An Iterative Real-time Optimization Scheme for the Optimal Operation of Chemical Processes under Uncertainty. *Proof of Concept in a Miniplant*

Reinaldo Hernandez,^{*,†} Jens Dreimann,[‡] Andreas Vorholt,[¶] Arno Behr,[‡] and Sebastian Engell[†]

†Group of Process Control and Operations, Faculty of Biochemical and Chemical Engineering, TU Dortmund, Emil-Figge Strasse 70, D-44227 Dortmund, Germany
‡Laboratory of Chemical Process Development, Faculty of Biochemical and Chemical Engineering, TU Dortmund, Emil-Figge Strasse 66, D-44227 Dortmund, Germany
¶Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45740 Mülheim, Germany

> E-mail: reinaldo.hernandez@tu-dortmund.de Phone: +49 (0)231-755-5135. Fax: +49 (0)231-755-5129

Supporting Information

In this section the parameters of the different models are presented.

Parameters	Unit	Value
Catalyst Equilibrium		
$K_{cat,1}$	m ³ /kmol	10
$K_{cat,2}$	_	1.01
Hydroformylation to	linear and branched a	ldehyde
Hydroformylation of 1-a	lodecene to linear aldehyde	e r ₁
Frequency factor $k_{1,0}$	$m^9/(kg_{cat} \cdot min \cdot kmol^2)$	$4.9 imes 10^7$
Activation Energy Ea_1	kJ/mol	113.08
$K_{1,1}$	m^3/mol	574.88
$K_{1,2}$	m^3/mol	3020.00
$K_{1,3}$	m^3/mol	1.17×10^{4}
Hydroformylation of iso	-dodecene to branched ald	ehyde $\mathbf{r_5}$
Frequency factor $k_{5,0}$	$m^9/(kg_{cat} \cdot min \cdot kmol^2)$	600.00
Activation Energy Ea_5	kJ/mol	120.844
Isomerization r ₂		
Frequency factor $k_{2,0}$	$m^3/(kg_{cat} \cdot min)$	696.23
Activation Energy Ea_2	kJ/mol	136.891
$K_{2,1}$	$\rm m^3/mol$	38.63
$K_{2,2}$	$\rm m^3/mol$	226.21
Hydrogenation of 1-o	lodecene and <i>iso</i> -dode	cene
Hydrogenation of 1-dode	ecene $\mathbf{r_3}$	
Frequency factor $k_{3,0}$	$m^6/(kg_{cat} \cdot min \cdot kmol)$	139.55
Activation Energy Ea_3	kj/mol	76.105
Equilibrium Constants		
$K_{3,1}$	m^3/mol	2.66
$K_{3,2}$	$\mathrm{m}^{3}/\mathrm{mol}$	7.10
$K_{3,3}$	m^3/mol	1.28
Hydrogenation of isa	-dodecene r ₄	
Frequency factor $k_{4,0}$	${ m m}^6/({ m kg}_{ m cat}\cdot{ m min}\cdot{ m kmol})$	0.70
Activation Energy Ea_4	kJ/mol	102.260

Table S1: Kinetic Model Parameters. Model \mathbf{I}^1

Parameters	Unit Value	
Catalyst Equilibrium		
$K_{cat,1}$	$m^3/kmol$	30.41
$K_{cat,2}$	—	0
$K_{cat,3}$	—	0.644
Hydroformylation to	linear and branched a	ldehyde
Hydroformylation of 1-a	lodecene to linear aldehyde	e r ₁
Frequency factor $k_{1,0}$	${ m m}^9/({ m kg}_{ m cat}\cdot{ m min}\cdot{ m kmol}^2)$	4.9×10^7
Activation Energy Ea_1	$\rm kJ/mol$	113.08
$K_{1,1}$	$\rm m^3/mol$	574.88
$K_{1,2}$	$\rm m^3/mol$	3020.00
$K_{1,3}$	${ m m}^3/{ m mol}$	1.17×10^4
Hydroformylation of iso	-dodecene to branched alde	ehyde $\mathbf{r_5}$
Frequency factor $k_{5,0}$	${ m m}^9/({ m kg}_{ m cat}\cdot{ m min}\cdot{ m kmol}^2)$	37.02
Activation Energy Ea_5	kJ/mol	120.844
Hydroformylation of 1-a	lodecene to branched aldeh	$yde \mathbf{r_6}$
Frequency factor $k_{6,0}$	${ m m}^9/({ m kg}_{ m cat}\cdot{ m min}\cdot{ m kmol}^2)$	395.1
Activation Energy Ea_6	kJ/mol	113.08
Isomerization r ₂		
Frequency factor $k_{2,0}$	${ m m}^3/({ m kg}_{ m cat}\cdot{ m min})$	4.878×10^{3}
Activation Energy Ea_2	kJ/mol	136.891
$K_{2,1}$	m^3/mol	38.63
$K_{2,2}$	m^3/mol	226.21
Hydrogenation of 1-c	lodecene and <i>iso</i> -dode	cene
Hydrogenation of 1-dode	ecene $\mathbf{r_3}$	
Frequency factor $k_{3,0}$	${ m m}^6/({ m kg}_{ m cat}\cdot{ m min}\cdot{ m kmol})$	272.4
Activation Energy Ea_3	kj/mol	76.105
Equilibrium Constants		
$K_{3,1}$	m^3/mol	2.66
$K_{3,2}$	m ³ /mol	7.10
$K_{3,3}$	m^3/mol	1.28
Hydrogenation of <i>isc</i>	-dodecene r ₄	-
Frequency factor $k_{4,0}$	$m^{o}/(kg_{cat} \cdot min \cdot kmol)$	2.96×10^{-2}
Activation Energy Ea_4	kJ/mol	102.260

Table S2: Kinetic Model Parameters. Model II^2

Table S3: Parameters for equilibrium constants estimation 3

Variable	$a_0 [\rm kJ/mol]$	$a_1 [\rm kJ/mol/K]$	$a_2 [\mathrm{kj/mol/K^2}]$
$\Delta G_{R,2}$	-11.00	0	0
$\Delta G_{R,3}$	-126.28	1.27×10^{-1}	6.80×10^{-6}

Table S4: Parameters for gas solubility³

Component	$H_0[(\mathrm{MPa}\cdot\mathrm{m}^3)/\mathrm{kmol}]$	E[kJ/mol]
H ₂	910	10.173
CO	35550	22.975

Table S5: Parameters for gas solubility²

Component	$H_0[(\mathrm{bar}\cdot\mathrm{m}^3)/\mathrm{kmol}]$	E[J/mol]
H_2	66.4	-3.06
CO	73.9	-0.84

Table S6: Mass transfer coefficients for the G-L interface¹

$k_G[\min^{-1}]$
2.44
2.31

Table S7: Parameters in the empirical decanter model. Note: Validity within temperature range 288-298 K with a fixed TMS composition of DMF/Decan $50:50.^4$

Parameter	(l-/b-)Aldehyde	(n-/iso-)Dodecene	n-Decane	DMF	Rhodium	Phosphous
A_1	-12.43	-7.040	-8.252	-7.928	-17.348	-20.843
A_2	2727.025	2579.235	3012.939	0.981	0.975	0.972
A_3	0.012	0	0	0.020	0.049	0.061

Table S8: Correlations used for density³

Component	$a_0 \; [\mathrm{kg/m^3}]$	$a_1 [\mathrm{kg/m^3/K}]$
<i>n</i> -Decane	981.60	-8.353×10^{-1}
DMF	1256.52	-1.0306
1-Dodecene	993.89	-7.8875×10^{-1}
Dodecane	977.04	-7.6743×10^{-1}
Tridecanal	1068.12	-8.0108×10^{-1}
iso-Dodecene	993.89	-7.8875×10^{-1}
Branced aldehydes	1068.12	$-8.0180 imes 10^{-1}$

References

- Kiedorf, G.; Hoang, D.; Müeller, A.; Jörke, A.; Markert, J.; Arellano-Garcia, H.; Seidel-Morgenstern, A.; Hamel, C. Kinetics of 1-dodecene hydroformylation in a thermomorphic solvent system using rhodium-biphephos catalyst. *Chem. Eng. Sci.* 2014, 115, 31–48.
- (2) Hentschel, B.; Kiedorf, G.; Gerlach, M.; Hamel, C.; Seidel-Morgenstern, A.; Freund, H.; Sundmacher, K. Model-Based Identification and Experimental Validation of the Optimal Reaction Route for the Hydroformylation of 1-Dodecene. *Ind. Eng. Chem. Res.* 2015, 54, 1755–1765.
- (3) Hentschel, B.; Peschel, A.; Freund, H.; Sundmacher, K. Simultaneous design of the optimal reaction and process concept for multiphase systems. *Chem. Eng. Sci.* 2014, 115, 69–87.
- (4) Steimel, J. Model-based Conceptual Design and Optimization of Continuous Chemical Processes under Uncertainties. Ph.D. thesis, Technische Universität Dortmund, Faculty of Biochemical and Chemical Engineering, 2015.

Graphical TOC Entry

Some journals require a graphical entry for the Table of Contents. This should be laid out "print ready" so that the sizing of the text is correct. Inside the tocentry environment, the font used is Helvetica 8 pt, as required by *Journal of the American Chemical Society*.

The surrounding frame is 9 cm by 3.5 cm, which is the maximum permitted for *Journal of the American Chemical Society* graphical table of content entries. The box will not resize if the content is too big: instead it will overflow the edge of the box.

This box and the associated title will always be printed on a separate page at the end of the document.