Supporting Information

Ruthenium(II) complexes with η^6 -coordinated 3-phenylpropanol and 2-phenylethanol as catalysts for the tandem isomerization/Claisen rearrangement of diallyl ethers in water

Beatriz Lastra-Barreira, Javier Francos, Pascale Crochet,* and Victorio Cadierno*

Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Facultad de Química, Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain.

E-mail: crochetpascale@uniovi.es (P.C.); vcm@uniovi.es (V.C.).

Contents

Synthesis and characterization of the diallyl ethers 3a-l .	S2-S6
NMR spectra of the novel diallyl ethers 3a , 3c , 3i and 3k .	S7-S10
NMR spectra of the novel γ , δ -unsaturated aldehydes 4a , 4c , 4e and 4g .	S11-S14

General procedure for the preparation of diallyl ethers 3a-I: Under argon atmosphere, a solution of the corresponding allylic alcohol (25 mmol) in 25 mL of DMF was added to a suspension of sodium hydride (0.90 g, 38 mmol) cooled at 0 °C, and the resulting mixture stirred for 30 min. Then, the appropriate allyl bromide derivative (33 mmol) was added dropwise, and the mixture stirred at 0 °C for 30 min and additional 4 h at room temperature. After this time, the reaction mixture was quenched with brine (30 mL) and the aqueous solution extracted with diethyl ether (3 x 30 mL). The combined organic extracts were washed with distilled water (3 x 10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The crude product was applied directly onto a silica gel column and chromatographed (10:1 hexane/EtOAc as eluent) to afford the pure diallyl ether as a colourless oil. All the allylic alcohols employed were obtained from commercial suppliers and used as received, with the exception of 1-vinylcyclohexan-1-ol,¹ 2-phenylbut-3-en-2-ol¹ and (*E*)-2-methyl-4-phenylbut-3-en-2-ol,² which were prepared by following the methods reported in the literature.

Scheme S1: Procedure employed for the synthesis of diallyl ethers 3a-l.

3-(Allyloxy)-3-methylpent-1-ene (3a): Yield: 2.945 g (84%). ¹H NMR (CDCl₃): δ = 5.99-5.86 (m, 1H, CH₂C*H*=), 5.78 (dd, 1H, ³*J*_{HH} = 17.4 and 10.2 Hz, C_qC*H*=), 5.20-5.11 (m, 4H, C_qCH=C*H*₂ and CH₂CH=C*H*₂), 3.85 (d, 2H, ³*J*_{HH} = 5.4 Hz,

OCH₂), 1.60 (q, 2H, ${}^{3}J_{HH} = 7.5$ Hz, *C*H₂CH₃), 1.25 (s, 3H, CH₃), 0.89 (t, 3H, ${}^{3}J_{HH} = 7.5$ Hz, CH₂CH₃) ppm. ${}^{13}C{}^{1}H$ NMR (CDCl₃): $\delta = 142.9$ (s, C_qCH=), 136.0 (s, CH₂CH=), 115.5 (s, =CH₂), 114.6 (s, =CH₂), 77.9 (s, C_q), 63.5 (s, OCH₂), 32.5 (s, *C*H₂CH₃), 21.5 (s, CH₃), 8.0 (s, CH₂CH₃) ppm. HRMS (ESI): *m/z* 141.1277, [M+H⁺] (calcd for C₉H₁₇O: 141.1279).

3-(Allyloxy)-3-methylbut-1-ene (3b):³ Yield: 2.618 g (83%). ¹H NMR (C₆D₆): δ = 6.00-5.90 (m, 1H, CH₂C*H*=), 5.83 (dd, 1H, ³*J*_{HH} = 17.4 and 10.8 Hz, C_qC*H*=), 5.39 (d, 1H, ³*J*_{HH} = 17.4 Hz, $C_qCH=CH_2$), 5.15-5.04 (m, 3H, $C_qCH=CH_2$ and $CH_2CH=CH_2$), 3.87-3.85 (m, 2H, OCH_2), 1.28 (s, 6H, CH_3) ppm. ¹³C{¹H} NMR (C_6D_6): $\delta = 144.1$ (s, $C_qCH=$), 136.5 (s, $CH_2CH=$), 114.3 (s, =CH_2), 113.2 (s, =CH_2), 74.9 (s, C_q), 63.7 (s, OCH_2), 25.5 (s, CH_3) ppm.

3-(Allyloxy)-3-methylnon-1-ene (3c): Yield: 4.319 g (88%). ¹H NMR (C₆D₆): δ = 6.03-5.95 (m, 1H, CH₂C*H*=), 5.82 (dd, 1H, ³*J*_{HH} = 17.1 and 10.5 Hz, C_qC*H*=), 5.43 (d, 1H, ³*J*_{HH} = 17.1 Hz, C_qCH=C*H*₂), 5.18-5.11 (m, 3H, C_qCH=C*H*₂ and CH₂CH=C*H*₂), 3.87-3.85 (m, 2H, OCH₂), 1.64-1.25 (m, 13H, CH₂ and CH₃), 0.97 (t, 3H, ³*J*_{HH} = 6.6 Hz, CH₂CH₃) ppm. ¹³C{¹H} NMR (C₆D₆): δ = 143.6 (s, C_qCH=), 136.5 (s, CH₂CH=), 114.2 (s,

=CH₂), 113.8 (s, =CH₂), 77.2 (s, C_q), 63.3 (s, OCH₂), 40.5 (s, CH₂), 32.0 (s, CH₂), 30.0 (s, CH₂), 23.7 (s, CH₂), 22.8 (s, CH₂), 22.0 (s, CH₃), 14.0 (s, CH₂CH₃) ppm. HRMS (ESI): *m/z* 197.1903, [M+H⁺] (calcd for C₁₃H₂₅O: 197.1905).

1-(Allyloxy)-1-vinylcyclohexane (3d):³ Yield: 3.284 g (79%). ¹H NMR (C₆D₆): δ = 6.12-5.98 (m, 1H, CH₂C*H*=), 5.78 (dd, 1H, ³*J*_{HH} = 17.1 and 10.5 Hz, C_qC*H*=), 5.43 (d, 1H, ³*J*_{HH} = 17.1 Hz, C_qCH=C*H*₂), 5.18-5.11 (m, 3H, C_qCH=C*H*₂ and CH₂CH=C*H*₂),

3.85-3.82 (m, 2H, OCH₂), 1.51-1.01 (s, 10H, CH₂) ppm. ${}^{13}C{}^{1}H$ NMR (C₆D₆): δ = 143.7 (s, C_qCH=), 136.4 (s, CH₂CH=), 114.3 (s, =CH₂), 114.0 (s, =CH₂), 75.5 (s, C_q), 62.6 (s, OCH₂), 34.4 (s, CH₂), 22.8 (s, CH₂), 21.8 (s, CH₂) ppm.

(2-(Allyloxy)but-3-en-2-yl)benzene (3e):⁴ Yield: 4.236 g (90%). ¹H NMR (C₆D₆): δ = 7.31-7.16 (m, 5H, Ph), 6.04 (dd, 1H, ³J_{HH} = 17.6 and 10.8 Hz, C_qCH=), 6.02-5.92 (m, 1H, CH₂CH=), 5.43 (d, 1H, ³J_{HH} = 17.6 Hz, C_qCH=CH₂), 5.36-5.13

(m, 3H, $C_qCH=CH_2$ and $CH_2CH=CH_2$), 3.87-3.84 (m, 2H, OCH₂), 1.57 (s, 3H, CH₃) ppm. ¹³C{¹H} NMR (C₆D₆): δ = 145.1 (s, C_{ipso}), 143.3 (s, C_qCH=), 136.0 (s, CH₂CH=), 128.1 (s, CH_{ortho} or CH_{meta}), 126.9 (s, CH_{para}), 126.3 (s, CH_{ortho} or CH_{meta}), 114.6 (s, =CH₂), 113.7 (s, =CH₂), 72.9 (s, C_q), 63.8 (s, OCH₂), 24.5 (s, CH₃) ppm.

3-(Allyloxy)-3,7-dimethylocta-1,6-diene (3f):⁵ Yield: 3.935 g (81%). ¹H NMR (C₆D₆): δ = 6.09-5.92 (m, 1H, CH₂C*H*=CH₂), 5.80 (dd, 1H, ³*J*_{HH} = 17.4 and 6.8 Hz, C_qC*H*=), 5.45 (dd, 1H, ³*J*_{HH} = 17.6 Hz, ²*J*_{HH} = 1.6 Hz, C_qCH=CH₂), 5.31-5.28 (m, 1H, C*H*=C(CH₃)₂), 5.20-5.11 (m, 3H, C_qCH=C*H*₂ and CH₂CH=C*H*₂), 3.87 (d, 2H, ³*J*_{HH} = 4.4 Hz, OCH₂), 2.28-2.22

(m, 2H, $CH_2CH=C(CH_3)_2$), 1.76 (s, 3H, $CH=C(CH_3)_2$), 1.72-1.68 (m, 2H, C_qCH_2), 1.66 (s, 3H, $CH=C(CH_3)_2$), 1.24 (s, 3H, C_qCH_3) ppm. ¹³C{¹H} NMR (C₆D₆): δ = 143.4 (s, $C_qCH=$), 136.5 (s, $CH_2CH=CH_2$), 130.8 (s, $CH=C(CH_3)_2$), 125.0 (s, $CH=C(CH_3)_2$), 114.3 (s, =CH₂), 113.9 (s, =CH₂), 77.0 (s, C_q), 63.3 (s, OCH₂), 40.3 (s, C_qCH_2), 25.6 (s, CH₃), 22.6 (s, $CH_2CH=$), 22.1 (s, CH₃), 17.4 (s, CH₃) ppm.

(E)-(3-(Allyloxy)-3-methylbut-1-en-1-yl)benzene

(3g):⁶ Yield: 3.945 g (78%). ¹H NMR (C₆D₆): δ = 7.25-7.14 (m, 5H, Ph), 6.55 (d, 1H, ³J_{HH} = 16.2 Hz, =C*H*Ph), 6.27 (d, 1H, ³J_{HH} = 16.2 Hz, C*H*=CHPh), 6.06-6.00 (m,

1H, CH=CH₂), 5.43 (d, 1H, ${}^{3}J_{HH} = 17.2$ Hz, CH=CH₂), 5.16 (d, 1H, ${}^{3}J_{HH} = 10.4$ Hz, CH=CH₂), 3.90 (br, 2H, OCH₂), 1.39 (s, 6H, CH₃) ppm. ${}^{13}C{}^{1}H$ NMR (C₆D₆): $\delta = 137.1$ (s, C_{ipso}), 136.6 (s, CH=CHPh), 135.7 (s, CH=CH₂), 129.0 (s, CH_{para}), 128.5 (s, CH_{ortho} or CH_{meta}), 127.4 (s, CH_{ortho} or CH_{meta}), 126.5 (s, =CHPh), 114.4 (s, =CH₂), 74.9 (s, C_q), 63.8 (s, OCH₂), 26.4 (s, CH₃) ppm.

3-Methyl-3-((2-methylallyl)oxy)but-1-ene (3h):⁷ Yield: 3.945 g (78%). ¹H NMR (C₆D₆): δ = 5.89 (dd, 1H, ³*J*_{HH} = 17.6 and 10.8 Hz, C_qC*H*=CH₂), 5.29-5.27 (m, 1H, C_q=CH₂), 5.15 (dd, 1H, ³*J*_{HH} = 17.4 Hz, ²*J*_{HH} = 1.5 Hz, CH=CH₂), 5.08 (dd, 1H, ³*J*_{HH} =

10.8 Hz, ${}^{2}J_{\text{HH}} = 1.5$ Hz, CH=CH₂), 4.99-4.96 (m, 1H, C_q=CH₂), 3.80 (s, 2H, OCH₂), 1.78 (s, 3H, CH₃C=), 1.31 (s, 6H, CH₃) ppm. ${}^{13}C{}^{1}H$ NMR (C₆D₆): $\delta = 144.3$ (s, CH=), 143.5 (s, C_q=), 113.2 (s, C_q=CH₂), 110.3 (s, CH=CH₂), 74.9 (s, C_q), 66.6 (s, OCH₂), 25.8 (s, CH₃), 19.5 (s, CH₃C=) ppm.

(*E*)-3-(But-2-en-1-yloxy)-3-methylbut-1-ene (3i): Yield: 2.629 g (75%). ¹H NMR (C₆D₆): δ = 5.90 (dd, 1H, ³J_{HH} =

17.4 and 10.8 Hz, $CH=CH_2$), 5.73-5.70 (m, 2H, CH=CH), 5.15 (dd, 1H, ${}^{3}J_{HH} = 17.4$ Hz, ${}^{2}J_{HH} = 1.5$ Hz, $CH=CH_2$), 5.09 (dd, 1H, ${}^{3}J_{HH} = 10.8$ Hz, ${}^{2}J_{HH} = 1.5$ Hz, $CH=CH_2$), 3.89-3.86 (m, 2H, OCH₂), 1.68-1.65 (m, 3H, CH=CHCH₃), 1.31 (s, 6H, CH₃) ppm. ${}^{13}C{}^{1}H$ NMR (C₆D₆): $\delta = 144.4$ (s, $CH=CH_2$), 129.6 (s, $CH=CHCH_3$), 126.1 (s, $CH=CHCH_3$), 113.1 (s, CH=CH₂), 74.8 (s, Cq), 63.5 (s, OCH₂), 25.9 (s, CH₃), 17.5 (s, CH=CHCH₃) ppm. HRMS (ESI): m/z 141.1276, [M+H⁺] (calcd for C₉H₁₇O: 141.1279).

3-(Allyloxy)hex-1-ene (3j):⁸ Yield: 3.015 g (86%). ¹H NMR (C₆D₆): δ = 6.03-5.90 (m, 1H, CH₂CH=CH₂), 5.72 (ddd, 1H, ³J_{HH} = 17.7, 7.5 and 1.0 Hz, CHCH=CH₂), 5.40-5.33 (m, 1H, CHCH=CH₂), 5.19-5.10 (m, 3H, CH₂CH=CH₂ and

CHCH=C*H*₂), 4.13-4.07 (m, 1H, OCH₂), 3.86-3.79 (m, 1H, OCH₂), 3.72-3.65 (m, 1H, OCH), 1.75-1.44 (m, 4H, CH₂), 1.01-0.95 (m, 3H, CH₃) ppm. ¹³C{¹H} NMR (C₆D₆): δ = 139.7 (s, CHCH=CH₂), 135.8 (s, CH₂CH=CH₂), 116.0 (s, =CH₂), 115.3 (s, =CH₂), 80.3 (s, OCH), 60.9 (s, OCH₂), 37.9 (s, CHCH₂), 18.6 (s, CH₂CH₃), 14.0 (s, CH₃) ppm.

(*E*)-4-(Allyloxy)pent-2-ene (3k): Yield: 2.776 g (88%). ¹H NMR (C₆D₆): δ = 6.05-5.94 (m, 1H, CH=CH₂), 5.57-5.35 (m, 2H, CH=CH), 5.39 (d, 1H, ³J_{HH} = 19.2 Hz, CH=CH₂), 5.18-5.13 (m, 1H, CH=CH₂), 4.11-4.02 (m, 1H, OCH), 3.88-

3.77 (m, 2H, OCH₂), 1.62 (d, 3H, ${}^{3}J_{HH} = 6.3$ Hz, CH=CHCH₃), 1.34 (d, 3H, ${}^{3}J_{HH} = 6.3$ Hz, CH₃) ppm. ${}^{13}C{}^{1}H$ NMR (C₆D₆): $\delta = 136.0$ (s, CH=CH₂), 134.0 (s, CH=CHCH₃), 126.7 (s, CH=CHCH₃), 115.3 (s, CH=CH₂), 75.8 (s, OCH), 68.6 (s, OCH₂), 21.7 (s, CH₃), 17.3 (s, CH=CHCH₃) ppm. HRMS (ESI): m/z 127.1124, [M+H⁺] (calcd for C₈H₁₅O: 127.1123).

(*E*)-1-(Allyloxy)hex-2-ene (3l):⁹ Yield: 2.100 g (83%). ¹H NMR (C₆D₆): δ = 6.01-5.90 (m, 1H, C*H*=CH₂), 5.71-5.66 (m, 2H, CH=CH), 5.36 (ddt, 1H, ³J_{HH} = 17.4 Hz, ²J_{HH} = ⁴J_{HH} = 1.8 Hz,

CH=CH₂), 5.15 (ddt, 1H, ${}^{3}J_{\text{HH}} = 10.5$ Hz, ${}^{4}J_{\text{HH}} = 2.1$ Hz, ${}^{2}J_{\text{HH}} = 1.8$ Hz, CH=CH₂), 3.96-3.92 (m, 4H, OCH₂), 2.04-1.97 (m, 2H, =CHCH₂), 1.40-1.36 (m, 2H, CH₂), 0.99 (t, 3H, ${}^{3}J_{\text{HH}} = 6.6$ Hz, CH₃) ppm. ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (C₆D₆): $\delta = 135.5$ (s, CH=CH₂), 133.2 (s, CH=CH), 127.2 (s, CH=CH), 115.6 (s, CH=CH₂), 70.7 (s, OCH₂), 70.5 (s, OCH₂), 34.4 (s, =CH*C*H₂), 22.4 (s, CH₂), 13.5 (s, CH₃) ppm.

- (1) Marion, N.; Gealageas, R.; Nolan, S. P. Org. Lett. 2007, 9, 2653-2656.
- (2) Gallagher, W. P.; Maleczka, R. E. J. Org. Chem. 2005, 70, 841-846.
- (3) Reuter, J. M.; Salomon, R. G. J. Org. Chem. 1977, 42, 3360-3364.
- (4) Marco, J. A.; Carda, M.; Rodríguez, S.; Castillo, E.; Kneeteman, M. N. *Tetrahedron* **2003**, *59*, 4085-4101.
- (5) Ammar, H. B.; Le Nôtre, J.; Salem, M.; Kaddachi, M. T.; Toupet, L.; Renaud, J.-L.; Bruneau, C.; Dixneuf, P. H. *Eur. J. Inorg. Chem.* **2003**, 4055-4064.
- (6) Yang, S. G.; Park, M. Y.; Kim, Y. H. Synlett 2002, 492-494.
- (7) Ghosh, S.; Raychaudhuri, S. R.; Salomon, R. G. J. Org. Chem. 1987, 52, 83-90.
- (8) Ishii, Y.; Sakaguchi, S.; Nakano, T. Jpn. Kokai Tokkyo Koho JP 2001253843, 2001.
- (9) Daeffler, C. S.; Grubbs, R. H. Org. Lett. 2011, 13, 6429-6431.

NMR spectra of the novel diallyl ethers 3a, 3c, 3i and 3k.

Figure S1: ¹H NMR spectrum (300 MHz, CDCl₃) of 3-(allyloxy)-3-methylpent-1-ene, **3a**.

Figure S2: ${}^{13}C{}^{1}H$ NMR spectrum (75.5 MHz, CDCl₃) of 3-(allyloxy)-3-methylpent-1-ene, **3a**.

Figure S3: 1 H NMR spectrum (400 MHz, C₆D₆) of 3-(allyloxy)-3-methylnon-1-ene, 3c.

Figure S4: ${}^{13}C{}^{1}H$ NMR spectrum (100.7 MHz, C₆D₆) of 3-(allyloxy)-3-methylnon-1-ene, 3c.

Figure S5: ¹H NMR spectrum (300 MHz, C_6D_6) of (*E*)-3-(but-2-en-1-yloxy)-3-methylbut-1-ene, **3i**.

Figure S6: ${}^{13}C{}^{1}H$ NMR spectrum (75.5 MHz, C₆D₆) of (*E*)-3-(but-2-en-1-yloxy)-3-methylbut-1-ene, **3i**.

Figure S7: ¹H NMR spectrum (300 MHz, C_6D_6) of (*E*)-4-(allyloxy)pent-2-ene, **3k**.

Figure S8: ${}^{13}C{}^{1}H$ NMR spectrum (75.5 MHz, C₆D₆) of (*E*)-4-(allyloxy)pent-2-ene, **3k**.

NMR spectra of the novel χδ-unsaturated aldehydes 4a, 4c, 4e and 4g.

Figure S9: ¹H NMR spectrum (300 MHz, CDCl₃) of 2,5-dimethylhept-4-enal, 4a.

Figure S10: ${}^{13}C{}^{1}H$ NMR spectrum (75.5 MHz, CDCl₃) of 2,5-dimethylhept-4-enal, 4a.

Figure S11: ¹H NMR spectrum (300 MHz, C₆D₆) of 2,5-dimethylundec-4-enal, 4c.

Figure S12: ${}^{13}C{}^{1}H$ NMR spectrum (75.5 MHz, C₆D₆) of 2,5-dimethylundec-4-enal, 4c.

Figure S13: ¹H NMR spectrum (400 MHz, C₆D₆) of 2-methyl-5-phenylhex-4-enal, 4e.

Figure S14: ${}^{13}C{}^{1}H$ NMR spectrum (100.7 MHz, C₆D₆) of 2-methyl-5-phenylhex-4-enal, 4e.

Figure S15: ¹H NMR spectrum (300 MHz, C₆D₆) of 2,3-dimethyl-3-phenylhex-4-enal, 4g.

Figure S16: ${}^{13}C{}^{1}H$ NMR spectrum (75.5 MHz, C₆D₆) of 2,3-dimethyl-3-phenylhex-4-enal, 4g.