Supporting Information For

Solution-Synthesized High-Mobility Tellurium Nanoflakes for Short-Wave Infrared Photodetectors

Matin Amani, ^{#,1,2}, Chaoliang Tan ^{#,1,2}, George Zhang^{1,2}, Chunsong Zhao^{1,2,3}, James Bullock^{1,2}, Xiaohui Song^{3,4}, Hyungjin Kim^{1,2}, Vivek Raj Shrestha⁵, Yang Gao⁶, Kenneth B. Crozier^{5,6}, Mary Scott^{3,4}, and Ali Javey^{1,2,*}

¹Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720, United States

²Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States

³Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA 94720, United States

⁴The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 ⁵School of Physics, University of Melbourne, VIC 3010, Australia

⁶Department of Electrical and Electronic Engineering, University of Melbourne, Victoria 3010, Australia

Figure S1. (a) Temperature-dependent I_d - V_g characteristics of a 12 nm thick Te nanoflake using a 50 nm thick back gate SiO₂, measured at a low V_d of -10 mV. (b) Temperature-dependent I_d - V_g characteristics of a 14.5 nm thick Te nanoflake using a 50 nm thick back gate SiO₂, measured at a low V_d of -10 mV. (c) Temperature-dependent I_d- V_g characteristics of a 21.6 nm thick Te nanoflake using a 50 nm thick back gate SiO₂, measured at a low V_d of -10 mV.

Figure S2. Tauc plots used to extract the indirect bandgap and direct bandgap of the quasi-2D nanoflakes.

Figure S3. Reflection spectra of Te nanoflakes with different thicknesses on Au substrate. Inset shows a scheme of the optical path used in the measurement.

Figure S4. Polarization-resolved photoresponse of a quasi-2D Te photoconductor on a Si / 50 nm thick SiO_2 substrate. It is important to note that a thicker sample was used here to improve the measurement resolution near the indirect gap.

Figure S5. Reflection spectra taken on Te nanoflakes deposited on an Al_2O_3/Au substrate with varying Al_2O_3 spacer thicknesses.