Tuning the Diels-Alder Reaction for Bioconjugation with Maleimide Drug-linkers.

Andre H. St. Amant, ${ }^{\text {a }}$ Daniel Lemen, ${ }^{\text {b }}$ Stelios Florinas, ${ }^{\text {b }}$ Shenlan Mao, ${ }^{\text {c }}$ Christine Fazenbaker, ${ }^{\text {c }}$Haihong Zhong, ${ }^{\text {c }}$ Herren Wu, ${ }^{\text {b }}$ Changshou Gao, ${ }^{\text {b }}$ R. James Christie, ${ }^{\text {b,* }}$ and Javier Read deAlaniz ${ }^{\text {a,* }}$${ }^{\text {a }}$ Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA${ }^{\mathrm{b}}$ Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD 20878, USA${ }^{\text {c }}$ Oncology Research, MedImmune, Gaithersburg, MD 20878, USASupporting Information - Table of Contents

1. Materials and Methods S2
2. Synthesis of $2 \mathrm{a}, \mathbf{2 b}, \mathbf{3}, 4$, and 5 S2-S9
3. Kinetic Studies in Organic Solvent S10-S12
4. Characterization of Diels-Alder Adducts S13-S16
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S17-S36
6. Preparation of mAb-Diene Conjugates S37-S40
7. Reaction of mAb-Dienes with vcMMAE S40-S43
8. Kinetic Study of vcMMAE with mAb-Dienes S43-S45
9. Preparation of Functional DAADCs. S45-S53
10. Serum Stability Study S53-S57
11. In Vitro Cytotoxicity Study S58
12. In Vivo Tumor Growth Inhibition Study S59
13. References S59

1. Materials and Methods.

Unless stated otherwise, reactions were conducted under an atmosphere of N_{2} using reagent grade solvents. DCM was stored over 3 Å molecular sieves. THF was dried through an activated alumina column under N_{2}. All commercially obtained reagents were used as received. Compounds $\mathbf{1}$ and vcMMAE were purchased from SynChem, Inc. (Elk Grove Village, IL). $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$ was a gift provided by Hongyi Chen and Liming Zhang. Thin-layer chromatography (TLC) was conducted with E. Merck silica gel 60 F254 pre-coated plates $(0.25 \mathrm{~mm})$ and visualized by exposure to UV light (254 nm) or stained with p-anisaldehyde or potassium permanganate. Flash column chromatography was performed using normal phase silica gel ($60 \AA, 0.040-0.063 \mathrm{~mm}$, Geduran). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian spectrometers $(400,500$, or 600 MHz) and are reported relative to deuterated solvent signals. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity, coupling constant (Hz) and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian Spectrometers (100,125 , or 150 MHz$)$. Data for ${ }^{13} \mathrm{C}$ NMR spectra are reported in terms of chemical shift ($\delta \mathrm{ppm}$). Mass spectra were obtained from the UC Santa Barbara Mass Spectrometry Facility on a (Waters Corp.) GCT Premier high resolution Time-of-flight mass spectrometer with an electron ionization (EI) or chemical ionization (CI) source.

2,5-Dioxopyrrolidin-1-yl 4-((furan-2-ylmethyl)amino)-4-oxobutanoate (1):

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{dd}, J=0.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=1.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ (dd, $J=0.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.17 (br.s., 1 H), 4.43 (d, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.81$ $(\mathrm{s}, 4 \mathrm{H}), 2.61(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.7,169.0,168.1,151.0$, $142.1,110.4,107.5,36.6,30.5,26.7,25.5 \mathrm{ppm}$.
2. Synthesis of 2a, 3, 4, 5, and 2b.

2-(Cyclopenta-1,3-dienyl)ethanol \& 2-(cyclopenta-1,4-dienyl)ethanol (S1):
A solution of methyl bromoacetate ($6.0 \mathrm{~mL}, 63 \mathrm{mmol}, 1.05$ equiv) in THF (60 mL) was cooled to $-78^{\circ} \mathrm{C}$. A sodium cyclopentadienylide solution (2 M in THF, $30 \mathrm{~mL}, 60 \mathrm{mmol}$, 1 equiv) was added dropwise over 10 min and the reaction was stirred a further 2 h at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ and silica gel $(6 \mathrm{~g})$ then allowed to warm to rt . The reaction mixture was filtered through a plug of silica with $\mathrm{DCM}(100 \mathrm{~mL})$ and the solvent removed to yield the methyl ester which was used directly in the next reaction.

A solution of lithium aluminum hydride ($4.55 \mathrm{~g}, 120 \mathrm{mmol}, 2$ equiv) in THF (300 mL) was cooled to $0{ }^{\circ} \mathrm{C}$. The crude methyl ester ($\sim 60 \mathrm{mmol}$) was dissolved in THF $(10 \mathrm{~mL})$ and added dropwise
in 4 portions over 1 h at $0^{\circ} \mathrm{C}$ then stirred for a further 2 h at rt . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and carefully quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL}), \mathrm{NaOH}\left(4 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 5 \mathrm{~mL}\right)$, then $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The reaction mixture was filtered, rinsed with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, then transferred to a separatory funnel. Brine (100 mL) was added then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The organic layers were combined, washed with brine (100 mL), dried over MgSO_{4}, filtered, and the solvent removed. The residue was filtered through a silica plug (EtOAc:Hexane, 2:1, 200 mL) and the solvent removed to yield $\mathbf{S 1}$ ($5.45 \mathrm{~g}, 83 \%$ over two steps) as an amber oil. Dimerization of the cyclopentadiene occurs slowly when stored at $-20^{\circ} \mathrm{C}$, for long term storage $\mathbf{S} 1$ was frozen in a matrix of benzene. Spectral data matched that of literature reported data. ${ }^{1}$

S1: Rf (Hexane:EtOAc, 4:1): 0.14; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.52-6.10(\mathrm{~m}, 3 \mathrm{H}), 3.88-3.71$ (m, 2 H), 3.07-2.89 (m, 2 H), 2.77-2.57 (m, 2 H), 1.52 (br.s., 2 H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 145.3,143.2,134.5,134.2,132.4,131.5,128.7,128.4,62.2,61.6,43.4,41.6,34.0,33.2$ ppm.

4-(2-(Cyclopenta-1,3-dienyl)ethoxy)-4-oxobutanoic acid \& 4-(2-(cyclopenta-1,4-dienyl)ethoxy)-4-oxobutanoic acid (S2):
To a solution of $\mathbf{S} 1\left(0.33 \mathrm{~g}, 3.0 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{DCM}(1.5 \mathrm{~mL})$ in a vial was added $\mathrm{Et}_{3} \mathrm{~N}(0.42$ $\mathrm{mL}, 3.0 \mathrm{mmol}, 1$ equiv), 4-dimethylaminopyridine ($37 \mathrm{mg}, 0.3 \mathrm{mmol}, 0.1$ equiv), and succinic anhydride ($0.33 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv). The reaction was capped under an atmosphere of air and stirred at rt for 1 h , then transferred to a separatory funnel with $\mathrm{DCM}(50 \mathrm{~mL})$. The organic layer was washed with $\mathrm{HCl}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 50 \mathrm{~mL}\right)$ then $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, filtered, and the solvent removed to yield $\mathbf{S} \mathbf{2}(0.57 \mathrm{~g}, 90 \%)$ as a tan powder.

S2: $\operatorname{Rf}(\mathrm{EtOAc}): ~ 0.67 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.49$ (br.s., 1 H), $6.48-6.05(\mathrm{~m}, 3 \mathrm{H}), 4.33$ - $4.21(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.52(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $178.4,172.0,144.3,142.3,134.2,134.0,132.2,131.4,128.3,127.9,64.3,63.9,43.4,41.4,29.7$, 29.0, 28.8, 28.8 ppm ; IR (ATR) 2934, 2671, 2568, 1720, 1706, 1693, 1418, 1358, 1235, $1178 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (CI) Exact mass cald. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]^{+}$: 209.0814 , found: 209.0815 .

2-(Cyclopenta-1,3-dienyl)ethyl 2,5-dioxopyrrolidin-1-yl succinate \& 2-(cyclopenta-1,4dienyl)ethyl 2,5-dioxopyrrolidin-1-yl succinate (2a):

To a solution of $\mathbf{S} 2(0.42 \mathrm{~g}, 2.0 \mathrm{mmol}, 1$ equiv) in THF (10 mL) in a vial was added N hydroxysuccinimide $\left(0.32 \mathrm{~g}, \quad 2.8 \mathrm{mmol}, \quad 1.4\right.$ equiv), N-(3-dimethylaminopropyl)- N^{\prime} ethylcarbodiimide hydrochloride ($0.46 \mathrm{~g}, 2.4 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{DCM}(5 \mathrm{~mL})$. The reaction was capped under an atmosphere of air and stirred at rt overnight. The solvent was removed and the residue was subjected to flash column chromatography (Hexane:EtOAc, 1:1) to yield 2a (0.48 $\mathrm{g}, 78 \%$) as a clear, viscous oil. At room temperature 2a will dimerize, but it is stable for several months when stored at $-20^{\circ} \mathrm{C}$.

2a: Rf (Hexane:EtOAc, 1:1): 0.33; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.49$ - 6.06 (m, 3 H), 4.37-4.25 (m, 2 H), 3.03-2.90 (m, 4 H), 2.85 (br.s., 4 H), 2.80-2.68 (m, 4 H$)$ ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.8,168.9,167.6,144.3,142.3,134.2,134.1,132.3,131.4,128.4,128.0,64.5,64.2$, 43.5, 41.4, 29.7, 29.0, 28.7, 26.2, 25.5 ppm ; IR (ATR) 2953, 1814, 1783, 1731, 1362, 1201, 1068, $993 \mathrm{~cm}^{-1} ;$ HRMS (CI) Exact mass cald. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{6}[\mathrm{M}-\mathrm{H}]^{+}: 306.0978$, found: 306.0981.

Spiro[2.4]hepta-4,6-dien-1-ylmethanol (S3):

Sodium cyclopentadienide (2 M solution in THF, $10 \mathrm{~mL}, 20 \mathrm{mmol}, 4$ equiv) was added to THF $(40 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C} .(\pm)$-Epichlorohydrin ($0.39 \mathrm{~mL}, 5.0 \mathrm{mmol}, 1$ equiv) was added dropwise and the reaction was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h then a further 2 h at rt . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ then transferred to a separatory funnel. A saturated solution of NaHCO_{3} in $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added then extracted with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$. The organic layer was washed with brine (40 mL), dried over MgSO_{4}, filtered, and the solvent removed. The residue was subjected to flash column chromatography (Hexane:EtOAc, 2:1) to yield $\mathbf{S 3}(0.48 \mathrm{~g}, 78 \%)$ as a brown oil.
Spectral data matched that of literature reported data. ${ }^{2}$

S3: Rf (Hexane:EtOAc, 2:1): 0.22; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.64$ (td, $J=1.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.57-6.43 (m, 1 H), 6.34-6.21 (m, $J=1.0,1.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{td}, J=1.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ - 3.88 (m, 1 H), 3.59 (dd, $J=8.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.51-2.37 (m, $J=6.0,7.3,8.6,8.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$1.87(\mathrm{dd}, J=4.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=4.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.57$ (br.s., 1 H) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.4,133.9,131.7,128.6,64.9,41.9,30.0,17.6 \mathrm{ppm}$.

2,5-Dioxopyrrolidin-1-yl spiro[2.4]hepta-4,6-dien-1-ylmethyl succinate (3):
DCM (1.5 mL) was added to a vial containing $\mathbf{S 3}\left(0.37 \mathrm{~g}, 3.0 \mathrm{mmol}, 1\right.$ equiv). $\mathrm{Et}_{3} \mathrm{~N}(0.42 \mathrm{~mL}, 3.0$ mmol, 1 equiv), 4-dimethylaminopyridine ($37 \mathrm{mg}, 0.30 \mathrm{mmol}, 0.1$ equiv) and succinic anhydride $(0.33 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv) were added, the reaction capped under an atmosphere of air, and stirred at rt 1.75 h . The reaction mixture was poured into a separatory funnel with $\mathrm{DCM}(50 \mathrm{~mL})$ and washed with aqueous $\mathrm{HCl}(1 \mathrm{M}, 50 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{DCM}(50 \mathrm{~mL})$, the organic layers combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed to yield acid $\mathbf{S} 4$ which was used directly in the next reaction.

S4: Rf (EtOAc): 0.56; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.60$ (br.s., 1 H), 6.57 (td, $J=1.9,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.50(\mathrm{td}, J=1.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{td}, J=1.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{td}, J=1.8,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.37(\mathrm{dd}, J=7.4,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=7.0,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.57(\mathrm{~m}, 4 \mathrm{H}), 2.42$ (quin, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=4.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=4.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

THF (10 mL) was added to a vial containing $\mathbf{S 4}(\sim 3 \mathrm{mmol})$. N-hydroxysuccinimide ($0.48 \mathrm{~g}, 4.2$ mmol, 1.4 equiv), N-(3-dimethylaminopropyl)- N '-ethylcarbodiimide hydrochloride ($0.69 \mathrm{~g}, 3.6$ mmol, 1.2 equiv) and DCM (5 mL) were added, the reaction capped under an atmosphere of air, and stirred at rt overnight. The solvent was removed and the residue was subjected to flash column chromatography (Hexane:EtOAc, 1:1) to yield $3(0.59 \mathrm{~g}, 62 \%$ over two steps) as a colorless, viscous oil.

3: Rf (Hexane:EtOAc, 1:1): $0.34 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.56$ (td, J = $1.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.48 (td, J = 1.8, 5.1 Hz, 1 H), 6.21 (td, J = 1.6, $3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.06 (td, J = 1.6, $3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.36 (dd, J = 7.4, 11.7 Hz, 1 H), $4.21(\mathrm{dd}, \mathrm{J}=7.4,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 4 \mathrm{H})$, 2.73 (t, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.42 (quin, $\mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.83 (dd, J = 4.3, $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.68 (dd, J = $4.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,168.9,167.6,138.8,134.3,131.2$, 129.0, 66.6, 41.5, 28.6, 26.2, 25.5, 25.1, 17.3 ppm ; IR (ATR) 2945, 1814, 1783, 1732, 1366, 1202, $1068 \mathrm{~cm}^{-1}$; HRMS (EI) Exact mass cald. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6}[\mathrm{M}]^{+}: 319.1056$, found: 319.1051.

2,5-Dioxopyrrolidin-1-yl (1,2,3,4,5-pentamethylcyclopenta-2,4-dienyl)methyl succinate (4):

 DCM (8 mL) was added to a vial containing (1,2,3,4,5-pentamethylcyclopenta-2,4dienyl)methanol ${ }^{3}$ ($0.33 \mathrm{~g}, 2.0 \mathrm{mmol}, 1$ equiv). $\mathrm{Et}_{3} \mathrm{~N}$ ($0.64 \mathrm{~mL}, 4.6 \mathrm{mmol}, 2.3$ equiv), 4dimethylaminopyridine ($46 \mathrm{mg}, 0.38 \mathrm{mmol}, 0.2$ equiv) and succinic anhydride ($0.46 \mathrm{~g}, 4.6 \mathrm{mmol}$, 2.3 equiv) were added, the reaction capped under an atmosphere of air, and stirred at rt overnight. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ then poured into a separatory funnel. $\mathrm{HCl}(1 \mathrm{M}, 50$ mL) was added and extracted with DCM ($2 \times 50 \mathrm{~mL}$). The organic layers were combined, washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed to yield the acid $\mathbf{S 5}$ which was used directly in the next reaction.S5: Rf (EtOAc): 0.24; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.98$ (s, 2 H), 2.64-2.59 (m, 2 H), 2.59 2.54 (m, 2 H), 1.76 (s, 6 H), 1.74 (s, 6 H), 0.95 ($\mathrm{s}, 3 \mathrm{H}) \mathrm{ppm}$.

THF (10 mL) was added to a vial containing $\mathbf{S 5}(\sim 2 \mathrm{mmol})$. N-hydroxysuccinimide ($0.61 \mathrm{~g}, 5.3$ mmol, 2.7 equiv), N-(3-dimethylaminopropyl)- N '-ethylcarbodiimide hydrochloride ($0.87 \mathrm{~g}, 4.6$ mmol, 2.3 equiv) and DCM (6 mL) were added, the reaction capped under an atmosphere of air, and stirred at rt overnight. The solvent was removed and the residue was subjected to flash column chromatography (Hexane:EtOAc, $3: 1 \rightarrow 2: 1$) to yield $4(0.39 \mathrm{~g}, 55 \%$ over two steps) as a white solid.

4: Rf (Hexane:EtOAc, 7:3): 0.27; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.00(\mathrm{~s}, 2 \mathrm{H}), 2.89(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}$, 2 H), 2.85 (br.s., 4 H), 2.67 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.77 ($\mathrm{s}, 6 \mathrm{H}$), 1.74 (s, 6 H), 0.95 ($\mathrm{s}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.7,168.9,167.6,138.4,135.0,68.2,55.3,28.6,26.2,25.5,16.8$, 11.0, 10.1 ppm ; IR (ATR) 2973, 2935, 1815, 1782, 1729, 1208, 1089, 1069, $967 \mathrm{~cm}^{-1}$; HRMS (EI) Exact mass cald. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{6}[\mathrm{M}]^{+}: 363.1682$, found: 363.1676.

Methyl 9,9-diethoxy-6-hydroxynon-7-ynoate (S6):

3,3-Diethoxyprop-1-yne ($0.72 \mathrm{~mL}, 5.0 \mathrm{mmol}$, 1 equiv) was added to THF (15 mL) then cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{nBuLi}(2.33 \mathrm{M}$ in hexanes, $2.4 \mathrm{~mL}, 5.5 \mathrm{mmol}, 1.1$ equiv) was added dropwise then the reaction mixture stirred a further 30 min at $-78^{\circ} \mathrm{C}$. Methyl 6 -oxohexanoate $(0.87 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.2$ equiv) dissolved in THF (5 mL) was added dropwise, then the reaction mixture stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was poured into a separatory funnel containing a saturated aqueous solution of sodium bicarbonate (100 mL) then extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine (50 mL), dried over MgSO_{4}, filtered, the solvent removed,
and the residue subjected to flash column chromatography (Hexane:EtOAc, 2:1) to yield S6 (1.1 $\mathrm{g}, 80 \%$) as a clear and colorless oil.

S6: Rf (Hexane:EtOAc, 6:4): $0.41 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.28(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ - 4.36 (m, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.76-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.67-3.63(\mathrm{~m}, 3 \mathrm{H}), 3.56(\mathrm{qd}, J=7.0,9.4 \mathrm{~Hz}, 2$ H), 2.34-2.27(m, 3H), 1.76-1.59 (m, 4 H), 1.54-1.42(m, 2H), $1.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.0,91.2,86.2,80.0,61.8,60.8,60.8,51.5,36.9,33.8,24.6$, $24.4,15.0 \mathrm{ppm}$; IR (ATR) 3451, 2932, 1736, 1437, 1328, 1135, 1051, $1012 \mathrm{~cm}^{-1}$; HRMS (EI) Exact mass cald. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]^{+}: 271.1545$, found: 271.1546.

Methyl 5-(3-methoxyfuran-2-yl)pentanoate (S7):

$\mathrm{MeOH}(3.9 \mathrm{~mL})$ was added to a vial containing $\mathbf{S 6}$ ($1.06 \mathrm{~g}, 3.89 \mathrm{mmol}$, 1 equiv). $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$ (29 $\mathrm{mg}, 0.039 \mathrm{mmol}, 0.01$ equiv) was added, the reaction capped under an atmosphere of air, and stirred at rt overnight. The reaction mixture was poured into a separatory funnel containing brine $(50 \mathrm{~mL})$ then extracted with DCM ($2 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, the solvent removed, and the residue subjected to flash column chromatography (Hexane:EtOAc, 15:1 \rightarrow 9:1) to yield $\mathbf{S 7}(0.35 \mathrm{~g}, 43 \%)$ as a clear and colorless oil.

S7: Rf (Hexane:EtOAc, 9:1): 0.35; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.27$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.69-1.60 (m, 4 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.1,143.3,139.2,138.9,102.9,59.4$, $51.4,33.7,27.5,24.5,24.3 \mathrm{ppm}$; IR (ATR) 2950, 1734, 1662, 1600, 1230, 1179, $1111 \mathrm{~cm}^{-1}$; HRMS (EI) Exact mass cald. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}[\mathrm{M}]^{+}: 212.1049$, found: 212.1045 .

5-(3-Methoxyfuran-2-yl)pentanoic acid (S8):

To a vial containing $\mathbf{S 7}(0.331 \mathrm{~g}, 1.56 \mathrm{mmol}, 1$ equiv) dissolved in $\mathrm{MeOH}(4 \mathrm{~mL})$ was added a solution of $\mathrm{NaOH}\left(0.125 \mathrm{~g}, 3.12 \mathrm{mmol}\right.$, 2 equiv) in $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$. The reaction was capped under an atmosphere of air, and stirred at rt for 30 min . The reaction mixture was poured into a separatory funnel containing $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, and $\mathrm{HCl}\left(1 \mathrm{M} \mathrm{in} \mathrm{H}_{2} \mathrm{O}\right)$ was added to $\mathrm{pH} 2-3(\sim 4 \mathrm{~mL})$. The aqueous layer was extracted with $\operatorname{DCM}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, the solvent removed to yield $\mathbf{S 8}(0.280 \mathrm{~g}, 90 \%)$ as a clear and colorless oil.

S8: Rf (Hexane:EtOAc, 1:1): 0.55; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.37$ (br.s., 1 H), 7.12 (d, $J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.8,143.4,139.1,139.0,102.9$, 59.4, 33.7, 27.4, 24.4, 24.0 ppm ; IR (ATR) 3133, 2940, 1706, 1662, 1454, 1411, 1279, 1236, 1109 cm^{-1}; HRMS (EI) Exact mass cald. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}[\mathrm{M}]^{+}: 198.0892$, found: 198.0890.

2,5-Dioxopyrrolidin-1-yl 5-(3-methoxyfuran-2-yl)pentanoate (5):

THF (5 mL) was added to a vial containing $\mathbf{S 8}$ ($0.265 \mathrm{~g}, 1.34 \mathrm{mmol}, 1$ equiv). N hydroxysuccinimide $\left(0.216 \mathrm{~g}, 1.87 \mathrm{mmol}, 1.4\right.$ equiv), N-(3-dimethylaminopropyl)- N^{\prime} ethylcarbodiimide hydrochloride ($0.308 \mathrm{~g}, 1.61 \mathrm{mmol}, 1.2$ equiv) and DCM (3 mL) were added, the reaction capped under an atmosphere of air, and stirred at rt overnight. The solvent was removed and the residue was subjected to flash column chromatography (Hexane:EtOAc, 2:1 \rightarrow 1:1) to yield 5 ($0.293 \mathrm{~g}, 74 \%$) as a colourless, viscous oil.

5: Rf (Hexane:EtOAc, 2:1): 0.33; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.27$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72 ($\mathrm{s}, 3 \mathrm{H}$), 2.82 (br.s., 4 H), $2.69-2.54$ (m, 4 H), $1.81-1.60(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.1,168.5,143.5,139.1,138.7,102.8,59.3,30.5,27.0,25.5$, 24.2, 23.8 ppm ; IR (ATR) 2948, 1814, 1735, 1638, 1413, 1206, 1058, $1046 \mathrm{~cm}^{-1}$; HRMS (EI) Exact mass cald. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{6}[\mathrm{M}]^{+}: 295.1056$, found: 295.1062.

3-(Cyclopenta-1,3-dienyl)propanoic acid \& 3-(cyclopenta-1,4-dienyl)propanoic acid (S10): Sodium cyclopentadienide (2 M solution in THF, $30 \mathrm{~mL}, 60 \mathrm{mmol}, 1.2$ equiv) was added to THF (100 mL) and cooled to $-78^{\circ} \mathrm{C}$. Ethyl 3-bromopropionate ($6.41 \mathrm{~mL}, 50 \mathrm{mmol}, 1$ equiv) was added dropwise and the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 3 h , removed from the cooling bath, and stirred a further 1 h . Water (6 mL) and silica gel (6 g) were added and the suspension stirred 5 min . The reaction mixture was filtered through silica gel with DCM (50 mL) and the solvent removed to yield $\mathbf{S 9}$ as a yellow oil which was used directly in the next reaction. Spectral data matched that of literature reported data. ${ }^{4}$

S9: Rf (Hexane:EtOAc, 9:1): 0.45 ; ${ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.47-6.02(\mathrm{~m}, 3 \mathrm{H}), 4.17-4.11$ $(\mathrm{m}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 0.31 \mathrm{H}), 2.91(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1.69 \mathrm{H}), 2.78-2.68(\mathrm{~m}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.59-$ $2.53(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

A solution of $\mathbf{S 9}(\sim 50 \mathrm{mmol})$ dissolved in $\mathrm{EtOH}(36 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. A solution of NaOH ($3.63 \mathrm{~g}, 90.72 \mathrm{mmol}, 2.1$ equiv) in $\mathrm{H}_{2} \mathrm{O}(36 \mathrm{~mL})$ was added and the reaction stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h. The reaction mixture was poured into a separatory funnel containing $\mathrm{HCl}\left(1 \mathrm{M} \mathrm{in}_{\mathrm{H}}^{2} \mathrm{O}, 100 \mathrm{~mL}\right)$ and extracted with DCM ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine (50 $\mathrm{mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, the solvent removed to yield $\mathbf{S 1 0}(4.90 \mathrm{~g}, 71 \%$ two steps) as a yellow solid that decomposes at room temperature.

S10: Rf (Hexane:EtOAc, 1:2): 0.69; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.57$ (br.s., 1 H), 6.49-6.02 $(\mathrm{m}, 3 \mathrm{H}), 2.97(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1.07 \mathrm{H}), 2.92(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 0.93 \mathrm{H}), 2.82-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.68-$ $2.58(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.7,179.7,147.1,144.9,134.2,134.1,132.3$, 131.1, 127.0, 126.4, 43.3, 41.3, 33.9, 33.3, 25.5, 24.7 ppm; IR (ATR) 3070, 2926, 1705, 1412, 1283, 1205, $913 \mathrm{~cm}^{-1}$; HRMS (EI) Exact mass cald. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}_{2}$ [M] ${ }^{+}$: 138.0681, found: 138.0678.

2,5-Dioxopyrrolidin-1-yl 3-(cyclopenta-1,3-dienyl)propanoate \& 2,5-dioxopyrrolidin-1-yl 3-(cyclopenta-1,4-dienyl)propanoate (2b):
S10 (4.90 g, 35.5 mmol , 1 equiv) was dissolved in THF (50 mL). N-hydroxysuccinimide (5.71 g , 49.7 mmol , 1.4 equiv), N -(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride (8.17 g , 42.6 mmol , 1.2 equiv) and $\mathrm{DCM}(50 \mathrm{~mL})$ were added, the reaction capped under an atmosphere of air, and stirred 2 h . The reaction mixture was filtered through a silica plug with DCM (100 mL) and the solvent removed. The residue was subjected to flash column chromatography (Hexane:EtOAc, 2:1 $\rightarrow 1: 1$) to yield $\mathbf{2 b}(4.00 \mathrm{~g}, 49 \%)$ as an eggshell powder that must be stored in the freezer to prevent dimerization.

2b: Rf (Hexane:EtOAc, 2:1): 0.29; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.47-6.08(\mathrm{~m}, 3 \mathrm{H}), 2.97(\mathrm{~d}, \mathrm{~J}$ $=1.2 \mathrm{~Hz}, 1.2 \mathrm{H}), 2.92(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.8 \mathrm{H}), 2.90-2.75(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $169.1,168.2,168.1,145.7,143.9,134.4,133.8,132.2,131.4,127.7,127.1,43.2,41.4,30.8,30.2$, $25.5,25.3,24.5$; IR (ATR) 2947, 1810, 1779, 1735, 1420, 1366, 1204, 1062, $1046 \mathrm{~cm}^{-1}$; HRMS (EI) Exact mass cald. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4}[\mathrm{M}]^{+}: 235.0845$, found: 235.0848.

3. Kinetic experiments.

Dienes 1, 2b, 3, 4, or $\mathbf{5}$ (1 equiv) and NEM (N-ethylmaleimide, 1 equiv) in CDCl_{3} were combined in an NMR tube (final concentration 0.05 M for $\mathbf{1}, 0.01 \mathrm{M}$ for $\mathbf{2 b}, \mathbf{3}, \mathbf{4}$, and $\mathbf{5}$) and monitored by ${ }^{1} \mathrm{H}$ NMR at room temperature. [A] = concentration of diene $=[\mathbf{N E M}]$ was calculated using the integration of NEM's ethyl peaks (3.59 or 1.20 ppm) and those of the product (typically 4.40 or $1.05 \mathrm{ppm})$.
$[\mathrm{A}]=$ Initial Concentration * (integration of starting material) / (integration of starting material + product)

The inverse concentration ($1 /[\mathrm{A}]$) was plotted against time (s). The second order reaction rate (M^{-} ${ }^{1} \mathrm{~s}^{-1}$) was obtained from the slope of the line of best fit. The average and standard deviation of three experiments was used.

Figure S1. Kinetic analysis of the reaction of $\mathbf{1}$ and NEM:

Figure S2. Kinetic analysis of the reaction of $\mathbf{2 b}$ and NEM:

Figure S3. Kinetic analysis of the reaction of $\mathbf{3}$ and NEM:

Figure S4. Kinetic analysis of the reaction of 4 and NEM:

Figure S5. Kinetic analysis of the reaction of 5 and NEM

4. Characterization of Diels-Alder Adducts.

Note: The conversion for the DA reaction is high, but significant amount of material is not recovered due to hydrolysis of the NHS-ester on silica gel. For a more accurate representation of the endolexo and synlanti ratios see Figures S1 to S5.

Endo Diels-Alder adducts of 2,5-Dioxopyrrolidin-1-yl 3-(cyclopenta-1,3-dienyl)propanoate (S11a) \& 2,5-dioxopyrrolidin-1-yl 3-(cyclopenta-1,4-dienyl)propanoate (S11b):
To a solution of $\mathbf{2 b}$ ($105 \mathrm{mg}, 0.446 \mathrm{mmol}, 1$ equiv) dissolved in DCM (5 mL) was added NEM ($75 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.3$ equiv) and the solution was stirred for 15 min . The solvent was removed and the residue was subjected to flash column chromatography (Hexane:EtOAc, 1:2) to yield S11a and S11b (1:1.7, $112 \mathrm{mg}, 70 \%$) as a white foam.

S11a \& S11b: Rf (Hexane:EtOAc, 1:2): 0.33; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.11$ (dd, $J=2.2,5.7$ $\mathrm{Hz}, 0.38 \mathrm{H}, \mathbf{S 1 1 a}), 5.92$ (d, $J=5.9 \mathrm{~Hz}, 0.38 \mathrm{H}, \mathbf{S 1 1 a}), 5.73$ (d, $J=1.2 \mathrm{~Hz}, 0.62 \mathrm{H}, \mathbf{S 1 1 b}), 3.41$ 2.54 (m, 12 H, S11a \& S11b), $2.53-2.36$ (m, $1.24 \mathrm{H}, \mathbf{S 1 1 b}$), 2.28 (ddd, $J=6.5,8.9,14.8 \mathrm{~Hz}, 0.38$ H, S11a), 1.79 (d, $J=8.6 \mathrm{~Hz}, 0.62 \mathrm{H}$, S11b), 1.67 (d, $J=8.6 \mathrm{~Hz}, 0.38 \mathrm{H}, \mathbf{S 1 1 a}), 1.52$ (d, $J=9.0$ $\mathrm{Hz}, 0.62 \mathrm{H}, \mathbf{S 1 1 b}), 1.44\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 0.38 \mathrm{H}\right.$, S11a), $1.01\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right.$, S11a \& S11b) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.5,177.2,177.1,176.8,169.1,169.0,168.3,167.6,146.7,136.1$, $135.4,126.9,57.5,55.0,52.4,48.8,47.8,47.4,46.8,45.7,45.3,44.7,33.2,33.1,28.7,27.9,26.2$, $25.5,25.5,25.3,13.0,13.0$; IR (ATR) 2984, 2941, 1812, 1780, 1727, 1684, 1443, 1399, 1339, 1208, 1139, $1064 \mathrm{~cm}^{-1}$; HRMS (CI) Exact mass cald. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 361.1400$, found: 361.1398 .

Endo Diels-Alder adducts of 2,5-Dioxopyrrolidin-1-yl spiro[2.4]hepta-4,6-dien-1-ylmethyl succinate (S12a, anti) \& (S12b, syn):
To a solution of $\mathbf{3}$ ($116 \mathrm{mg}, 0.364 \mathrm{mmol}$, 1 equiv) dissolved in DCM (5 mL) was added NEM (64 $\mathrm{mg}, 0.51 \mathrm{mmol}, 1.4$ equiv) and the solution was stirred for 3 h . The solvent was removed and the residue was subjected to flash column chromatography (Hexane:EtOAc, 1:2 \rightarrow 1:3) to yield S12a ($59.9 \mathrm{mg}, 37 \%$) and $\mathbf{S 1 2 b}(13.3 \mathrm{mg}, 8 \%)$ as a white foams.

The isomers were assigned through the ${ }^{13} \mathrm{C}$ NMR shift of the cyclopropane methylene (syn $=10.2$ ppm , anti $=12.5 \mathrm{ppm}) .{ }^{5}$

S12a: Rf (Hexane:EtOAc, 1:2): 0.26; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.15(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.11 (dd, $J=7.2,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=8.2,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.36-3.33$ (m, 2 H), 3.04-2.98 (m, 1 H), 2.97-2.88 (m, 2 H), 2.84 (s, 4 H), $2.80-2.75$ (m, 1 H), $2.70(\mathrm{t}, J$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{dq}, J=5.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{dd}, J=5.9,9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 0.47(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.0,176.9,170.7,168.9,167.6$, $134.3,133.9,66.3,52.3,50.3,46.2,45.7,45.3,33.3,28.7,26.3,25.5,17.8,13.0,12.5$; IR (ATR) 2991, 2954, 1820, 1783, 1731, 1686, 1399, 1375, 1346, 1203, 1137, 1088, $1066 \mathrm{~cm}^{-1}$; HRMS (CI) Exact mass cald. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}: 445.1611$, found: 445.1630.

S12b: Rf (Hexane:EtOAc, 2:1): 0.39; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.21-6.13$ (m, 2 H), 4.42 (dd, $J=5.5,11.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (dd, $J=9.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.48-3.30(\mathrm{~m}, 4 \mathrm{H}), 3.06-3.02(\mathrm{~m}$, 1 H), 2.96 (dt, $J=3.7,6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.86 (br.s., 4 H), $2.79-2.72$ (m, 3 H), $1.35-1.29$ (m, 1 H), $1.05(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{dd}, J=6.1,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.47(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.2,170.8,169.0,167.6,134.0,133.9,77.2,66.2,52.6,50.4,46.2,45.8,45.6$, 33.3, 28.9, 26.5, 25.6, 19.0, 13.0, 10.2; IR (ATR) 2986, 2941, 1815, 1783, 1732, 1687, 1399, 1375, 1351, 1203, 1137, $1068 \mathrm{~cm}^{-1}$; HRMS (CI) Exact mass cald. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}$: 445.1611, found: 445.1631.

Endo Diels-Alder adduct of 2,5-Dioxopyrrolidin-1-yl (1,2,3,4,5-pentamethylcyclopenta-2,4dienyl)methyl succinate (S13, anti):
To a solution of 4 ($108 \mathrm{mg}, 0.297 \mathrm{mmol}, 1$ equiv) dissolved in DCM (5 mL) was added NEM (52 $\mathrm{mg}, 0.42 \mathrm{mmol}, 1.4$ equiv) and the solution was stirred for 2 h . The solvent was removed and the residue was subjected to flash column chromatography (Hexane:EtOAc, 2:3) to yield $\mathbf{S 1 3}$ (72.7 $\mathrm{mg}, 50 \%$) as a white foam.
The anti configuration of the Diels-Alder adduct was assigned through the NOESY signal of the methyl group indicated. ${ }^{6}$

S13: Rf (Hexane:EtOAc, 1:1): 0.21; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.97$ (s, 2 H), 3.35 ($\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 2 \mathrm{H}), 2.84(\mathrm{~s}, 4 \mathrm{H}), 2.72(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 6$ H), $1.30(\mathrm{~s}, 6 \mathrm{H}), 0.98(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.2$, $170.9,168.8,167.6,135.1,77.2,67.4,66.4,59.1,51.1,32.8,28.7,26.2,25.5,13.1,12.6,12.4$, 11.3; IR (ATR) 2965, 2938, 1815, 1785, 1733, 1686, 1441, 1401, 1380, 1347, 1224, 1202, 1142, 1088, $1068 \mathrm{~cm}^{-1}$; HRMS (CI) Exact mass cald. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}$: 489.2237, found: 489.2239.

Diels-Alder adducts of 2,5-dioxopyrrolidin-1-yl 5-(3-methoxyfuran-2-yl)pentanoate (S14a, endo) \& (S14b, exo):
To a solution of 5 ($100 . \mathrm{mg}, 0.339 \mathrm{mmol}, 1$ equiv) dissolved in DCM (5 mL) was added NEM (59 $\mathrm{mg}, 0.47 \mathrm{mmol}, 1.4$ equiv) and the solution was stirred for 2 h . The solvent was removed and the residue was subjected to flash column chromatography (Hexane:EtOAc, 1:2) to yield S14a and S14b (1.06:1, $121 \mathrm{mg}, 85 \%$) as a white foam.

The endo and exo isomers were assigned through analogy with Sheppard's work. ${ }^{7}$
S14a \& S14b: Rf (Hexane:EtOAc, 1:1): 0.33; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.15-5.09(\mathrm{~m}, 3 \mathrm{H})$, 4.99 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{S 1 4 a}$), $3.66-3.60(\mathrm{~m}, 4 \mathrm{H}), 3.54-3.46(\mathrm{~m}, 5 \mathrm{H}), 3.39(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2$ H, S14a), 3.17 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{S 1 4 a}$), 3.07 (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{S 1 4 b}$), $2.86-2.78$ (m, 8 H), $2.62(\mathrm{q}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.31-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.53(\mathrm{~m}, 12 \mathrm{H}), 1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, S14b), 1.06 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{S 1 4 a}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ; IR (ATR) 2942, 1813, 1783, 1733, 1689, 1627, 1442, 1401, 1347, 1203, 1135, $1065 \mathrm{~cm}^{-1}$; HRMS (CI) Exact mass cald. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 421.1611$, found: 421.1607.

5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra.

Figure S6. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathbf{1}$

Figure S7. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathbf{1}$

Figure S8. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S1

Figure S9. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S1

Figure S10. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S2

Figure S11. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S2

Figure S12. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 2a

Figure S13. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 2a

Figure S14. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S3

Figure S15. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S3

Figure S16. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S4

Figure S17. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 3

Figure S18. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 3

Figure S19. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4$

Figure S20. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 4

Figure S21. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S6

Figure S22. ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathbf{S 6}$

Figure S23. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathbf{S 7}$

Figure S24. ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathbf{S 7}$

Figure S25. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S8

Figure S26. ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathbf{S 8}$

Figure S27. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5$

Figure S28. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 5

Figure S29. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S9

Figure S30. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S10

Figure S31. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S10

Figure S32. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathbf{2 b}$

Figure S33. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 2b

Figure S34. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S11a \& S11b

Figure S35. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S11a \& S11b

Figure S36. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S12a (anti)

Figure S37. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S12a (anti)

Figure S38. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S12b (syn)

Figure S39. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S12b (syn)

Figure S40. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathbf{S 1 3}$

Figure S41. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S13

Figure S42. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S14a (endo) \& S14b (exo)

Figure S43. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathbf{S 1 4 a}$ (endo) \& S14b (exo)

6. Preparation of mAb-Diene Conjugates.

Materials. All antibodies (IgG-1 format) were expressed and purified using standard molecular biology methods. All reagents were purchased from commercial vendors unless noted otherwise.

Method. Diene functionality was randomly incorporated into antibodies by reaction of the NHS ester-containing dienes described above with lysine amines. Degree of mAb modification was controlled by the amount of NHS-diene used in the reaction and different linker densities were targeted depending on the experiment. Two different mAbs were used in this experiment; R347 (2a, 3, $\mathbf{4}$ and 5) and 5T4(1). A general procedure for modification of $\mathbf{m A b}$ with 2a is described as follows: First, mAb solution was adjusted to $5 \mathrm{mg} / \mathrm{mL}$ ($3 \mathrm{~mL}, 15 \mathrm{mg} \mathrm{mAb}, 100 \mathrm{nmol}, 1$ equiv) with PBS pH 7.2 followed by addition of $10 \% \mathrm{v} / \mathrm{v} 1 \mathrm{M} \mathrm{NaHCO}_{3}$. This solution was chilled on ice and $30 \mu \mathrm{~L} \mathbf{2 a}$ (10 mM stock in DMAc, $300 \mathrm{nmol}, 3$ equiv) was added. The reaction proceeded on ice for 5 minutes followed by reaction at room temperature for 1 h with continuous mixing. Reacted mAb-2a was purified by dialysis (Slide-A-Lyzer, 10 kDa MWCO) against PBS, 1 mM EDTA, pH 7.4, $4^{\circ} \mathrm{C}$ for 24 h . 2a introduction was quantified by intact deglycosylated mass spectrometry as described below.

Mass Spectrometry Analysis. For deglycosylated mAb analysis, EndoS ($5 \mu \mathrm{~L}$ Remove-iT EndoS (1:10 dilution in PBS, 20,000 units/mL, New England BioLabs) was combined with $50 \mu \mathrm{~L}$ sample ($1 \mathrm{mg} / \mathrm{mL} \mathrm{mAb}$) and $5 \mu \mathrm{~L}$ glyco buffer 1 (New England BioLabs) and followed by incubation for 1 h at $37^{\circ} \mathrm{C}$. Reduced samples were prepared by addition of $5 \mu \mathrm{~L}$ Bond-Breaker TCEP solution (0.5 M , Thermo Fisher Scientific) and incubation for 10 min at $37^{\circ} \mathrm{C}$. Mass spectrometry analysis was performed using an Agilent 6520B Q-TOF mass spectrometer equipped with a RP-HPLC column (ZORBAX 300 Diphenyl RRHD, 1.8 micron, $2.1 \mathrm{~mm} \times 50 \mathrm{~mm}$). High-performance liquid chromatography (HPLC) parameters were as follows: flow rate, $0.5 \mathrm{ml} / \mathrm{min}$; mobile phase A was $0.1 \%(\mathrm{v} / \mathrm{v})$ formic acid in HPLC-grade $\mathrm{H}_{2} \mathrm{O}$, and mobile phase B was $0.1 \%(\mathrm{v} / \mathrm{v})$ formic acid in acetonitrile. The column was equilibrated in $90 \% \mathrm{~A} / 10 \% \mathrm{~B}$, which was also used to desalt the mAb samples, followed by elution in $20 \% \mathrm{~A} / 80 \% \mathrm{~B}$. Mass spec data were collected for $100-3000 \mathrm{~m} / \mathrm{z}$, positive polarity, a gas temperature of $350{ }^{\circ} \mathrm{C}$, a nebulizer pressure of $48 \mathrm{lb} / \mathrm{in}^{2}$, and a capillary voltage of $5,000 \mathrm{~V}$. Data were analyzed using vendor-supplied (Agilent v.B.04.00) MassHunter Qualitative Analysis software and peak intensities from deconvoluted spectra were used to derive the relative proportion of species in each sample as previously described.

Mass Spectrum Analysis. Antibodies were deglycosylated and analyzed intact. Peak masses are indicated as well as the number of linkers conjugated for each peak.

Figure S44. Mass spectrum of intact, deglycosylated mAb (5T4).

Figure S45. Mass spectrum of intact, deglycosylated antibody-diene conjugate $\mathbf{m A b} \mathbf{- 1}$ (LAR = 2.5).

Figure S46. Mass spectrum of intact, deglycosylated mAb (R347).

Figure S47. Mass spectrum of intact, deglycosylated antibody-diene conjugate mAb-2a (LAR = 2.3).

Figure S48. Mass spectrum of intact, deglycosylated antibody-diene conjugate $\mathbf{m A b} \mathbf{- 3}$ (LAR = 3.3).

Figure S49. Mass spectrum of intact, deglycosylated antibody-diene conjugate mAb-4 (LAR = 3.04).

Figure S50. Mass spectrum of intact, deglycosylated antibody-diene conjugate mAb-5 (LAR = 2.95).

7. Reaction of mAb-Dienes with vcMMAE.

Feasibility of the diene-maleimide reaction for bioconjugation was determined by reaction of diene-modified mAbs with excess vcMMAE at both room temperature and $37^{\circ} \mathrm{C}$. Two different mAbs were used in this experiment; R347 (2a, 3, 4 and 5) and 5T4 (1). First, mAb-diene solution in PBS ($286 \mu \mathrm{~L}, 3.5 \mathrm{mg} / \mathrm{mL}, 6.7 \mathrm{nmol} \mathrm{mAb}, 1$ equiv) was combined with $57 \mu \mathrm{~L}$ DMSO and 29 $\mu \mathrm{L} 0.1 \mathrm{M}$ sodium phosphate, monobasic to yield a $\sim 20 \%$ and $\sim 10 \% \mathrm{v} / \mathrm{v}$ solution of each, respectively. Addition of all solution components yielded a mixture comprising $2.7 \mathrm{mg} / \mathrm{mL} \mathrm{mAb}$, 2.16 mM DMSO, 78 mM sodium phosphate, $115 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 5.5$. vcMMAE ($10 \mu \mathrm{~L}$ of a 10 mM stock solution in DMAc, $100 \mathrm{nmol}, 15$ equiv) was added to the antibody solution, the mixture was vortexed briefly, and the reaction was allowed to proceed at $22^{\circ} \mathrm{C}$ or $37^{\circ} \mathrm{C}$ with mixing. After 4 h reaction, N-acetylcysteine ($8 \mu \mathrm{~L}$ of a 100 mM solution, 120 equiv) was added to quench unreacted maleimide groups. Samples were purified using PD Spintrap G-25 devices (GE Healthcare Life Sciences) to remove small molecule components from the reaction mixture. Samples were then analyzed by reduced deglycosylated mass spectrometry as described below.

Mass spectrometry analysis. mAb-Diene before and after reaction with vcMMAE (15 molar equivalents relative to $\mathrm{mAb}, 22^{\circ} \mathrm{C}, 4 \mathrm{~h}^{*}$). Samples were deglycosylated and reduced prior to analysis, spectra are zoomed to show the heavy chain only.
*mAb-1 was reacted at $37^{\circ} \mathrm{C}$ for 20 h .

Figure S51. Mass spectrum of reduced, deglycosylated antibody-diene conjugate mAb-1 (LAR $=2.5$) showing the antibody heavy chain.

Figure S52. Mass spectrum of reduced, deglycosylated mAb-1-MMAE DAADC ($\mathrm{DAR}=0.03$) showing the antibody heavy chain. Non-selective conjugation is indicated; the chemical structure of this linkage is not known. Conjugation is considered non-selective because the druglinker mass tracked from antibody heavy chain peak lacking furan (49,658 amu).

Figure S53. Mass spectrum of reduced, deglycosylated antibody-diene conjugate mAb-2a (LAR $=2.3$) showing the antibody heavy chain.

Figure S54. Mass spectrum of reduced, deglycosylated mAb-2a-MMAE (DAR = 2.3) showing the antibody heavy chain.

Figure S55. Mass spectrum of reduced, deglycosylated antibody-diene conjugate mAb-3 (LAR $=3.3$).

Figure S56. Mass spectrum of reduced, deglycosylated mAb-3-MMAE DAADC (DAR $=2.4$) showing the antibody heavy chain.

Figure S57. Mass spectrum of reduced, deglycosylated antibody-diene conjugate mAb-4 (LAR $=3.04)$ showing the antibody heavy chain.

Figure S58. Mass spectrum of reduced, deglycosylated mAb-4-MMAE (DAR = 3.04) DAADC showing the antibody heavy chain.

Figure S59. Mass spectrum of reduced, deglycosylated antibody-diene conjugate mAb-5 (LAR $=2.95$) showing the antibody heavy chain.

Figure S60. Mass spectrum of reduced, deglycosylated mAb-5-MMAE DAADC (DAR $=2.95$) showing the antibody heavy chain.

8. Kinetic Study of vcMMAE with mAb-Dienes.

Reaction progress of $\mathbf{m A b}$-Diene with $\mathbf{v c M M A E}$ was monitored by mass spectrometry. The same general protocol was followed for all samples, with vcMMAE feed adjusted for each sample to maintain a 1:1 molar ratio based on diene content. The procedure for analysis of $\mathbf{m A b} \mathbf{- 2 a}$ is as follows: mAb-2a ($3.7 \mathbf{2 a} / \mathrm{mAb}, 3 \mathrm{mg}, 74 \mathrm{nmol} \mathbf{2 a}, 1$ equiv) was diluted with PBS (pH 7.4) to a final concentration of $1.7 \mathrm{mg} / \mathrm{mL}$. Next, DMSO was added to yield a $20 \% \mathrm{v} / \mathrm{v}$ solution followed by addition of 1 M sodium phosphate monobasic to yield a $10 \% \mathrm{v} / \mathrm{v}$ solution. Addition of all
solution components yielded a mixture comprising $1.3 \mathrm{mg} / \mathrm{mL} \mathbf{m A b} \mathbf{- 2 a}, 32.3 \mu \mathrm{M} \mathbf{2 a}, 2.16 \mathrm{mM}$ DMSO, 78 mM sodium phosphate, $115 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 5.5$. Next, vcMMAE ($7.4 \mu \mathrm{~L}$ of a 10 mM stock solution in DMSO, $74 \mathrm{nmol}, 1$ equiv) was added to the antibody solution. The reaction solution was mixed and allowed to proceed at $22{ }^{\circ} \mathrm{C}$ with continuous mixing. Aliquots ($180 \mu \mathrm{~L}$) were removed at various time points and N-acetylcysteine ($3 \mu \mathrm{~L}$ of a 100 mM solution, 51 equivalents) was added to quench unreacted maleimide groups. Samples were then purified using PD Spintrap G-25 devices (GE Healthcare Life Sciences) to remove small molecule components from the mixture. Samples were then analyzed by reduced deglycosylated mass spectrometry as described below.

Relative abundance of unreacted diene was determined by peak intensities in reduced deglycosylated mass spectra using the following equation:
diene per mAb

$$
\begin{aligned}
& =\left[\left(\frac{b}{a+b+c+d} \times 1\right)+\left(\frac{c}{a+b+c+d} \times 2\right)+\left(\frac{d}{a+b+c+d} \times 3\right)\right. \\
& \left.+\left(\frac{f}{e+f+g} \times 1\right)+\left(\frac{g}{e+f+g} \times 2\right)\right] \times 2
\end{aligned}
$$

$\mathrm{a}=$ peak intensity of unmodified heavy chain
$\mathrm{b}=$ sum of peak intensities of mAb heavy chains with one diene group
$\mathrm{c}=$ sum of peak intensities of mAb heavy chains with two diene groups
$\mathrm{d}=$ sum of peak intensity of mAb heavy chain with three diene groups
$\mathrm{e}=$ peak intensity of unmodified light chain
$f=$ sum of peak intensities of $m A b$ light chains with one diene group
$\mathrm{g}=$ sum of peak intensities of mAb light chains with two diene groups
Note that multiple peaks could contribute to each diene containing species. For example, mAb heavy chain with one diene and mAb heavy chain with two dienes, where one is reacted with vcMMAE would both be considered as a one-diene species in line (b) above.

Conjugation data were further analyzed in units of molar concentration to determine kinetic constants. Second order rate constants were determined from the slopes of curves generated from plotting $1 /[d i e n e]$ versus time and linear regression analysis. Reaction half-lives were calculated from second-order reaction rate constants using the equation shown below:
$\mathrm{T}_{1 / 2}=\frac{1}{k_{2}[\text { diene }]_{0}}$
$k_{2}=$ second order rate constant
[diene] ${ }_{0}=$ diene concentration at time $=0$

Figure S61. Kinetic analysis of the reaction of mAb-Diene (1 equiv of diene) with vcMMAE (1 equiv). All reactions were performed at $22^{\circ} \mathrm{C}$, unreacted diene concentration was determined by mass spectrometry. Data are plotted as the average value \pm standard deviation, $\mathrm{n}=3$, for $\mathbf{m A b} \mathbf{- 2 a}$ and $\mathbf{m A b}-\mathbf{3}$ samples. Data are plotted as the average value \pm absolute error, $n=2$, for $\mathbf{m A b}-\mathbf{4}$ and $\mathbf{m A b}-5$ samples. Kinetic experiments were repeated with independent samples. Best fit lines were extrapolated beyond experimental values for $\mathbf{m A b}-\mathbf{2 a}$ and $\mathbf{m A b}-\mathbf{4}$ for illustrative purposes.

9. Preparation of Functional DAADCs.

Antibody drug-conjugates were prepared from Trastuzumab (T, on-target) or R347 (mAb, offtarget) mAbs using both Diels-Alder conjugation via linkers and direct conjugation to antibody cysteine thiols. Diels-Alder ADCs were prepared from 2b and $\mathbf{5}$ linker-modified antibodies using the same general procedure described for $\mathbf{m A b}-\mathbf{2 a}$ as follows: $\mathbf{m A b}-\mathbf{2 b}$ ($10 \mathrm{mg}, 67 \mathrm{nmol}, 1$ equiv) was diluted to $4.27 \mathrm{mg} / \mathrm{mL}$ with PBS, pH 7.4, followed by addition of DMSO ($493 \mu \mathrm{~L}$) and 1 M sodium phosphate monobasic ($247 \mu \mathrm{~L}$) to yield $\sim 20 \%$ and $10 \% \mathrm{v} / \mathrm{v}$ solutions respectively. vcMMAE ($53.3 \mu \mathrm{~L}$ of 10 mM stock in DMSO, $530 \mathrm{nmol}, 8$ equiv) was added to the antibody solution and the reaction continued at room temperature with mixing for 4 h . N -Acetylcysteine (43 $\mu \mathrm{L}$ of a 100 mM solution in water, $4.3 \mu \mathrm{~mol}$, 64 equiv) was added to quench unreacted maleimides. ADC was purified from the reaction mixture using CHT chromatography. ADC solution was diluted 3-fold with distilled water and loaded onto a Bio-Scale Mini Cartridge CHT Type II $40 \mu \mathrm{~m}$ media column. ADC was eluted with a gradient from buffer A (10 mM phosphate, pH 7.0) to buffer B (10 mM phosphate pH 7.0 containing 2 M NaCl) over 25 minutes at a flow rate of 5 $\mathrm{mL} / \mathrm{min}$. After CHT chromatography ADC sample was buffer exchanged to PBS using a slide-alyzer cassette at $4{ }^{\circ} \mathrm{C}$. The same procedure was followed for ADCs prepared with mAb-5 constructs, with the exception that the vcMMAE conjugation reaction continued for 24 h at room temperature. 8 equivalents of $\mathbf{v c M M A E}$ relative to mAb used for the conjugation reaction corresponds to approximately 2 molar equivalents relative to diene (linker-antibody ratio (LAR) or drug-antibody ratio (DAR) content for each mAb is provided on the mass spectra).

ADCs were also prepared by conjugation of vcMMAE to cysteine thiols contained in the antibody hinge region. First, antibody ($10 \mathrm{mg}, 67 \mathrm{nmol}, 1$ equiv) solution was adjusted to $2.5 \mathrm{mg} / \mathrm{mL}$ with PBS containing 1 mM EDTA. Next, TCEP ($10 \mu \mathrm{~L}$ of 50 mM solution in water, $500 \mathrm{nmol}, 7.5$ equiv) was added to reduce hinge disulfides, and the mixture was incubated at $37^{\circ} \mathrm{C}$ with mixing for 1 h . Next, DMSO ($410 \mu \mathrm{~L}, 10 \% \mathrm{v} / \mathrm{v}$ final concentration in reaction) was added followed by addition of $\mathbf{v c M M A E}(30 \mu \mathrm{~L}$ of 10 mM solution in DMSO, $300 \mathrm{nmol}, 4.5$ equiv) and the reaction continued at room temperature with mixing for 1 h . N -Acetylcysteine was added to quench unreacted maleimide groups and ADC was purified by CHT chromatography and dialysis as described above.

Mass Spectrum Analysis. Antibodies were deglycosylated and analyzed intact. Peak masses are indicated as well as the number of linkers conjugated for each peak.

Figure S62. Mass spectrum of intact, deglycosylated non-targeting mAb.

Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}^{-}$
Exact Mass: 121.07

Figure S63. Mass spectrum of intact, deglycosylated non-targeting antibody-diene conjugate $\mathbf{m A b}-2 \mathbf{b}(\mathrm{LAR}=3.7)$.

Figure S64. Mass spectrum of intact, deglycosylated non-targeting mAb-2b-MMAE DAADC ($\mathrm{DAR}=3.4$).

Figure S65. Mass spectrum of intact, deglycosylated antibody T.

Figure S66. Mass spectrum of intact, deglycosylated antibody-linker conjugate T-2b (LAR = 4.1).

Chemical Formula: $\mathrm{C}_{76} \mathrm{H}_{114} \mathrm{~N}_{11} \mathrm{O}_{16}{ }^{\text {. }}$
Exact Mass: 1436.84

Figure S67. Mass spectrum of intact, deglycosylated T-2b-MMAE DAADC (DAR = 3.9).

Figure S68. Mass spectrum of intact, deglycosylated non-targeting antibody-diene conjugate mAb-5 (LAR = 3.8).

Chemical Formula: $\mathrm{C}_{78} \mathrm{H}_{118} \mathrm{~N}_{11} \mathrm{O}_{18}{ }^{\text {- }}$
Exact Mass: 1496.8656

Figure S69. Mass spectrum of intact, deglycosylated non-targeting mAb-5-MMAE DAADC ($\mathrm{DAR}=3.2$).

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3}{ }^{-}$
Exact Mass: 181.0865

Figure S70. Mass spectrum of intact, deglycosylated antibody-diene conjugate T-5 (LAR = 4.0).

Chemical Formula: $\mathrm{C}_{78} \mathrm{H}_{118} \mathrm{~N}_{11} \mathrm{O}_{18}{ }^{\text {. }}$
Exact Mass: 1496.8656

Figure S71. Mass spectrum of intact, deglycosylated T-5-MMAE DAADC (DAR = 3.5).

Figure S72. Mass spectrum of reduced, deglycosylated antibody T.

Chemical Formula: $\mathrm{C}_{68} \mathrm{H}_{106} \mathrm{~N}_{11} \mathrm{O}_{15}{ }^{\text {. }}$
Exact Mass: 1316.7870

Figure S73. Mass spectrum of reduced, deglycosylated T-Cys ADC (DAR = 3.2).

Figure S74. Mass spectrum of reduced, deglycosylated non-targeting mAb.

Figure S75. Mass spectrum of reduced, deglycosylated mAb-Cys ADC (DAR=2.9).
rRP-HPLC analysis. For each analysis, the antibodies and ADCs were reduced at $37{ }^{\circ} \mathrm{C}$ for 20 minutes using 42 mM dithiothreitol (DTT) in PBS pH 7.2. $10 \mu \mathrm{~g}$ of reduced antibodies and ADCs was loaded onto a PLRP-S, $1000 \AA$ column ($2.1 \times 50 \mathrm{~mm}$, Agilent) and eluted at $40^{\circ} \mathrm{C}$ at a flow rate of $0.5 \mathrm{~mL} / \mathrm{min}$ with a gradient of 5% B to 100% B over 60 minutes (mobile phase A: 0.1% trifluoroacetic acid in water, and mobile phase B: 0.1% trifluoroacetic acid in acetonitrile). Percent conjugation was determined using integrated peak areas from the chromatogram.

Figure S76. rRP-HPLC traces of \mathbf{T} ADCs made using $\mathbf{2 b}$ (A), $\mathbf{5}$ (B) or native thiols (C).

Figure S77. rRP-HPLC traces of control ADCs made using 2b (A), $\mathbf{5}$ (B) or native thiols (C).

Size exclusion chromatography. SEC analysis was performed using an Agilent 1100 Capillary LC system equipped with a triple detector array (Viscotek 301, Viscotek, Houson, TX); the wavelength was set to 280 nm , and samples ($50 \mu \mathrm{~g}$) were run on a TSK-GEL G3000SWXL column (Toso Bioscience LLC, Montgomeryville, PA) using 100 mM sodium phosphate buffer, 10% isopropyl alcohol, pH 6.8 at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$. All ADC samples showed $>90 \%$ monomer content.

Figure S78. SEC traces of \mathbf{T} ADCs made using $\mathbf{2 b}$ (A), $\mathbf{5}$ (B) or native thiols (C). High molecular weight species (HMWS) are indicated.

Figure S79. SEC traces of control antibody mAb ADCs made using 2b (A), $\mathbf{5}$ (B) or native thiols (C). High molecular weight species (HMWS) are indicated.

10. Serum Stability Study.

Method. ADCs were incubated in rat and mouse serum to challenge the stability of the antibodypayload linkage. ADCs were added to normal rat or normal mouse serum (Jackson Immunoresearch) to achieve a final concentration of $0.2 \mathrm{mg} / \mathrm{mL}(1.33 \mu \mathrm{M}$ antibody), with the total volume of ADC solution added to serum less than 10%. The ADC-serum mixture was sterile filtered and an aliquot was removed from this mixture and frozen as a $t=0$ control. Remaining sample was then further incubated at $37{ }^{\circ} \mathrm{C}$ in a sealed container for 7 d . Conjugated and unconjugated human antibody was recovered from serum by immunoprecipitation using Fcspecific anti-human IgG-agarose resin (Sigma-Aldrich). Resin was rinsed twice with PBS, once with IgG elution buffer, and then twice more with PBS. ADC-serum samples were then combined with anti-human IgG resin ($100 \mu \mathrm{~L}$ of ADC -serum mixture, $50 \mu \mathrm{~L}$ resin slurry) and mixed for 15 minutes at room temperature. Resin was recovered by centrifugation and then washed twice with PBS. Washed resin was resuspended in $100 \mu \mathrm{~L}$ IgG elution buffer (Thermo Scientific) and further incubated for 5 minutes at room temperature. Resin was removed by centrifugation and then 20 $\mu \mathrm{L}$ of 10X glycobuffer 1 (New England Biolabs) was added to the supernatant. Recovered human
antibody solution was sterile filtered, and incubated with EndoS for 1 h at $37^{\circ} \mathrm{C}$. Deglycosylated mAbs were then reduced with TCEP and analyzed by LC/MS as described above. Percent conjugated antibody was determined from peak heights of mass spectra.

Figure S80. Rat serum stability study mass spectrum of reduced, deglycosylated mAb-2b-
MMAE showing the antibody heavy chain, $\mathrm{T}=0$ days.

Figure S81. Rat serum stability study mass spectrum of reduced, deglycosylated mAb-2b-
MMAE showing the antibody heavy chain, $\mathrm{T}=7$ days.

Figure S82. Rat serum stability study mass spectrum of reduced, deglycosylated mAb-5-
MMAE showing the antibody heavy chain, $\mathrm{T}=0$ days.

Figure S83. Rat serum stability study mass spectrum of reduced, deglycosylated mAb-5-
MMAE showing the antibody heavy chain, $\mathrm{T}=7$ days.

Figure S84. Rat serum stability study mass spectrum of reduced, deglycosylated mAb-CysMMAE showing the antibody heavy chain, $\mathrm{T}=0$ days.

Figure S85. Rat serum stability study mass spectrum of reduced, deglycosylated mAb-CysMMAE showing the antibody heavy chain, $\mathrm{T}=7$ days. Remaining drug is attached through a hydrolyzed thiosuccinimide linkage.

Figure S86. Mouse serum stability study mass spectrum of reduced, deglycosylated mAb-2bMMAE showing the antibody heavy chain, $\mathrm{T}=0$ days.

Figure S87. Mouse serum stability study mass spectrum of reduced, deglycosylated $\mathbf{m A b} \mathbf{- 2 b}-$ MMAE showing the antibody heavy chain, $\mathrm{T}=7$ days. Drug loss through cleavage of the ValCit linker is indicated.

Figure S88. Mouse serum stability study mass spectrum of reduced, deglycosylated mAb-5MMAE showing the antibody heavy chain, $\mathrm{T}=0$ days.

Figure S89. Mouse serum stability study mass spectrum of reduced, deglycosylated mAb-5MMAE showing the antibody heavy chain, $\mathrm{T}=7$ days. Drug loss through cleavage of the ValCit linker is indicated.

Figure S90. Mouse serum stability study mass spectrum of reduced, deglycosylated mAb-CysMMAE showing the antibody heavy chain, $\mathrm{T}=0$ days.

Figure S91. Mouse serum stability study mass spectrum of reduced, deglycosylated mAb-CysMMAE showing the antibody heavy chain, $\mathrm{T}=7$ days. Remaining drug is attached through a hydrolyzed thiosuccinimide linkage.

11. In Vitro Cytotoxicity Study.

Human gastric cancer cell line NCI-N87 and human breast cancer cell line SKBR3 were obtained from American Type Culture Collection (ATCC). Cells were maintained in RPMI 1640 media (Life Technologies) supplemented with 10% heat-inactivated fetal bovine serum (HI-FBS) (Life Technologies) at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$. SKBR3 and NCI-N87 cells harvested in exponential growth phase were seeded in 96-well culture plates at 2500 and 2000 cells/well and allowed to adhere overnight. Cells were then treated on the following day with ADCs at 4 -fold serial dilutions starting from 4000 or $64,000 \mathrm{ng} / \mathrm{mL}$ (9 concentrations) in duplicate. The treated cells were cultured for 6 days and cell viability was determined using the CellTiter-Glo Luminescent Viability Assay (Promega) following the manufacturer's protocol. Cell viability was calculated as a percentage of untreated control cells. IC_{50} values were determined using logistic non-linear regression analysis with Prism software (GraphPad). $\mathrm{IC}_{50} \mathrm{~s}$ can be found in the manuscript text.

Figure S92. Cytotoxicity study of ADCs on human cancer cell lines NCI-N87 (A), and SKBR3 (B).

12. In Vivo Tumor Growth Inhibition Study.

Tumor growth inhibition studies were performed at MedImmune and all animal procedures were performed in accordance with appropriate regulatory standards under protocols approved by the MedImmune Institutional Animal Care and Use Committee. Trastuzumab ADCs T-2b-MMAE, T-5-MMAE, and T-Cys-MMAE were evaluated for antitumor activity in vivo in a subcutaneous N87 xenograft model in mice. Tumors were prepared by inoculation of N87 cells (5 million N87 cells in 50% Matrigel) subcutaneously into $4-6$ week old female athymic nude mice. When tumors reached approximately $200 \mathrm{~mm}^{3}$, mice were randomly assigned into groups, 5 mice per group. ADCs were administered IV at the indicated doses and dosed at day 5 post cell inoculation. Tumor dimensions (long axis and short axis) were measured twice weekly with calipers. Tumor volume was calculated using the equation:

$$
\mathrm{V}=\frac{1}{2} a \times b^{2}
$$

Where,
$\mathrm{a}=$ tumor long axis in mm
$\mathrm{b}=$ tumor short axis in mm

13. References

(1) Rubner, G., Bensdorf, K., Wellner, A., Bergemann, S., Ott, I., and Gust, R. (2010) [Cyclopentadienyl]metalcarbonyl complexes of acetylsalicylic acid as neo-anticancer agents. Eur. J. Med. Chem. 45, 5157.
(2) Ledford, B. E. and Carreira, E. M. (1995) Total Synthesis of (+)-Trehazolin: Optically Active Spirocycloheptadienes as Useful Precursors for the Synthesis of Amino Cyclopentitols. J. Am. Chem. Soc. 117, 11811.
(3) Peterson, G. I., Church, D. C., Yakelis, N. A., and Boydston, A. J. (2014) 1,2-oxazine linker as a thermal trigger for self-immolative polymers. Polymer 55, 5980.
(4) Honzíček, J., Mukhopadhyay, A., Santos-Silva, T., Romão, M. J., and Romão, C. C. (2009) Ring-Functionalized Molybdenocene Complexes Organometallics 28, 2871.
(5) Reynaud, C., Giorgi, M., Doucet, H., and Santelli, M. (2011) Stereoselective Synthesis of Spiro Tricyclic Polyoxygenated Compounds: Solvolytic Behavior of 1-(Tosyloxymethyl)spiro[2.4]hepta-4,6-diene. Synthesis 2011, 674.
(6) Letourneau, J. E., Wellman, M. A., and Burnell, D. J. (1997) Diels-Alder Reactions of 5-Alkyl-1,3-cyclopentadienes. J. Org. Chem. 62, 7272.
(7) Foster, R. W., Benhamou, L., Porter, M. J., Bučar, D.-K., Hailes, H. C., Tame, C. J., and Sheppard, T. D. (2015) Irreversible endo-Selective Diels-Alder Reactions of Substituted Alkoxyfurans: A General Synthesis of endo-Cantharimides. Chem. - Eur. J. 21, 6107.

