Supporting Information

Trifunctionalization of Allenes via Cobalt-Catalyzed MHP-Assisted C-H Bond Functionalization and Molecular Oxygen Activation

Shengxian Zhai, ${ }^{\text {a,b }}$ Shuxian Qiu, ${ }^{a}$ Xiaoming Chen, ${ }^{a}$ Cheng Tao, ${ }^{\text {a,b }}$ Yun Li, ${ }^{b}$ Bin Cheng, ${ }^{\text {b }}$
Huifei Wang, ${ }^{\text {a }}$ and Hongbin Zhai* ${ }^{\text {a,b,c }}$

${ }^{a}$ State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
${ }^{b}$ The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
${ }^{c}$ Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China

Table of Contents

1. Materials and methods S3
2. General procedure for the synthesis of hydrazides S4
3. General procedure for the synthesis of allenes S6
4. Characterization data for starting material. S7
5. General procedure for cobalt-catalyzed $\mathrm{C}\left(s p^{2}\right)$-H activationannulation and dioxygen activation approach.................S13
6. Characterization data for products S15
7. Mechanism studies S43
8. Removal of the directing group S45
9. References S46
10. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra S49
11. X-ray Crystallographic Data of Compound 3aa S102

1. Materials and methods

All reactions were carried out under Argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. All the chemicals were purchased commercially, and used without further purification. Dichloromethane and was distilled from calcium hydride. Thin-layer chromatography (TLC) was conducted with 0.25 mm Tsingdao silica gel plates (60F-254) and visualized by exposure to UV light (254 nm) or stained with potassium permanganate. Flash column chromatography was performed on Tsingdao silica gel (200-300 mesh) and neutral/basic aluminum oxide (200-300 mesh). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker spectrometers (at 400 or 500 MHz) and reported relative to deuterated solvent signals or tetramethylsilane internal standard signals. Data for ${ }^{1} \mathrm{H}$ NMR spectra were reported as follows: chemical shift (δ / ppm), multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, br $=$ broad. $)$, coupling constant $(\mathrm{J} / \mathrm{Hz})$ and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker Spectrometers (100 or 125 MHz). Data for ${ }^{13} \mathrm{C}$ NMR spectra were reported in terms of chemical shift. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on Bruker Spectrometers (376 MHz). High-resolution mass spectrometry (HRMS) was conducted on Bruker Apex IV RTMS. X-ray diffraction was performed on Rigaku Saturn 70 CCD diffractometer using graphite monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation at a
temperature of $100 \pm 1 \mathrm{~K}$.

2. General procedure for the synthesis of hydrazides.

Table S1. Scope of hydrazides.

1 a

1b

1c

1 g

$1 i$

$1 \mathbf{j}$

1k

1m

1 n

10

11

1q

$1 r$

1s

$1 t$

14

1v

正
$\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 d}, \mathbf{1 j}, \mathbf{1 k}, \mathbf{1 1}, \mathbf{1 m}, \mathbf{1 n}, \mathbf{1 q}, \mathbf{1 t}, \mathbf{1 s}, \mathbf{1 x}$ were synthesized according to our previous work. ${ }^{1}$

Representative Method A: (1c, 1e, 1i, 1p, 1r, 1u, 1v)

To a stirred mixture of 2-(1-methylhydrazinyl)pyridine (1.0 eq, 5 mmol) and $\mathrm{Et}_{3} \mathrm{~N}(5.0 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.2 to 0.5 M) was added benzoyl
chloride (1.05 eq) dropwise under Ar atmosphere at $0{ }^{\circ} \mathrm{C}$. Kept the reaction mixture stirred at $0{ }^{\circ} \mathrm{C}$ for about 0.5 h , then the resulting mixture was warmed to room temperature and stirred overnight at this temperature. Upon completion of the reaction indicated by TLC, The reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ for three times. The combined organic phases were washed with brine, dried over with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (n-hexanes/EtOAc $=3: 1$ to 1:1) to afford the corresponding product.

Representative Method $\mathbf{B}^{\mathbf{3}}$: $(\mathbf{1 f}, \mathbf{1 g}, \mathbf{1 h}, \mathbf{1 w})$

A mixture of amine (5 mmol), acid (5 mmol), EDCI (5.5 mmol) and HOBT (5.5 mmol) in anhydrous DMF (20 mL) was stirred at room temperature overnight. 100 mL water was added and the mixture was extracted with ethyl acetate three times (20 mL x 3). The combined organic layer was washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on neutral alumina (eluting with n-hexanes/EtOAc $=3: 1$ to $1: 1$) to give the desired product.

Representative Method C: (10)

A solution of 4-acetylbenzoic acid (5 mmol) was refluxed in 5 mL SOCl 2
for 2 h and cooled to room temperature. The excess of SOCl_{2} was removed under vacuum to give corresponding acid choloride. The acid choloride was then re-dissolved in 5 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added dropwise to $\quad \mathrm{a} \quad 20 \mathrm{~mL}$ dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution containing 2-(1-methylhydrazinyl)pyridine (5 mmol) and $\mathrm{Et}_{3} \mathrm{~N}(25 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 6 h at ambient temperature, the resulting mixture was washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on neutral alumina (eluting with n-hexanes/ $\mathrm{EtOAc}=3: 1$ to $1: 1$) to afford the corresponding product.

3. General procedure for the synthesis of allenes

Table S2. Scope of allenes.

2a

2b

2c

2d

2e

2i

$2 f$

$2 g$

2k

21

The terminal 1-aryallenes were prepared according to the general general procedure reported by Clavier and coworkers (route a). ${ }^{4}$

The $\mathbf{2 a},{ }^{4} \mathbf{2 b},{ }^{4} \mathbf{2 c},{ }^{5} \mathbf{2 d},{ }^{4} \mathbf{2 e}{ }^{6}, \mathbf{2 f},{ }^{4} \mathbf{2 g},{ }^{5} \mathbf{2 h},{ }^{5} \mathbf{2 i},{ }^{7} \mathbf{1 j},{ }^{8} \mathbf{1 k}{ }^{5}$ are known compounds.

The allene 21 was synthesized according to the route outlined in b, the literature method reported by Ma and coworkers. ${ }^{9}$

4. Characterization data for starting materials

1 c

4-(tert-Butyl)- N^{\prime}-methyl- N^{\prime}-(pyridin-2-yl)benzohydrazide

Prepared according to method A, purified by column chromatography (n-hexanes/EtOAc $=3: 1$ to $1: 1$) to afford the corresponding product $1 \mathbf{c}$ (92% yield) as a white solid, mp $187.8-188.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 8.62(\mathrm{br}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.50-7.45(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=5.0,6.5 \mathrm{~Hz}$, 1H), $3.43(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.4$, $159.4,155.8,147.6,137.6,129.7,127.1,125.7,114.6,107.2,38.9,35.0$, 31.1. HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 284.1763, found 284.1757.

1 e
N^{\prime}-Methyl- N^{\prime}-(pyridin-2-yl)-[1,1'-biphenyl]-4-carbohydrazide (1e):
Prepared according to the general method A, purified by column chromatography (n-hexanes/EtOAc $=3: 1$ to $1: 1$) to afford the corresponding product $\mathbf{1 e}(92 \%$ yield) as a white solid, mp 176.0-178.9 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) : $\delta 8.83(\mathrm{br}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 2H), $7.53-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.73(\mathrm{dd}, J=5.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3,159.3,147.6,145.0,139.9,137.7,131.2,129.0,128.1,127.8$, 127.4, 127.2, 114.8, 107.2, 39.0. HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}(\mathrm{M}+$ H^{+}): 304.1450, found 304.1436

1f

N^{\prime}-Methyl-4-phenoxy- N^{\prime}-(pyridin-2-yl)benzohydrazide

Prepared according to method B, purified by column chromatography (n-hexanes/EtOAc $=3: 1$ to $1: 1$) to afford the corresponding product $\mathbf{1 f}$ as a white solid (88% yield), mp $153.8-155^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.79(\mathrm{br}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}$,
$J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166,0$, $161.1,159.4,155.8,147.6,137.7,130.0,129.3,126.9,124.4,119.9$, 117.8, 114.7 107.2, 38.9. HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 320.1399, found 320.1391 .

N^{\prime}-Methyl-4-(methylthio)- N^{\prime}-(pyridin-2-yl)benzohydrazide
(1g):
Prepared according to method B, purified by column chromatography (n-hexanes/EtOAc $=3: 1$ to $1: 1$) to afford the corresponding product 1 g as a white solid (83% yield), mp $141.0-143.2{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 9.29(\mathrm{br}, 1 \mathrm{H}), 8.17-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.47-7.43 (m, 1H), $7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.67-6.70(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}$, 3H), $2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 166.2,159.3,147.4$, $144.3,137.8,128.3,127.7,125.3,114.6,107.2,38.8,14.9$. HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{OS}\left(\mathrm{M}+\mathrm{H}^{+}\right):$274.1014, found 274.1009.

4-(Dimethylamino)- N^{\prime}-methyl- N^{\prime}-(pyridin-2-yl)benzohydrazide (1h):
Prepared according to the general method B, purified by column chromatography (n-hexanes/EtOAc $=3: 1$ to $1: 1$) to afford the
corresponding product $\mathbf{1 h}$ as a white solid (66% yield), mp 184.1-186.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.49(\mathrm{br}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.66-6.62 (m, 3H), $3.39(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 166.6,159.8,152.9,147.5,137.5,128.9,119.0,114.2,111.1$, 107.2, 40.1, 38.7. HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right):$271.1559, found 271.1553 .

$1 i$
N^{\prime}-Methyl- N^{\prime}-(pyridin-2-yl)-4-(trifluoromethoxy)benzohydrazide (1i):
Prepared according to method A, purified by column chromatography (n-hexanes/EtOAc $=3: 1$ to $1: 1$) to afford the corresponding product $\mathbf{1 i}$ as a white solid (90% yield), mp $117.6-119.6{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 9.58(\mathrm{br}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.52-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.74-6.70(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~s}$, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 165.3,159.1,151.8,147.4,137.9$, $130.9,129.3,120.6,120.3(\mathrm{q}, J=256.6 \mathrm{~Hz}), 114.9,107.2,39.0 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-57.7. HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+$ H^{+}): 312.0960, found 312.0946.

4-Acetyl- N^{\prime}-methyl- N^{\prime}-(pyridin-2-yl)benzohydrazide (10): Prepared

 according to the general method C , purified by column chromatography (n-hexanes/EtOAc $=3: 1$ to $1: 1$) to afford the corresponding product 10 as a yellow solid (52\% yield over 2 steps), mp $141.4-142.8{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.51(\mathrm{br}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~m}$, 4H), $7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.70(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}$, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 197.4,165.8,159.1,147.5,139.5$, 137.8, 136.4, 128.5, 127.7, 114.9, 107.2, 38.9, 26.7. HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right): 270.1243$, found 270.1236.

Methyl 4-(2-methyl-2-(pyridin-2-yl)hydrazine-1-carbonyl)benzoate
(1p): Prepared according to the general method A, purified by column chromatography (n-hexanes/EtOAc $=3: 1$ to $1: 1$) to afford the corresponding product $\mathbf{1 h}$ as a white solid (91% yield), mp 137.0-138.6 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.51(\mathrm{br}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H})$, 6.69-6.66 (m, 2H), 3.91 (s, 3H), 3.31 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 166.2,165.9,159.1,147.5,137.8,136.3,133.1,129.8,127.4$, 114.8, 107.2, 52.4, 38.7. HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 286.1192, found 286.1186 .

1r
3-Methoxy- N^{\prime}-methyl- N^{\prime}-(pyridin-2-yl)benzohydrazide (1r): Prepared according to the general method A , purified by column chromatography (n-hexanes/EtOAc $=3: 1$ to $1: 1$) to afford the corresponding product 1 h as a white solid (81% yield), mp 131.0-132.7 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 8.77$ (br, 1H), $8.20(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H})$, $7.42-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=5.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.41$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.4,160.0,159.3,147.6,137.7$, 134.0, 129.7, 119.0, 118.5, 114.7, 112.6, 107.2, 55.4, 38.8. HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right):$258.1243, found 258.1237.

2-Methoxy- N^{\prime}-methyl- N^{\prime}-(pyridin-2-yl)benzohydrazide (1u): Prepared according to the general method A, purified by column chromatography (n-hexanes/EtOAc $=2: 1$ to $1: 1$) to afford the corresponding product $1 \mathbf{u}$ as a yellow solid (64% yield) , mp $112.4-114.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 9.64(\mathrm{br}, 1 \mathrm{H}), 8.21-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}$, $J=5.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta 164.9,159.5,157.5,147.6,137.4,133.5,132.6,121.5,120.1$, 118.5, 114.2, 111.3, 107.1, 56.0, 38.4. HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right): 258.1243$, found 258.1241.

$N^{\prime}, \mathbf{3 , 5 - T r i m e t h y l}-N^{\prime}$-(pyridin-2-yl)benzohydrazide (1v): Prepared according to the general method A, purified by column chromatography (n-hexanes/EtOAc $=3: 1$ to $1: 1$) to afford the corresponding product $1 \mathbf{v}$ as a white solid (95% yield), mp $164.8-166.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 8.44(\mathrm{br}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.17$ $(\mathrm{s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=5.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}$, $3 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.8,159.3,147.5$, 138.4, 137.6, 133.7, 132.4, 124.9, 114.6, 107.1, 38.7, 21.1. HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right): 256.1450$, found 256.1445 .

3,4,5-Trimethoxy- N^{\prime}-methyl- N^{\prime}-(pyridin-2-yl)benzohydrazide (1w):
Prepared according to the general method B, purified by column chromatography (n-hexanes/EtOAc $=2: 1$ to $1: 1$) to afford the corresponding product $\mathbf{1 w}$ as a white solid (67% yield), mp 159.0-160.4 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.15(\mathrm{br}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=4.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 2 \mathrm{H}), 6.74-6.70(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, 3.75 (s, 6H), 3.33 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.0,159.4$, $153.0,147.1,141.2,138.0,127.4,114.6,107.2,104.8,60.8,56.2,39.0$. HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right): 318.1454$, found 318.1435.

5. General procedure for cobalt-catalyzed $\mathbf{C}\left(s p^{2}\right)$-H activation annulation and dioxygen activation approach

To a $25-\mathrm{mL}$ schlenk tube equipped with magnetic stirring bar were added
 $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{mg}, 0.04 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{CO}_{3}(110.3 \mathrm{mg}, 0.4 \mathrm{mmol})$. The container was sealed, pumped into vacuum, and flushed with O_{2} using a blloon for three times. To this tube were sequentially added propa-1,2-dien-1-ylbenzene (2a, $93 \mathrm{mg}, 0.8 \mathrm{mmol})$ and the solvent $(\mathrm{EtOH}$, 2 mL). The resulting mixture was stirred for 16 h at $60^{\circ} \mathrm{C}$, before being cooled down to rt , And the mixture was filtered through a plug of celite, followed by washing with 70 mL of ethyl acetate and the combined organic phases were concentrated under reduced pressure. Then the residue was dissolved in 5 mL DCM and it was followed by addition of DMP ($84.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The resulting reaction mixture was stirred at room temperature for about 1 hour (traced by TLC). The reaction mixture was quenched by addition of saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and NaHCO_{3} solution and stirred for about 20 minutes, and then diluted by 20 mL DCM. The phases were separated, the aqueous phase was extracted with DCM (2 x

25 mL), and the combined organic phases were washed with brine (2×30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting sticky oil was purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=5: 1$ to $3: 1$) to give 3aa ($57 \mathrm{mg}, 80 \%$ yield) as a colorless sticky oil.

6. Characterization data for products

3-Benzoyl-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H)-one:

Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=5: 1$ to 3:1) to afford the corresponding product 3aa ($57 \mathrm{mg}, 80 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{dt}, J=1.5 \mathrm{~Hz}, 7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.45(\mathrm{~m}, 3 \mathrm{H}), 6.68$ $(\mathrm{dd}, J=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}$, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): δ 189.0, 161.1, 158.3, 147.7, 142.9, $137.5,135.9,135.4,133.8,133.2,130.1,128.5,128.3,128.0,127.6$, 127.0, 115.7, 107.5, 107.0, 38.8. HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+$ $\left.\mathrm{H}^{+}\right): 356.1399$, found 356.1394 .

3-Benzoyl-6-methyl-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H)-

 one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=5: 1$ to 3:1) to afford the corresponding product 3ba ($62 \mathrm{mg}, 84 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.32(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10$ $(\mathrm{dd}, J=1.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{dt}, J=1.5 \mathrm{~Hz}$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 5 \mathrm{H}), 6.68(\mathrm{dd}, J=5.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}$, $1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 189.1,161.1,158.4,147.7,144.0,142.9,137.5,136.0$, $135.5,133.8,130.1,129.8,128.5,128.3,126.9,125.4,115.6,107.5$, 107.0, 38.9, 21.8. HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 370.1556 , found 370.1549.

3-Benzoyl-6-(tert-butyl)-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(
2H)-one: Prepared according to the general procedure, purified by
column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=$ 5:1 to $3: 1$) to afford the corresponding product $\mathbf{3 c a}$ ($70 \mathrm{mg}, 85 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.10$ (dd, $J=1.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{dd}, J=1.5,8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.56-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.46(\mathrm{~m}, 3 \mathrm{H}), 6.67(\mathrm{dd}, J=5.0,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): δ 189.1, 161.0, 158.4, 157.1, 147.6, 142.7, $137.5,136.1,135.3,133.8,130.1,128.5,128.2,126.2,125.3,123.2$, $115.6,108.2,107.0,38.9,35.3,31.1$. HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right): 412.2025$, found 412.2020.

3-Benzoyl-6-methoxy-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H)-one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=4: 1$ to 2:1) to afford the corresponding product 3 da ($68 \mathrm{mg}, 88 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.32(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10$ $(\mathrm{dd}, J=1.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{dd}, J=2.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.68(\mathrm{dd}, J=5.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.91 (s, 3H), $3.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 189.0,163.5$,
$160.8,158.4,147.6,143.4,137.5,135.9,133.8,130.4,130.1,128.5$, 121.2, 117.2, 115.6, 108.2, 107.1, 107.0, 55.6, 38.9. HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right): 386.1505$, found 386.1499 .

3-Benzoyl-2-(methyl(pyridin-2-yl)amino)-6-phenylisoquinolin-1(2H)-

one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=5: 1$ to 3:1) to afford the corresponding product 3 ea ($71 \mathrm{mg}, 82 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.48(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11$ (dd, $J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=1.5,9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.47(\mathrm{~m}, 4 \mathrm{H}), 6.69-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.53$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 189.0$, $161.1,158.3,147.7,146.1,143.3,139.6,137.6,135.9,135.8,133.9$, $130.1,129.1,129.0,128.5,127.4,127.2,126.4,125.2,115.7,107.6$, 107.0, 38.9. HRMS calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 432.1712, found 432.1705.

3-Benzoyl-2-(methyl(pyridin-2-yl)amino)-6-phenoxyisoquinolin-1(2H
)-one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes $/ E t O A c=5: 1$ to 3:1) to afford the corresponding product $\mathbf{3 f a}(72 \mathrm{mg}, 81 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.38(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11$ (dd, $J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.81$ (d, $J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.79$ (s, 1H), 7.67 (dd, $J=1.5,9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.40-7.46 (m, 5H), 7.20-7.24 (m, 2H), 7.11 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J$ $=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=5.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.49(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.9,162.2$, 160.7, 158.3, 155.3, 147.7, 143.7, 137.5, 137.4, 135.8, 133.9, 130.8, 130.1, 128.5, 124.9, 122.5, 120.4, 118.9, 115.7, 113.0, 107.0, 106.9, 38.9. HRMS calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 448.1661, found 448.1656.

3-Benzoyl-2-(methyl(pyridin-2-yl)amino)-6-(methylthio)isoquinolin-1
(2H)-one: Prepared according to the general procedure, purified by
column chromatography on neutral aluminum oxide (n-hexanes $/ \mathrm{EtOAc}=$ $4: 1$ to $2: 1$) to afford the corresponding product 3ga ($64 \mathrm{mg}, 80 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.27(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.41-7.45 (m, 3H), $7.37(\mathrm{dd}, J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.68(\mathrm{dd}, J=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41$ ($\mathrm{s}, 3 \mathrm{H}$), $2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 188.9,160.9,158.3$, $147.6,146.4,143.7,137.5,135.8,133.9,130.1,128.5,128.4,125.6$, 124.2, 121.7, 115.7, 108.2, 107.0, 106.7, 38.9, 14.8. HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right): 402.1276$, found 402.1270.

3-Benzoyl-6-(dimethylamino)-2-(methyl(pyridin-2-yl)amino)isoquinol in-1(2H)-one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=$ $4: 1$ to $2: 1$) to afford the corresponding product $\mathbf{3 h a}(59 \mathrm{mg}, 74 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.23(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11$ (dd, $J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39-7.47(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{dd}, J=2.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=5.0$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 1H), $3.39(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 189.3$,
$161.0,158.8,153.4,147.6,142.9,137.4,137.1,136.2,133.6,130.0$, 129.8, 128.4, 116.7, 115.3, 113.6, 107.9, 107.1, 106.1, 40.1, 38.9. HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 399.1821 , found 399.1817.

3-Benzoyl-2-(methyl(pyridin-2-yl)amino)-6-(trifluoromethoxy)isoqui

nolin-1(2H)-one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=4: 1$ to 2:1) to afford the corresponding product 3ia ($67 \mathrm{mg}, 76 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.46(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 1 H), $3.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.6,160.3,158.0$, 152.8, 147.7, 144.6, 137.6, 137.3, 135.6, 134.0, 131.1, 130.1, 128.5, 125.8, $120.4(\mathrm{q}, ~ J=257.6 \mathrm{~Hz}), 120.3,117.2,115.9,106.9,106.0$, 38.8. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}$): δ-57.5. HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right): 440.1222$, found 440.1215 .

3-Benzoyl-6-fluoro-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H)-0 ne: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes $/ E t O A c=4: 1$ to 2:1) to afford the corresponding product $\mathbf{3 j a}(60 \mathrm{mg}, 80 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.42(\mathrm{dd}, J=5.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.10(\mathrm{dd}, J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43-7.47$ (m, 3H), 7.22-7.28 (m, 2H), 6.69 (dd, $J=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.57(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 188.7,165.8(\mathrm{~d}, J=241.9 \mathrm{~Hz}), 164.7,160.5,158.1,147.7$, 144.3, $137.8(\mathrm{~d}, ~ J=10.3 \mathrm{~Hz}), 137.6,135.6,134.0,131.7(\mathrm{~d}, J=9.9 \mathrm{~Hz})$, 130.1, 128.5, 124.2, 116.5 (d, $J=23.3 \mathrm{~Hz}$), $115.9,112.0$ (d, $J=22.1 \mathrm{~Hz}$), 107.0, 106.2, 38.9. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-106.6. HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{FN}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}+)$: 374.1305 , found 374.1299.

3-Benzoyl-6-chloro-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H)-o
ne: Prepared according to the general procedure, purified by column
chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=4: 1$ to 2:1) to afford the corresponding product 3ka ($61 \mathrm{mg}, 78 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.09$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{dd}$, $J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 3 \mathrm{H}), 6.69(\mathrm{dd}, J=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.64(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 188.7,160.6,158.1,147.7,144.3,139.8,137.6,136.8,135.6$, $134.0,130.2,130.1,128.5,128.4,126.2,125.9,115.9,107.0,105.9,38.9$. HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClN}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right):$390.1009, found 390.1004.

3-Benzoyl-6-bromo-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H)one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=4: 1$ to 2:1) to afford the corresponding product 3la ($67 \mathrm{mg}, 77 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08$ (dd, $J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64(\mathrm{dd}, J=2.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.46(\mathrm{~m}$, $3 \mathrm{H}), 6.68(\mathrm{dd}, J=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): δ 188.6, 160.8, 158.0, 147.7,
144.3, 137.6, 136.9, 135.6, 134.0, 131.2, 130.2, 130.1, 129.4, 128.5, 128.4, 126.2, 115.9, 106.9, 105.8, 38.9. HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrN}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right): 434.0504$, found 434.0499.

3-Benzoyl-6-iodo-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H)-on e: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=4: 1$ to 2:1) to afford the corresponding product $\mathbf{3 m a}$ ($75 \mathrm{mg}, 78 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.95-7.99$ (m, 3H), 7.84 (dd, $J=1.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.46$ $(\mathrm{m}, 3 \mathrm{H}), 6.68(\mathrm{dd}, J=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51-6.53(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.6,161.0,158.0,147.7,144.1,137.6$, 136.9, 136.8, 135.7, 135.6, 134.0, 130.2, 129.7, 128.5, 126.7, 115.9, 106.9, 105.7, 101.1, 38.9. HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{IN}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 482.0365, found 482.0360.

3-Benzoyl-2-(methyl(pyridin-2-yl)amino)-6-(trifluoromethyl)isoquino
lin-1(2H)-one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=$ $4: 1$ to $2: 1$) to afford the corresponding product $3 \mathrm{na}(59 \mathrm{mg}, 70 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08$ (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=$ $1.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 3 \mathrm{H}), 6.70(\mathrm{dd}, J=$ 5.0, 7.0 Hz, 1H), $6.68(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 188.6,160.5,157.9,147.7,144.6,137.7$, $135.6,134.9(\mathrm{q}, J=32.8 \mathrm{~Hz}), 134.1,130.2,129.8,129.5,128.9(\mathrm{q}, J=$ $60.4 \mathrm{~Hz}), 128.5,124.6,124.2(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.9(\mathrm{q}, J=2.9 \mathrm{~Hz}), 122.4$, 116.0, 106.9, 106.4, 38.9. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-63.1. HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 424.1273, found 424.1271.

6-Acetyl-3-benzoyl-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H)-o

ne: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=4: 1$ to $2: 1$) to afford the corresponding product $30 a(44 \mathrm{mg}, 55 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ $(\mathrm{d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 3 \mathrm{H}), 6.69-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}$,

1H), $3.44(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.2$, 188.7, 160.7, 158.0, 147.7, 144.0, 140.6, 137.6, 135.7, 135.6, 134.0, $130.3,130.2,129.0,128.5,127.3,126.6,115.9,107.2,106.9,38.9,26.9$. HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right): 398.1505$, found 398.1502.

Methyl-3-benzoyl-2-(methyl(pyridin-2-yl)amino)-1-oxo-1,2-dihydrois oquinoline-6-carboxylate: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=4: 1$ to 2:1) to afford the corresponding product 3pa ($52 \mathrm{mg}, 63 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.47$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 8.09 (dd, $J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 3 \mathrm{H}), 6.69-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ $(\mathrm{s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.7,166.0,160.7$, 158.0, 147.7, 143.8, 137.6, 135.7, 135.3, 134.3, 134.0, 130.3, 130.2, 128.8, 128.5, 127.9, 115.9, 107.1, 107.0, 52.6, 38.8. HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right): 414.1454$, found 414.1448 .

3-Benzoyl-7-methyl-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H)one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=4: 1$ to 2:1) to afford the corresponding product $\mathbf{3 q a}(62 \mathrm{mg}, 84 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=1.0$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.58$ (m, 2H), 7.50 (d, $J=8.0$ Hz, 1H), 7.41-7.45 (m, 3H), 6.66 (dd, $J=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ (d, $J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}$, 3 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 189.1, 161.1, 158.4, 147.6, 141.9, 138.6, 137.5, 136.1, 134.6, 133.7, 132.9, 130.1, 128.4, 128.0, 127.6, 127.0, 115.5, 107.9, 107.0, 38.8, 21.5. HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right): 370.1556$, found 370.1551 .

3-Benzoyl-7-methoxy-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H
)-one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes $/ E t O A c=4: 1$ to
$2: 1)$ to afford the corresponding product 3 ra ($63 \mathrm{mg}, 82 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10(\mathrm{dd}, J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{dd}, J=2.5,8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.66-6.69(m, 2H), $6.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 189.0,161.0,159.9,158.4,147.7,140.5$, $137.5,136.3,133.6,130.2,130.1,129.2,129.0,128.8,128.4,123.6$, 115.5, 108.5, 106.9, 55.7, 38.8. HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+$ H^{+}): 386.1505, found 386.1499 .

3-Benzoyl-7-chloro-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H)-0
ne: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=4: 1$ to 2:1) to afford the corresponding product $\mathbf{3 s a}(64 \mathrm{mg}, 82 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.39(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09$ (dd, $J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{dd}, J=2.0,8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.47(\mathrm{~m}$, $3 \mathrm{H}), 6.69(\mathrm{dd}, J=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 188.8,160.2,158.0,147.7$, $143.3,137.6,135.8,134.2,134.0,133.8,133.6,130.1,128.8,128.5$,
127.9, 115.9, 106.9, 106.6, 38.8. HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClN}_{3} \mathrm{O}_{2}$ (M $+\mathrm{H}^{+}$): 390.1009, found 390.1005.

3-Benzoyl-8-methyl-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H)one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes $/ \mathrm{EtOAc}=4: 1$ to 2:1) to afford the corresponding product 3ta ($39 \mathrm{mg}, 53 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.11(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.95 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=5.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.9$, 161.6, 158.4, 147.7, 142.8, 142.7, 137.5, 137.0, 136.0, 133.7, 132.4, 131.2, 130.1, 128.4, 126.0, 125.5, 115.4, 108.1, 106.9, 38.8, 23.5. HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right): 370.1556$, found 370.1550.

3-Benzoyl-8-methoxy-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H)-one: Prepared according to the general procedure, purified by column
chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=4: 1$ to 2:1) to afford the corresponding product 3 ua ($40 \mathrm{mg}, 52 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08(\mathrm{dd}, J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.65(\mathrm{dd}, J=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ ($\mathrm{s}, 3 \mathrm{H}$), $3.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 188.9,161.3,159.4$, $158.5,147.6,143.6,138.5,137.5,135.9,134.0,133.7,130.1,128.4$, $119.3,116.8,115.5,109.5,107.0,106.8,56.2,38.9$. HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right): 386.1505$, found 386.1503 .

3va
3-Benzoyl-5,7-dimethyl-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2
$\boldsymbol{H})$-one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=4: 1$ to 2:1) to afford the corresponding product 3va ($64 \mathrm{mg}, 84 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.11(\mathrm{~s}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.46(\mathrm{~m}, 4 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J$ $=1.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H})$, 2.46 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): δ 189.3, 161.3, 158.4, 147.6,
$141.5,138.2,137.5,136.2,135.7,134.5,133.7,131.8,130.0,128.4$, 127.9, 126.0, 115.6, 107.0, 104.4, 38.8, 21.4, 18.8. HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right): 384.1712$, found 384.1707 .

3-Benzoyl-5,6,7-trimethoxy-2-(methyl(pyridin-2-yl)amino)isoquinolin

 $\mathbf{- 1 (2 H)}$-one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide $(n$-hexanes $/$ EtOAc $=$ 4:1 to $2: 1$) to afford the corresponding product 3wa ($76 \mathrm{mg}, 85 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10(\mathrm{dd}, J=1.0,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.41-7.45 (m, 3H), $6.92(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 1 H), $3.99(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 189.1,160.5,158.4,154.4,148.5,147.6,146.4,140.6$, $137.5,136.2,133.7,130.1,128.4,124.8,123.8,115.5,107.0,104.6$, 102.9, 61.6, 61.0, 56.2, 38.8. HRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 446.1716, found 446.1712 .

5-Benzoyl-6-(methyl(pyridin-2-yl)amino)furo[2,3-c]pyridin-7(6H)-on e: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes $/ E t O A c=4: 1$ to 2:1) to afford the corresponding product $\mathbf{3 x a}(20 \mathrm{mg}, 29 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09(\mathrm{dd}, J=1.5,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.89 (dd, $J=1.0,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dt}, J=1.0$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.44(\mathrm{~m}, 3 \mathrm{H}), 6.75(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=0.5$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.7,158.1,152.4,149.4,147.6,144.9,144.2$, 137.6, 135.9, 133.9, 131.8, 130.4, 128.5, 115.9, 107.9, 107.0, 100.5, 38.1. HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 346.1192 , found 346.1186 .

2-(Methyl(pyridin-2-yl)amino)-3-(4-methylbenzoyl)isoquinolin-1(2H) -one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=5: 1$ to

3:1) to afford the corresponding product 3ab ($63 \mathrm{mg}, 85 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10$ (dd, $J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{dt}, J=2.0,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dt}, J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dt}$, $J=1.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{dd}, J=5.0,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.5,161.1,158.3,147.6,145.1,143.0$, $137.5,135.4,133.3,133.1,130.3,129.2,128.3,127.9,127.5,126.9$, 115.6, 107.2, 107.0, 38.8, 21.7. HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+$ H^{+}): 370.1556, found 370.1552.

3ac
2-(Methyl(pyridin-2-yl)amino)-3-(3-methylbenzoyl)isoquinolin-1(2H)
-one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes $/ \mathrm{EtOAc}=5: 1$ to 3:1) to afford the corresponding product 3ac ($65 \mathrm{mg}, 88 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.43$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.11 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dt}, J=1.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.50$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 188.5,161.1,158.3,147.6,145.1,143.0,137.5,135.4,133.3$, 133.1, 130.3, 129.2, 128.3, 127.9, 127.5, 126.9, 115.6, 107.2, 107.0, 38.8, 21.7. HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 370.1556 , found 370.1550 .

2-(Methyl(pyridin-2-yl)amino)-3-(2-methylbenzoyl)isoquinolin-1 (2H) -one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes $/ \mathrm{EtOAc}=5: 1$ to 3:1) to afford the corresponding product $\mathbf{3 a d}(60 \mathrm{mg}, 81 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.41$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.12 (dd, $J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dt}, J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 2 H), 7.57 (dt, $J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41 (dt, $J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dt}$, $J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25$ $(\mathrm{s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 191.1, 161.2, 158.2, 147.7, 144.1, 139.3, 137.6, 136.3, 135.4, 133.2, 131.9, 131.8, 130.8, 128.4, 128.2, 127.8, 127.3, 125.2, 115.6, 108.2, 106.8, 38.6, 20.3. HRMS
calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right): 370.1556$, found 370.1552.

3-(4-(tert-Butyl)benzoyl)-2-(methyl(pyridin-2-yl)amino)isoquinolin-1($\mathbf{2 H}$)-one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes $/$ EtOAc $=$ 5:1 to 3:1) to afford the corresponding product 3ae ($65 \mathrm{mg}, 79 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.11$ (dd, $J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{dt}, J=1.0,8.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.59 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (dt, $J=1.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42-7.46 (m, 3H), 6.68 (dd, $J=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 188.6, 161.2, 158.4, 158.0, 147.6, 143.0, 137.5, 135.5, 133.3, 133.2, 130.2, 128.4, 127.9, 127.6, 127.0, 125.5, 115.6, 107.4, 107.1, 38.8, 35.2, 31.0. HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 412.2025 , found 412.2017.

3-(4-Methoxybenzoyl)-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2
$\boldsymbol{H})$-one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=5: 1$ to $3: 1$) to afford the corresponding product 3af ($55 \mathrm{mg}, 71 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10$ $(\mathrm{dd}, J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=1.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{dt}, J=1.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dt}, J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ $(\mathrm{dt}, J=2.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{dd}, J=5.0,7.0$ Hz, 1H), $6.60(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 187.5,164.4,161.1,158.4,147.6,143.0$, $137.5,135.5,133.1,132.7,128.6,128.3,127.8,127.4,126.9,115.6$, 113.8, 107.1, 106.8, 55.5, 38.8. HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+$ $\left.\mathrm{H}^{+}\right): 386.1505$, found 386.1501.

3-(2-Naphthoyl)-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H)-one:

Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=5: 1$ to 3:1) to afford the corresponding product $\mathbf{3 a g}$ ($69 \mathrm{mg}, 85 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.53$ ($\mathrm{s}, 1 \mathrm{H}$), 8.46 (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, J=1.5,8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.86-7.92 (m, 3H), 7.75 (dt, $J=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.54$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dt}, J=2.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (s, 1H), 6.63 (dd, J $=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 189.0,161.2,158.2,147.6,143.1,137.5,135.9,135.5$, 133.2, 132.1, 129.6, 129.0, 128.6, 128.4, 128.0, 127.8, 127.7, 127.0, 124.6, 115.7, 107.4, 107.0, 38.9. HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}$ (M + $\left.\mathrm{H}^{+}\right): 406.1556$, found 406.1548 .

3-(3-Chlorobenzoyl)-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H)one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=5: 1$ to 3:1) to afford the corresponding product 3ah ($63 \mathrm{mg}, 81 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.43$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.09
(dd, $J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.75(\mathrm{dt}, J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dt}, J=$ $1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dt}, J=1.5,8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H})$, $6.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $187.9,161.1,158.0,147.7,142.4,137.6,137.5,135.2,134.7,133.7$, $133.3,130.1,129.8,128.4,128.2,128.1,127.7,127.1,115.8,107.7$, 106.9, 38.9. HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClN}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right): 390.1009$, found 390.1003 .

3ai
3-(2-Chlorobenzoyl)-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H)one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=5: 1$ to 3:1) to afford the corresponding product 3ai ($67 \mathrm{mg}, 86 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10$ $(\mathrm{dd}, J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dt}, J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 2H), $7.59(\mathrm{dt}, J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.34-7.42 (m, 3H), $7.24(\mathrm{dt}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J$ $=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(125$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 188.1,161.2,158.0,147.7,143.2,137.5,136.9,135.1$, 133.3, 132.3, 132.2, 130.8, 130.6, 128.7, 128.4, 128.2, 127.7, 126.5, 115.5, 110.6, 106.8, 38.6. HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClN}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 390.1009, found 390.1007 .

3-(3-Bromobenzoyl)-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H)-
one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes $/ E t O A c=5: 1$ to 3:1) to afford the corresponding product 3aj ($59 \mathrm{mg}, 68 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 8.10-8.11 (m, 2H), 7.89 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ (dt, $J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.67 (dd, $J=0.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46$ (dt, $J=1.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ (dd, $J=$ $5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.8,161.1,158.0,147.7,142.4,137.6$, $136.6,135.2,133.2,133.0,130.0,128.5,128.4,128.2,127.7,127.1$, 122.7, 115.8, 107.6, 106.9, 38.9. HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrN}_{3} \mathrm{O}_{2}$ (M $\left.+\mathrm{H}^{+}\right): 434.0504$, found 434.0500 .

3-(4-Bromobenzoyl)-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H)one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=5: 1$ to 3:1) to afford the corresponding product 3ak ($63 \mathrm{mg}, 73 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.42$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.08 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{dt}, J=1.0,8.0 \mathrm{~Hz}$, 1H), 7.56-7.61 (m, 4H), 7.46 (dt, $J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.69 (dd, $J=5.0$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 188.1, 161.1, 158.1, 147.7, 142.5, 137.7, 135.2, 134.6, 133.3, 131.8, 131.6, 129.3, 128.4, 128.2, 127.7, 127.1, 115.8, 107.6, 106.9, 38.9. HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrN}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 434.0504, found 434.0500.

2-(Methyl(pyridin-2-yl)amino)-3-(3-phenylpropanoyl)isoquinolin-1(2
\boldsymbol{H})-one: Prepared according to the general procedure, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=5: 1$ to 3:1) to afford the corresponding product 3al ($43 \mathrm{mg}, 56 \%$ yield) as a sticky oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20$ (dd, $J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.78(\mathrm{dd}, J=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ $(\mathrm{s}, 3 \mathrm{H})$, 3.03-3.16 (m, 3H), 2.86-2.97 (m, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 196.6,160.8,158.4,148.0,144.0,137.8,135.4,133.2,128.4$, $128.3,128.2,128.1,127.5,127.2,126.1,115.8,107.0,106.4,43.1,38.8$, 29.9. HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 384.1712, found 384.1709.

4aa

3-(Hydroxy(phenyl)methyl)-2-(methyl(pyridin-2-yl)amino)isoquinoli

$\mathbf{n - 1 (2 H)}$-one: Prepared according to the general procedure without further oxidant, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=1.5: 1$ to $1: 1$) to afford the corresponding product 4aa as a foamy solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.26(\mathrm{~d}, J=$
$8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=1.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dt}, J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.50-7.55 (m, 2H), $7.41(\mathrm{dt}, J=0.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 5 \mathrm{H}), 6.78$ $(\mathrm{dd}, J=4.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}$, 1H), $4.31(\mathrm{br}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 161.4$, 159.1, 147.9, 146.9, 140.5, 138.3, 136.4, 132.8, 128.6, 128.2, 127.8, 127.5, 126.6, 126.5, 126.0, 116.2, 107.3, 104.4, 71.6, 38.0. HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right): 358.1556$, found 358.1551 .

3-(Hydroxy(phenyl)methyl)-2-(methyl(pyridin-2-yl)amino)isoquinoli

$\mathbf{n - 1 (2 H) - o n e : ~ P r e p a r e d ~ a c c o r d i n g ~ t o ~ t h e ~ g e n e r a l ~ p r o c e d u r e ~ w i t h o u t ~}$ further oxidant, purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=1.5: 1$ to $1: 1.5$) to afford the corresponding product 4aa' as a foamy solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.26(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dd}, J=1.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dt}, J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dt}, J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 3 \mathrm{H})$, $7.14-7.23(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=5.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{br}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 161.6,159.1,147.4,145.8,141.3,137.9,136.4,133.0$, $128.2,127.9,127.4,126.9,126.5,126.4,126.3,115.9,107.5,106.3,73.6$,
37.6. HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 358.1556 , found 358.1548.

7. Mechanistic studies

(a) To a $25-\mathrm{mL}$ schlenk tube equipped with magnetic stirring bar were added the 3-benzyl-2-(methyl(pyridin-2-yl)amino)isoquinolin-1(2H) -one ($7,68.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{mg}, 0.04 \mathrm{mmol})$, $\mathrm{Ag}_{2} \mathrm{CO}_{3}(110.3 \mathrm{mg}, 0.4 \mathrm{mmol})$. The container was sealed, pumped into vacuum, and flushed with O_{2} using a blloon for three times. To this tube were sequentially added propa-1,2-dien-1-ylbenzene ($\mathbf{2 a}, 93 \mathrm{mg}, 0.8$ $\mathrm{mmol})$ and the solvent $(\mathrm{EtOH}, 2 \mathrm{~mL})$. The resulting mixture was stirred for 16 h at $60^{\circ} \mathrm{C}$, before being cooled down to rt, And the mixture was filtered through a plug of celite, followed by washing with 70 mL of ethyl acetate and the combined organic phases were concentrated under reduced pressure. The resulting sticky oil was purified by column chromatography on neutral aluminum oxide (n-hexanes $/$ EtOAc $=5: 1$ to 3:1) to give 7 ($67 \mathrm{mg}, 98 \%$ yield) as a colorless foam solid. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.32(\mathrm{dd}, J=0.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.24(\mathrm{~m}, 3 \mathrm{H})$, 6.73-6.75 (m, 1H), $6.40(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H})$, 3.36(s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.6,158.7,148.0,144.9$, 137.7, 137.0, 136.6, 132.9, 129.1, 128.5, 128.1, 126.8, 126.3, 125.9, 125.8, 115.2, 106.4, 106.2, 38.8, 37.8. HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}$
$\left(\mathrm{M}+\mathrm{H}^{+}\right): 342.1606$, found 342.1600.
(c) To a $25-\mathrm{mL}$ schlenk tube equipped with magnetic stirring bar were added the N^{\prime}-methyl- N^{\prime}-(pyridin-2-yl)benzohydrazide (1a, $45.4 \mathrm{mg}, 0.2$ $\mathrm{mmol}), \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{mg}, 0.04 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{CO}_{3}(110.3 \mathrm{mg}, 0.4$ mmol). The container was sealed, pumped into vacuum, and flushed with O_{2} using a blloon for three times. To this tube were sequentially added propa-1,2-dien-1-ylbenzene ($\mathbf{2 a}, 93 \mathrm{mg}, 0.8 \mathrm{mmol})$ and the solvent $\left(\mathrm{EtOH} / \mathrm{H}_{2}{ }^{18} \mathrm{O}, 3: 1,2 \mathrm{~mL}\right)$. The resulting mixture was stirred for 16 h at 60 ${ }^{\circ} \mathrm{C}$, before being cooled down to rt , And the mixture was filtered through a plug of celite, followed by washing with 70 mL of ethyl acetate. The organic phase was detected by HRMS, and found no ${ }^{18} \mathrm{O}$ labeled 3 aa or 4aa (4aa') formed.

Figure S1. HRMS date of ${ }^{18} \mathrm{O}$ labeled experiment.
(d) To a $25-\mathrm{mL}$ schlenk tube equipped with magnetic stirring bar were added the N^{\prime}-methyl- N^{\prime}-(pyridin-2-yl)benzohydrazide (1a, $45.4 \mathrm{mg}, 0.2$
$\mathrm{mmol}), \mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{mg}, 0.04 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{CO}_{3}(110.3 \mathrm{mg}, 0.4$ $\mathrm{mmol})$. The container was sealed, pumped into vacuum, and flushed with O_{2} using a blloon for three times. To this tube were sequentially added propa-1,2-dien-1-ylbenzene ($\mathbf{2 a}, 93 \mathrm{mg}, 0.8 \mathrm{mmol}$) and the solvent (EtOH, 2 mL). The resulting mixture was stirred for 1 h at $60^{\circ} \mathrm{C}$, before being cooled down to rt, And the mixture was filtered through a plug of celite, followed by washing with 70 mL of ethyl acetate. The organic phase was detected by HRMS, and found the peroxy intermediate $\mathbf{6}$ was formed.

Figure S2. HRMS date of peroxy intermediate.

8. Removal of the directing group ${ }^{1}$

3an
h

THF, $0^{\circ} \mathrm{C}$ to rt, overnight

8

General experiment procedure: An oven-dried 25 mL round bottom
flask was charged with 3aa ($0.1 \mathrm{mmol}, 35.5 \mathrm{mg}$). After purging with Ar three times, 2 mL fresh distilled THF was added, followed by $\mathrm{SmI}_{2}(0.1$ M in THF, 10 equiv) was added dropwise at $0^{\circ} \mathrm{C}$. After 5 minutes, the mixture was warmed to rt and stirred overnight. After that the mixture was quenched with 5 mL saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with DCM, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure . Purified by column chromatography on neutral aluminum oxide (n-hexanes/EtOAc $=3: 1$ to $1: 1$) to afford the corresponding product $\mathbf{8}^{10}$ ($15 \mathrm{mg}, 60 \%$ yield).

3-benzoylisoquinolin-1(2H)-one: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.39$ (br, 1H), $8.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~m}, 1 \mathrm{H})$, 7.65-7.69 (m, 3H), 7.56(t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 188.9,161.6,135.8,135.6,133.6,133.0,132.8,129.9$, $129.2,128.6,128.5,128.4,127.9,116.0$.

9. References:

1. Zhai, S.; Qiu, S.; Chen, X.; Wu, J.; Zhao, H.; Tao, C.; Li, Y.; Cheng, B.; Wang, H.; Zhai, H. 2-(1-Methylhydrazinyl)pyridine as a reductively removable directing group in a cobalt-catalyzed $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ bond alkenylation/annulation cascade. Chem. Commun. 2018, 54, 98.
2. (a) Stadler, A.-M.; Lehn, J.-M. Coupled Nanomechanical Motions: Metal-Ion-Effected, pH -Modulated, Simultaneous Extension/Contraction Motions of Double-Domain Helical/Linear Molecular Strands. J. Am. Chem. Soc. 2014,

136, 3400. (b) Stadler, A.-M.; Karmazin, L.; Bailly, C. A $\mathrm{Ca}^{2+}-, \mathrm{Mg}^{2+}$ - , and
Zn^{2+} - Based Dendritic Contractile Nanodevice with Two pH - Dependent Motional Functions. Angew. Chem. Int. Ed. 2015, 54, 14570.
3. Yan, S.-Y.; Liu, Y.-J.; Liu, B.; Liu, Y.-H.; Shi, B.-F. Nickel-catalyzed thiolation of unactivated aryl $\mathrm{C}-\mathrm{H}$ bonds: efficient access to diverse aryl sulfides. Chem. Commun. 2015, 51, 4069.
4. Clavier, H.; Le Jeune, K.; de Riggi, I.; Tenaglia, A.; Buono, G. Highly Selective Cobalt-Mediated [6+2] Cycloaddition of Cycloheptatriene and Allenes. Org. Lett. 2011, 13, 308.
5. Liu, J.; Han, Z.; Wang, X.; Wang, Z.; Ding, K. Highly Regio- and Enantioselective Alkoxycarbonylative Amination of Terminal Allenes Catalyzed by a Spiroketal-Based Diphosphine/Pd(II) Complex. J. Am. Chem. Soc. 2015, 137, 15346.
6. Hu, J.; Xie, Y.; Huang, H. Palladium-Catalyzed Insertion of an Allene into an Aminal: Aminomethylamination of Allenes by C-N Bond Activation. Angew. Chem. Int. Ed. 2014, 53, 7272.
7. Zhao, Z.; Racicot, L.; Murphy, G. K. Fluorinative Rearrangements of Substituted Phenylallenes Mediated by (Difluoroiodo)toluene: Synthesis of $\alpha-(D i f l u o r o m e t h y l) s t y r e n e s . ~ A n g e w . ~ C h e m . ~ I n t . ~ E d . ~ 2017, ~ 56, ~ 11620 . ~$
8. Ye, F.; Wang, C.; Ma, X.; Hossain, M. L.; Xia, Y.; Zhang, Y.; Wang, J. Synthesis of Terminal Allenes through Copper-Mediated Cross-Coupling of Ethyne with N-Tosylhydrazones or α-Diazoesters. J. Org. Chem. 2015, 80, 647.
9. Kuang, J.-Q.; Ma, S.-M. An Efficient Synthesis of Terminal Allenes from Terminal 1-Alkynes. J. Org. Chem. 2009, 74, 1763.
10. Modi, A. R.; Usgaonkar, R. N. Isoquinolones - an elegant synthesis for 3-acetyl and 3-benzoylisoquinolones. Currrent Science. 1979, 48, 580.

10. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra

Figure S3. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 c}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S4. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 c}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 e}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 e}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

$\stackrel{i}{i}$

($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Figure S7. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 f}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S8. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 f}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 g}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S10. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 g}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

```
F
#
```


Figure S11. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 h}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S12. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 h}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 i}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

$$
\begin{aligned}
& \sqrt{20 \infty} \\
& \underset{i}{2}
\end{aligned}
$$

Figure S14. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 i}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

3	1	1	1	1	1	1	1	1	1											\square
3	-10	-20	-30	-40	-50	-60	-70	-80	-90	$\begin{gathered} -100 \\ \mathrm{fl}(\mathrm{ppni}) \end{gathered}$	-110	-120	-130	-140	-150	-160	-170	-180	-190	-2

Figure S15. ${ }^{19} \mathrm{~F}$ NMR Spectrum of $\mathbf{1 i}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S16. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 0}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S17. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 0}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S18. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 p}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S19. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 p}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S20. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 r}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S21. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 r}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S22. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 u}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S23. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 u}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S24. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 v}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

$(100 \mathrm{MHz}, \mathrm{CDC} 3)$

Figure S25. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 v}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S26. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 w}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S27. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 w}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S28. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S29. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S30. ${ }^{1} \mathrm{H}$ NMR Spectrum of 3ba $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S31. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 b a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S32. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 c a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S33. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 c a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S34. ${ }^{1} \mathrm{H}$ NMR Spectrum of 3da $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S35. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3da $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S36. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 e a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S37. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3ea $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S38. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 f a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S39. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3fa ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure S40. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 g a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S41. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3ga $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S42. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3} \mathbf{h a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S43. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3} \mathbf{h a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S44. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 i a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S45. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 i a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.
zhaishx-170831-576

Figure S46. ${ }^{19} \mathrm{~F}$ NMR Spectrum of $\mathbf{3 i a}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S47. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 j a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S48. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 j a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

$$
\text { zhaishx } 170831564
$$

Figure S49. ${ }^{19} \mathrm{~F}$ NMR Spectrum of $\mathbf{3 j a}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S50. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 k a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S51. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 k a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S52. ${ }^{1} \mathrm{H}$ NMR Spectrum of 3la $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S53. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3la $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S54. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 m a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S55. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 m a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S56. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 n a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S57. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 n a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

```
zhaishx-170831-569
```


Figure S58. ${ }^{19}$ F NMR Spectrum of $\mathbf{3 n a}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S59. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 o a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S60. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 0 a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S61. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 p a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S62. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3pa $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S63. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 q a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S64. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 q a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S65. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 r a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S66. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3ra $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S67. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 s a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S68. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 s a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S69. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 t a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S70. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 t a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S71. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3} \mathbf{u a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S72. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3} \mathbf{u a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S73. ${ }^{1} \mathrm{H}$ NMR Spectrum of 3va $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S74. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3va $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S75. ${ }^{1} \mathrm{H}$ NMR Spectrum of 3wa $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S76. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 w a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S77. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 x a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S78. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 x a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S79. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S80. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 a b}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S81. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a c}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S82. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3ac $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S83. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a d}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S84. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 a d}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S85. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a e}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S86. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3ae $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S87. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a f}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S88. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 a f}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S89. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a g}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S90. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 a g}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S91. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a h}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S92. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3} \mathbf{a h}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S93. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a i}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S94. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3ai ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure S95. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a j}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S96. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 a j}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S97. ${ }^{1} \mathrm{H}$ NMR Spectrum of 3ak $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S98. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 a k}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S99. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a l}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S100. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 a l}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

```
Zhaishx-171110-up
```


Figure S101. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S102. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S103. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4}^{\boldsymbol{\prime}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S104. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4}^{\prime}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S105. ${ }^{1} \mathrm{H}$ NMR Spectrum of $7\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S106. ${ }^{13} \mathrm{C}$ NMR Spectrum of $7\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S107. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{8}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S108. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{8}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11.X-ray Crystallographic Data of Compound 3aa

Figure S109. X-ray of compound 3aa (CCDC:1813669).

Table S3. Crystal data and structure refinement for 3aa.

Identification code	exp_975
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$
Formula weight	355.38
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	P2 $1^{\prime} \mathrm{c}$
a/Å	6.0252(3)
b/Å	14.9032(8)
c/Å	19.2088(12)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	93.713(6)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	1721.23(17)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.371
μ / mm^{-1}	0.090
F(000)	744.0
Crystal size/mm ${ }^{3}$	$0.18 \times 0.15 \times 0.12$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.25 to 49.988
Index ranges	$-7 \leq \mathrm{h} \leq 5,-17 \leq \mathrm{k} \leq 17,-22 \leq 1 \leq 20$
Reflections collected	9654
Independent reflections	$2960\left[\mathrm{R}_{\text {int }}=0.0637, \mathrm{R}_{\text {sigma }}=0.0529\right]$
Data/restraints/parameters	2960/0/245
Goodness-of-fit on F^{2}	1.042
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0446, \mathrm{wR}_{2}=0.1143$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0543, \mathrm{wR}_{2}=0.1252$
Largest diff. peak/hole / e \AA^{-3}	0.22/-0.26

Table S4. Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3aa. $U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	z	U(eq)
$\mathrm{O}(1)$	5779.3(18)	1624.5(7)	2475.8(7)	29.0(3)
$\mathrm{O}(2)$	11879.8(18)	3660.2(8)	3414.9(7)	32.6(3)
N(1)	7708(2)	2810.5(9)	2952.9(8)	23.2(3)
N(3)	8649(2)	1231.2(9)	4328.3(8)	24.6(3)
$\mathrm{N}(2)$	8882(2)	2233.2(9)	3423.4(8)	23.7(3)
C(18)	7702(2)	1914.1(10)	3972.8(9)	20.8(4)
C(9)	6050(3)	2436.1(11)	2502.6(9)	22.4(4)
C(6)	4916(3)	4010.5(11)	2205.6(9)	22.5(4)
C(7)	6706(3)	4315.5(11)	2670.3(9)	22.9(4)
C(1)	4625(3)	3082.9(11)	2106.3(9)	22.4(4)
C(8)	8066(2)	3736.1(10)	3027.8(9)	22.0(4)
C(2)	2843(3)	2762.1(11)	1676.6(9)	25.8(4)
C(16)	8194(3)	5149.3(11)	4186.0(9)	26.0(4)
$\mathrm{C}(11)$	9998(3)	4934.6(11)	3800.4(9)	23.5(4)
C(10)	10127(3)	4065.8(11)	3423.1(9)	24.4(4)
C(19)	5716(3)	$2315.5(11)$	4158(1)	25.7(4)
$\mathrm{C}(5)$	3387(3)	4603.2(11)	1870.2(9)	25.2(4)
C(4)	1598(3)	4274.2(11)	1469.2(10)	28.6(4)
C(22)	7615(3)	925.8(12)	4877.2(10)	30.5(4)
C(3)	1329(3)	3355.6(11)	1368.6(10)	29.5(4)
C(15)	8267(3)	5903.8(12)	4605.2(10)	30.7(4)
$\mathrm{C}(12)$	11838(3)	5506.0(12)	3820.7(10)	28.8(4)
C(17)	10565(3)	1678.7(11)	$3113.5(10)$	29.0(4)
$\mathrm{C}(14)$	10113(3)	6460.1(12)	4624.5(11)	35.0(5)
C(13)	11876(3)	6267.3(11)	4221.4(11)	33.7(5)
C(20)	4711(3)	1974.6(12)	4721.4(11)	32.9(5)
C(21)	5672(3)	1266.0(12)	5096.6(10)	34.4(5)

Table S5. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3aa.
The Anisotropic displacement factor exponent takes the form:
$-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a * b^{*} U_{12}+\ldots\right]$.

Atom	U_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	U_{13}	U_{12}
$\mathrm{O}(1)$	34.5(6)	20.2(7)	31.9(8)	0.0(5)	-0.9(6)	0.7(5)
$\mathrm{O}(2)$	25.3(6)	32.4(7)	40.1(9)	-1.8(6)	0.9(6)	4.0(5)
N(1)	25.2(7)	22.6(7)	21.6(9)	3.2(6)	-0.2(6)	2.2(5)
N(3)	27.6(7)	25.3(8)	20.3(8)	1.4(6)	-2.9(6)	1.2(5)
N(2)	23.8(7)	22.9(7)	24.3(9)	6.1(6)	1.6(6)	4.8(5)
C(18)	22.5(8)	19.9(8)	19.5(10)	-3.7(7)	-3.4(7)	-2.4(6)
C(9)	26.3(8)	22.4(9)	19.0(9)	0.3(7)	6.0(7)	0.2(6)
C(6)	26.3(8)	24.4(9)	17.0(9)	-0.3(7)	$3.9(7)$	-1.4(6)
C(7)	27.9(9)	22.0(8)	19(1)	-0.5(7)	2.5(7)	-1.4(6)
C(1)	27.3(8)	23.9(9)	16.3(9)	-0.7(7)	4.0(7)	0.4(6)
C(8)	24.6(8)	21.7(8)	20(1)	0.2(7)	4.3(7)	-0.3(6)
C(2)	35.8(9)	21.7(9)	19.7(10)	-1.2(7)	0.6(8)	-3.0(7)
C(16)	25.9(8)	28.8(9)	22.6(10)	2.9(8)	-4.2(8)	2.6 (7)
C(11)	26.9(9)	25.3(9)	17.3(9)	3.8(7)	-6.1(7)	$1.0(6)$
C(10)	27.8(9)	25.8(9)	19.3(10)	4.6(7)	-0.9(8)	1.1(7)
C(19)	25.2(8)	25.0(9)	26.5(10)	-2.0(8)	-0.8(8)	3.3(6)
C(5)	34.3(9)	20.9(8)	19.8(10)	0.0(7)	-1.6(8)	0.8(6)
C(4)	32.7(9)	28.0(9)	24.4(11)	0.1(8)	-3.7(8)	$3.0(7)$
C(22)	39.7(10)	30.7(10)	20.6(10)	4.6(8)	-2.1(9)	$0.9(7)$
C(3)	33.6(9)	31.3(10)	22.7(11)	-0.3(8)	-5.0(8)	-3.2(7)
C(15)	34.6(10)	34.9(10)	21.8(11)	0.5(8)	-4.3(8)	11.6(7)
C(12)	27.9(9)	30.8(10)	26.8(11)	3.1(8)	-4.6(8)	-0.6(7)
C(17)	26.0(9)	27.8(9)	34.0(11)	3.0 (8)	6.6(8)	$4.3(7)$
C(14)	44.7(11)	27.7(10)	30.3(12)	-3.6(8)	-14.1(9)	6.2(8)
C(13)	35.5(10)	28(1)	35.7(12)	2.1(9)	-11.3(9)	-4.4(7)
C(20)	30.4(9)	36.2(10)	33.1(12)	-6.0(9)	9.4(9)	3.0(7)
C(21)	42.4(11)	37.1(11)	24.7(11)	-0.3(9)	10.3(9)	-1.7(8)

Table S6. Bond Lengths for 3aa.

Atom Atom	Length/Å	Atom Atom	Length/Å
$\mathrm{O}(1) \mathrm{C}(9)$	$1.2212(19)$	$\mathrm{C}(1) \mathrm{C}(2)$	1.396 (2)
$\mathrm{O}(2) \mathrm{C}(10)$	1.2181(19)	$\mathrm{C}(8) \mathrm{C}(10)$	1.496(2)
$\mathrm{N}(1) \mathrm{N}(2)$	$1.4053(18)$	$\mathrm{C}(2) \mathrm{C}(3)$	1.376(2)
$\mathrm{N}(1) \mathrm{C}(9)$	$1.395(2)$	$\mathrm{C}(16) \mathrm{C}(11)$	1.391(2)
$\mathrm{N}(1) \mathrm{C}(8)$	1.402(2)	$\mathrm{C}(16) \mathrm{C}(15)$	1.382(2)
$\mathrm{N}(3) \mathrm{C}(18)$	1.333(2)	$\mathrm{C}(11) \mathrm{C}(10)$	$1.488(2)$
$\mathrm{N}(3) \mathrm{C}(22)$	$1.339(2)$	$\mathrm{C}(11) \mathrm{C}(12)$	1.397(2)
$\mathrm{N}(2) \mathrm{C}(18)$	1.394(2)	$\mathrm{C}(19) \mathrm{C}(20)$	1.372 (3)
$\mathrm{N}(2) \mathrm{C}(17)$	1.464(2)	$C(5) \quad C(4)$	1.374(2)
$\mathrm{C}(18) \mathrm{C}(19)$	1.404(2)	$\mathrm{C}(4) \mathrm{C}(3)$	1.391(2)
$\mathrm{C}(9) \mathrm{C}(1)$	1.470 (2)	$\mathrm{C}(22) \mathrm{C}(21)$	1.367 (3)
C (6) $\mathrm{C}(7)$	$1.429(2)$	$\mathrm{C}(15) \mathrm{C}(14)$	$1.386(3)$
$\mathrm{C}(6) \mathrm{C}(1)$	$1.405(2)$	$\mathrm{C}(12) \mathrm{C}(13)$	1.370(3)
C (6) $\mathrm{C}(5)$	$1.403(2)$	$\mathrm{C}(14) \mathrm{C}(13)$	$1.385(3)$
$\mathrm{C}(7) \mathrm{C}(8)$	1.347(2)	$\mathrm{C}(20) \mathrm{C}(21)$	1.384 (3)

Table S7. Bond Angles for 3aa.

| Atom Atom Atom | Angle ${ }^{\circ}$ | Atom Atom Atom | Angle ${ }^{\circ}$ |
| :--- | :--- | :--- | :--- | ---: |
| $\mathrm{C}(9) \mathrm{N}(1) \mathrm{N}(2)$ | $117.67(12) \mathrm{C}(7) \mathrm{C}(8) \mathrm{N}(1)$ | $119.59(15)$ | |
| $\mathrm{C}(9) \mathrm{N}(1) \mathrm{C}(8)$ | $123.81(13) \mathrm{C}(7) \mathrm{C}(8) \mathrm{C}(10)$ | $120.37(14)$ | |
| $\mathrm{C}(8) \mathrm{N}(1) \mathrm{N}(2)$ | $117.94(13) \mathrm{C}(3) \mathrm{C}(2) \mathrm{C}(1)$ | $119.81(15)$ | |
| $\mathrm{C}(18) \mathrm{N}(3) \mathrm{C}(22)$ | $117.20(14) \mathrm{C}(15) \mathrm{C}(16) \mathrm{C}(11)$ | $120.05(16)$ | |
| $\mathrm{N}(1) \mathrm{N}(2) \mathrm{C}(17)$ | $114.66(14) \mathrm{C}(16) \mathrm{C}(11) \mathrm{C}(10)$ | $121.77(14)$ | |
| $\mathrm{C}(18) \mathrm{N}(2) \mathrm{N}(1)$ | $115.82(12) \mathrm{C}(16) \mathrm{C}(11) \mathrm{C}(12)$ | $119.41(16)$ | |
| $\mathrm{C}(18) \mathrm{N}(2) \mathrm{C}(17)$ | $121.06(13) \mathrm{C}(12) \mathrm{C}(11) \mathrm{C}(10)$ | $118.52(15)$ | |
| $\mathrm{N}(3) \mathrm{C}(18) \mathrm{N}(2)$ | $115.20(13) \mathrm{O}(2) \mathrm{C}(10) \mathrm{C}(8)$ | $121.49(15)$ | |
| $\mathrm{N}(3) \mathrm{C}(18) \mathrm{C}(19)$ | $122.63(16) \mathrm{O}(2) \mathrm{C}(10) \mathrm{C}(11)$ | $120.71(14)$ | |
| $\mathrm{N}(2) \mathrm{C}(18) \mathrm{C}(19)$ | $122.09(15) \mathrm{C}(11) \mathrm{C}(10) \mathrm{C}(8)$ | $117.72(14)$ | |
| $\mathrm{O}(1) \mathrm{C}(9) \mathrm{N}(1)$ | $120.71(15) \mathrm{C}(20) \mathrm{C}(19) \mathrm{C}(18)$ | $117.99(16)$ | |
| $\mathrm{O}(1) \mathrm{C}(9) \mathrm{C}(1)$ | $123.76(15) \mathrm{C}(4) \mathrm{C}(5) \mathrm{C}(6)$ | $120.06(15)$ | |
| $\mathrm{N}(1) \mathrm{C}(9) \mathrm{C}(1)$ | $115.44(14) \mathrm{C}(5) \mathrm{C}(4) \mathrm{C}(3)$ | $120.63(16)$ | |
| $\mathrm{C}(1) \mathrm{C}(6) \mathrm{C}(7)$ | $118.70(15) \mathrm{N}(3) \mathrm{C}(22) \mathrm{C}(21)$ | $124.64(17)$ | |
| $\mathrm{C}(1) \mathrm{C}(6) \mathrm{C}(5)$ | $119.00(15) \mathrm{C}(2) \mathrm{C}(3) \mathrm{C}(4)$ | $120.31(16)$ | |
| $\mathrm{C}(5) \mathrm{C}(6) \mathrm{C}(7)$ | $122.23(15) \mathrm{C}(16) \mathrm{C}(15) \mathrm{C}(14)$ | $119.84(17)$ | |
| $\mathrm{C}(8) \mathrm{C}(7) \mathrm{C}(6)$ | $121.60(15) \mathrm{C}(13) \mathrm{C}(12) \mathrm{C}(11)$ | $120.32(17)$ | |
| $\mathrm{C}(6)$ | $\mathrm{C}(1) \mathrm{C}(9)$ | $120.76(15) \mathrm{C}(13) \mathrm{C}(14) \mathrm{C}(15)$ | $120.29(17)$ |
| $\mathrm{C}(2) \mathrm{C}(1) \mathrm{C}(9)$ | $118.86(15) \mathrm{C}(12) \mathrm{C}(13) \mathrm{C}(14)$ | $120.02(16)$ | |
| $\mathrm{C}(2) \mathrm{C}(1) \mathrm{C}(6)$ | $120.12(15) \mathrm{C}(19) \mathrm{C}(20) \mathrm{C}(21)$ | $120.13(16)$ | |
| $\mathrm{N}(1) \mathrm{C}(8) \mathrm{C}(10)$ | $119.50(14) \mathrm{C}(22) \mathrm{C}(21) \mathrm{C}(20)$ | $117.40(17)$ | |

Table S8. Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic
Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3aa.

Atom	\boldsymbol{x}	y	z	U(eq)
H(7)	6938.53	4928.75	2727.31	28
H(2)	2678.88	2149.06	1598.7	31
H(16)	6938.41	4784.95	4161.52	31
H(19)	5101.48	2798.02	3906.27	31
H(5)	3584.48	5219.39	1919.21	30
H(4)	557.77	4669.6	1263.22	34
H(22)	8263.49	448.43	5126.91	37
H(3)	120.54	3141.24	1091.77	35
H(15)	7080.57	6037.79	4873.78	37
H(12)	13043.68	5369.08	3561	35
H(17A)	9845.79	1214.93	2835.05	44
H(17B)	11513.7	1411.86	3477.33	44
H(17C)	11438.95	2045.83	2824.99	44
H(14)	10167.68	6965.18	4909.48	42
H(13)	13086.82	6654.67	4222.52	40
$\mathrm{H}(20)$	3380.08	2220.07	4851.56	40
H(21)	5021.75	1030.51	5482.87	41

