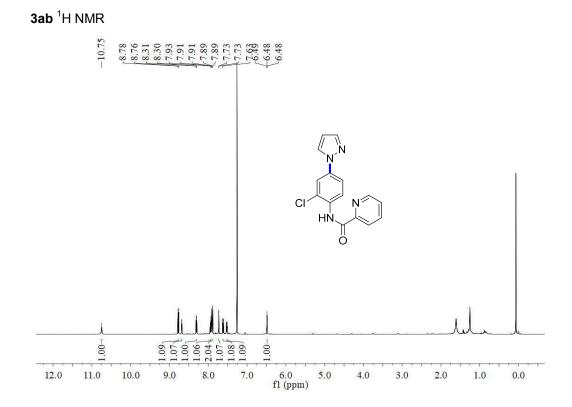

3w¹H NMR

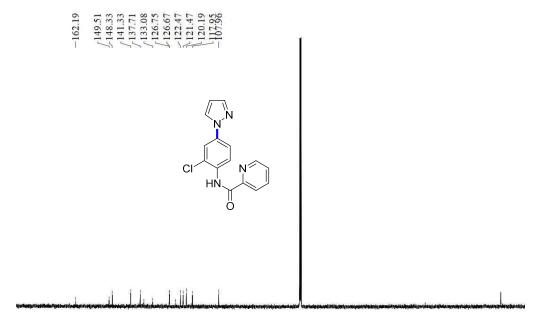


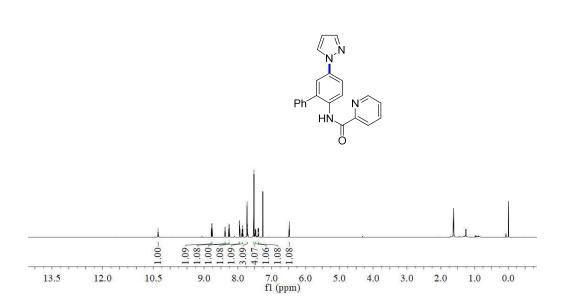

3w¹³C NMR

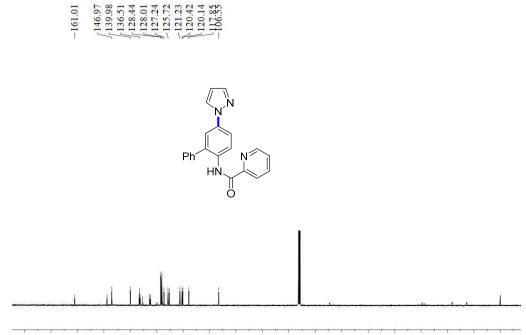


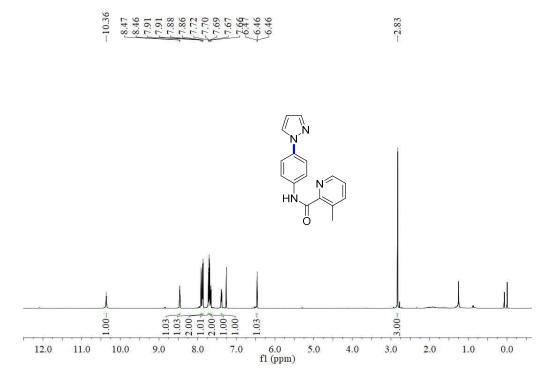

3x¹³C NMR




3aa ¹³C NMR


3ab ¹³C NMR


^{180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} fl (ppm)

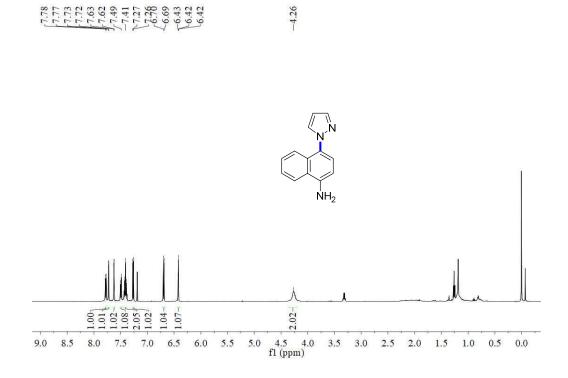


3ac ¹³C NMR

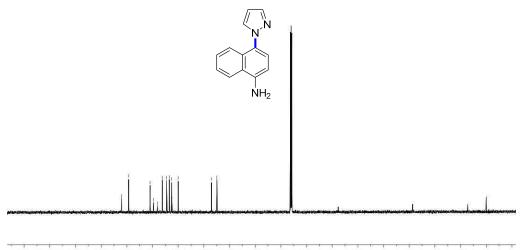


180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

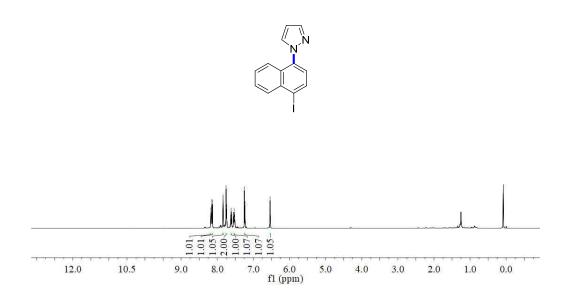
3ad ¹H NMR



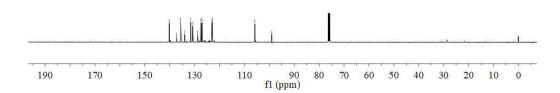
3ad ¹³C NMR


180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

4a ¹H NMR


4a ¹³C NMR

^{180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1(} f1 (ppm)


5a ¹H NMR

5a ¹³C NMR

