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1. Materials and Methods 
 

1.1 Spectroscopy 

UV-vis spectra were recorded on a Hewlet-Packard HP 8543 Diode Array Photospectrometer or a 

Jasco V-630 spectrophotometer in a 1 cm pathlength quartz cuvette. Optical rotations were 

measured in CH2Cl2 with a 10 cm cell (c given in g/100 mL) and Schmidt+Haensch polarimeter 

(Polartronic MH8). CD spectra were recorded using a Jasco J-815 CD spectrophotometer. 

Fluorescence measurements were performed on a Jasco FP-6200 spectrophotometer. The UV 

irradiation experiments were conducted using a Spectroline model ENB-280C/FE lamp (8-watt) at 312 

nm.  

 

1.2 Dynamic light scattering 

DLS was performed using a Dynapro nanostar, the results were analyzed with dynamics software, 

version 7 taking into account the viscosity of the THF-H2O mixtures.1  

 

1.3 Nile Red Fluorescence  

Nile Red fluorescence was measured on an SPF-500c spectrofluorimeter (SLM Aminco) or a PTI 

International type C60/C-60 SE fluorimeter using an excitation wavelength of 490 nm. Fluorescent 

emission was measured from 510 to 700 nm at 5 or 1 nm intervals. The Nile Red emission maximum 

(λ max) was calculated using a log-normal fit.2  
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1.4 Characterization of THF in aggregates 

The aggregates were prepared by adding 27 mL D2O to the solution of 5 mg trans-stable 1 in 3 mL 

THF. The resulting mixture was then centrifuged (3000 rpm, 10 min) to separate the solids from the 

aqueous phase. To the isolated aggregates, D2O (3 X 30 mL) was added, and the mixture was further 

sonicated and centrifuged until no THF was detected in D2O by 1H NMR. The washed aggregates were 

mounted into a NMR tube and dissolved with d-chloroform. NMR spectra were recorded using a 

Varian Mercury Plus, operating at 399.93 MHz for 1H-NMR.    

1.5 TEM and cryo-TEM 

TEM and cryo-TEM images were made using two electron microscopes depending on availability. A 

Philips CM120 electron microscope (FEI, Eindhoven, the Netherlands) operated at 120 keV or a  

Tecnai  G2  T20  electron microscope (FEI, Eindhoven, the Netherlands) operated at 200 keV. Both 

microscopes are equipped with an LaB6 cathode and 4K slow-scan CCD camera (Gatan, Pleasanton, 

CA, USA). Images were recorded using low-dose conditions. Three microliters of the sample solution 

was pipetted on glow-discharged copper grid coated with a continuous carbon film for negative 

staining with 2% uranyl acetate or drying (stability experiments). For cryo-TEM, the sample was 

applied to holey carbon film (quantifoil 3.5/1) and plunge-frozen with a Vitrobot (FEI, Eindhoven, The 

Netherlands) in liquid ethane after blotting for 5 s. The specimen was then inserted into a cryo-

transfer holder (Gatan model 626). Each micrograph was cropped and had adjustments of levels, 

brightness, and contrast in Adobe Photoshop CS6. 

1.6 Synthesis of Bulky First Generation Molecular Motor. 

1.6.1 General remarks 

Reagents were purchased from Aldrich, Acros, Merck or Fluka. Solvents were reagent grade and were 

distilled or dried before use according to standard procedures. Reactions were conducted under 

nitrogen atmosphere. Analytical TLC was performed with Merck silica gel 60 F254 plates and the 

visualization was done with UV light. Column chromatography was performed on silica gel (Merck 

silica gel 60, 230-400 mesh). NMR spectra were recorded using a Varian Mercury Plus, operating at 

399.93 MHz for 1H-NMR and 100.57 for 13C-NMR. Chemical shifts were denoted in δ-units (ppm) 

relative to HCCl3 (
1H-NMR: δ = 7.26 ppm; 13C –NMR: δ = 77.16 ppm). For 1H-NMR spectroscopy, the 

multiplicity is designated as follows: s (singlet), d (doublet), t (triplet), q (quatet), hept (heptet) m 

(multiplet), dd (doublet of doublets). HRMS spectra were obtained on a LTQ Orbitrap XL mass 

spectrometer with ESI ionization.  
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1.6.2 Synthesis 

 

Scheme 1. Synthesis of bulky molecular motor 1. i) Zink powder, TiCl4, reflux, 3d; ii) Pd(dppp)2Cl2, 

K2CO3, MeOH, NMP, CO(7.5 bar), 110 oC, 2d; iii) 1M aq. NaOH, MeOH, THF, 65 oC, 18h; iv) ① oxalyl 

chloride, DCM, THF, DMF, 0 oC, 1h; ② DCM, triethylamine, r.t., 18h. 

 

The synthesis started with McMurry coupling of cycloketone 2, which can be prepared according to a 

reported procedure,3,4 to form the central olefin bond, giving the dibromo motor as a mixture of 

trans- and cis- isomers in 3:1 ratio. Palladium-catalyzed carbonylation, as reported, was employed to 

introduce esters onto the both sides of the motor.5 At this stage, the two isomers could be separated 

with a total yield of 80% (60% for trans-4 and 20% for cis-4).The hydrolysis of 4 in the presence of 

base resulted in the dicarboxylic acid 5 with almost quantitative yield. Compound 5 was then treated 

with oxalyl chloride with a catalytic amount of DMF, and the corresponding carbonyl chloride was 

directly used in the next step without any purification. After addition of the aniline 6, of which the 

synthesis was already reported,4 the desired molecular motor 1 was isolated.  

Compound 3. To a suspension of zinc powder (2.0 g, 31.3 mmol) in dry THF (60 mL), TiCl4 (1.63 mL, 

14.8 mmol) was added at 0 oC. The resulting mixture was stirred at 65 oC for 2 h. After cooling down 

to room temperature, compound 2 (2.0 g, 8.0 mmol) was added and the resulting mixture was 

heated at reflux for another 3 days. The cooled mixture was poured onto silica and washed with DCM 

to remove the solids. After evaporation of the solvents, the crude product was purified by column 

chromatography using pentane / DCM (3:1) to give a trans/cis-mixture of compound 3 (1.6 g, 3.5 

mmol, 86 % yield, trans:cis = 3:1) as a white solid. 

Trans-3: 1H NMR (400 MHz, Chloroform-d) δ 7.27 (s, 2H), 2.98 – 2.75 (m, 2H), 2.57 (dd, J = 14.7, 5.7 

Hz, 2H), 2.45 (s, 6H), 2.22 (d, J = 11.1 Hz, 4H), 2.16 (s, 6H), 1.09 (d, J = 6.6 Hz, 6H). 

Cis-3: 1H NMR (400 MHz, CDCl3) δ 7.25 (s, 2H), 3.39 –3.29 (m, 2H), 3.04 (dd, J = 15.3, 6.4 Hz, 2H), 2.40 

(d, J = 15.3 Hz, 2H), 2.23 (s, 6H), 1.51 (s, 6H), 1.08 (d, J = 6.1 Hz, 6H). 
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Compound 4. Dry methanol (2 mL) was added to the mixture of compound 3 (400 mg, 0.85 mmol, 

trans:cis = 3:1), potassium carbonate (258 mg, 1.87 mmol), Pd(dpppr)Cl2 (50 mg, 0.08 mmol), and 

NMP (10 mL). The mixture was placed in autoclave under 7.5 bar CO, and heated at 110 oC for 2 days. 

After cooling to room temperature, the resulting mixture was diluted with water (10 mL) and then 

extracted with ether (2 X 20 mL). The combined organic layer was further washed with water (3 X 20 

mL), brine (20 mL), and dried over Na2SO4. After evaporating the solvent in vacuo, and the residue 

was purified using column chromatography (pentane:ethyl acetate = 10:1) to give trans-stable 4 (222 

mg, 0.52 mmol, 61 %) and cis-stable 4 (68 mg, 0.16 mmol, 19 %) as white solids. 

Trans-stable 4: 1H NMR (400 MHz, Chloroform-d) δ 7.64 (s, 2H), 2.95 – 2.78 (m, 2H), 2.70 – 2.56 (m, 

8H), 2.30 – 2.15 (m, 8H), 1.09 (d, J = 6.5 Hz, 6H). 

Cis-stable 4: 1H NMR (400 MHz, Chloroform-d) δ 7.59 (s, 2H), 3.83 (d, J = 1.3 Hz, 6H), 3.44 – 3.35 (m, 

2H), 3.12 (dd, J = 15.5, 6.5 Hz, 2H), 2.48 (d, J = 15.5 Hz, 2H), 2.28 (s, 6H), 1.65 (s, 6H), 1.08 (d, J = 6.7 

Hz, 6H). 

Compound 5. Compound trans-stable 4 (150 mg, 0.35 mmol) was dissolved in THF (2 mL), Methanol 

(2 mL), and aqueous NaOH (1M, 2 mL), followed by heating at 65 oC for 18 h. After cooling to room 

temperature, the mixture was titrated using HCl solution (1 M) to pH 3. Then the mixture was 

concentrated in vacuo, and the residue was dissolved in THF. The organic phase was collected of 

which the solvent was removed. The resulting white solid provided trans-stable 5 (142 mg, 0.35 

mmol, 99%) without further purification. 1H NMR (400 MHz, Methanol-d4/DCM) δ 7.76 (s, 2H), 3.04 – 

2.93 (m, 2H), 2.73 (s, 8H), 2.39 (d, J = 14.9 Hz, 2H), 2.31 (s, 6H), 1.19 (d, J = 6.5 Hz, 6H). 

Cis-stable 5 (99 % yield) as a white solid was synthesized following the same procedures. 1H NMR 

(400 MHz, Methanol-d4) δ = 7.62 (s, 2H), 3.52 – 3.38 (m, 2H), 3.13 (dd, J = 15.4, 6.4 Hz, 2H), 2.56 (d, J 

= 15.4 Hz, 2H), 2.30 (s, 6H), 1.65 (s, 6H), 1.09 (d, J = 6.8 Hz, 6H). 

Molecular motor 1. To a solution of trans-stable 5 (200 mg, 0.5 mmol) in THF (5 mL), DCM (5 mL), 

and DMF (1 drop) was add oxalyl chloride (0.21 mL, 2.5 mmol) at 0 oC under nitrogen. After warming 

up to room temperature, the mixture was stirred for another 1 h. The resulting solution was 

concentrated to yield acid chloride, which was subsequently dissolved in dry DCM (20 mL) and 

triethylamine (0.14 mL, 1 mmol). To the aforementioned solution of acid chloride, compound 6 (620 

mg, 1.1 mmol) was added at 0 oC. After stirring at room temperature for 18 h, the resulting solution 

was washed with water (20 mL), brine (20 mL), and dried over Na2SO4. The solvents was evaporated 

in vacuo, and the resulting residue was purified by column chromatography (pentane:DCM = 1:1) to 

yield trans-stable 1 (449 mg, 0.3 mmol, 60 %) as a white solid. 1H NMR (400 MHz, Chloroform-d) δ 

7.66 – 7.50 (m, 30H), 7.48 – 7.30 (m, 34H), 7.20 (s, 2H), 2.98 – 2.90 (m, 2H), 2.66 (dd, J = 14.8, 5.7 Hz, 

2H), 2.56 (s, 6H), 2.31 – 2.20 (m, 8H), 1.08 (d, J = 6.4 Hz, 6H). 13C NMR (101 MHz, Chloroform-d) δ 

168.76, 155.32, 145.72, 144.77, 142.70, 142.48, 141.84, 140.46, 138.60, 136.12, 135.79, 131.71, 

131.58, 131.40, 129.40, 128.72, 127.21, 126.92, 126.20, 118.88, 63.93, 42.12, 39.00, 19.95, 18.79 , 

18.15. HRMS (ESI+, m/z) calculated for C112H91N2O2 [M + H]+ 1496.7109, found 1496.7127. 
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 Figure S1. 1H NMR spectrum of trans-stable 1 (CDCl3). 

 

Figure S2. 13C NMR spectrum of trans-stable 1 (CDCl3). 
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Cis-stable 1 was obtained as a white solid with the same procedures and had a yield of 65 %. 1H NMR 

(400 MHz, Chloroform-d) δ 7.86 – 7.80 (m, 2H), 7.69 – 7.60 (m, 4H), 7.56 – 7.49 (m, 12H), 7.48 – 7.27 

(m, 46H), 7.23 (s, 2H), 3.50 – 3.34 (m, 2H), 3.16 (dd, J = 15.5, 6.2 Hz, 2H), 2.51 (d, J = 15.5 Hz, 2H), 

2.29 (s, 6H), 1.12 (d, J = 6.6 Hz, 6H). 13C NMR (101 MHz, Chloroform-d) δ168.60 , 146.21 , 145.81 , 

142.55 , 142.29 , 141.18 , 140.52 , 138.46 , 136.10 , 131.43 , 131.30 , 130.18 , 128.74 , 128.66 , 127.41 

, 127.12 , 126.95 , 126.16 , 126.04 , 119.43 , 63.93 , 41.01 , 39.06 , 20.12 , 19.12 , 18.22. HRMS (ESI+, 

m/z) calculated for C112H91N2O2 [M + H]+ 1496.7109, found 1496.7127. 

 Figure S3. 1H NMR spectrum of cis-stable 1 (CDCl3). 
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Figure S4. 13C NMR spectrum of cis-stable 1 (CDCl3). 

 

(R,R)- (P,P)-trans-5 and   (R,R)- (P,P)-cis-5 were prepared following a previous reported procedure.3 

Then, the same process was employed to synthesize (R,R)- (P,P)-trans-1 and (R,R)- (P,P)-cis-1 as that 

of the racemic material. 

(R,R)- (P,P)-trans-1: 96% ee, [α]𝐷
20  = -13.0 (c 0.2, CH2Cl2). 

(R,R)- (P,P)-cis-1: 96% ee, [α]𝐷
20 = -15.2 (c 0.5, CH2Cl2). 

 

1.7 Freezing bath beads 

As proof of principle of the proposed mechanism (figure 5) of bowl-shaped particle formation, we 

froze bath beads in liquid nitrogen to create similar bowl-shaped particles at a macroscopic-scale 

(Supplementary Movie 1). Upon freezing, the outer shell of the oil goes through the glass transition 

temperature and shrinks against the pressure from the still liquid interior resulting in a macroscopic 

bowl-shaped particle.  

 

 

 

  



S8 

 

2. Supplementary figures 

 

Figure S5. Solvent induced aggregation of 0.5 mg/ml Styrofoam in chloroform with 50% methanol (A) 

and of 0.6 mg/ml Nile Red in tertiary butanol with 75% water (B). 
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Figure S6. Spheres from the molecular motor 1 at 10-4 M in THF at φw 60% (A, B) and φw 90% (C, D), 

and their evolution over time. Panels B and D are images of samples A and C, respectively, after 4 

days of aging. Scalebars represent 1 μm (black) and 500 nm (white), respectively.  
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Figure S7. Particle size distribution of trans-stable 1 in THF/water mixture with φw = 60% and φw = 

90% (c = 1 x 10-4 M)。At 60% φw, a particle radius of 392 nm with a poly-dispersity of 64% is 

measured, whereas at 90% φw the radius is 130 nm with a polydispersity of 35% 

 

  

φw 60% 

φw 90% 
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2.  Phase separation 
In order to gain insight in the mechanism of bowl-shaped particle formation, we used Nile Red 

fluorescence to monitor the polarity dependent fluorescence maximum in different solvent-water 

mixtures2(Figure S8). Measurements started at pure solvent (methanol, ethanol (not shown for figure 

clarity), propanol, tert-butanol and THF) and water was added stepwise. Only in methanol-water the 

absorption maximum keeps shifting linearly towards 660 nm (close to pure water2). In the other 

solvents at critical water content (CWC), the fluorescence spectrum suddenly broadened, showing a 

second population of Nile Red that experienced a much lower polarity. The hydrophobic Nile red 

does not tolerate the polarity of the water and initiates phase separation into droplets. As soon as 

the concentration of Nile Red is increased for TEM measurements, however, the CWC seems specific 

for the nature and concentration of the molecule and the nature of the initial solvent, rather than 

the water content. The fact that Nile Red does not cause precipitation into droplets in methanol 

underlines that not only the non-solvent, but also the solvent quality plays a role. While infinitely 

diluted Nile-Red results in droplets from the solvent being gathered around the hydrophobic Nile-

Red, higher concentrations of Nile-Red in THF-water result in bowl-shaped particles at 75% φw 

(Figure 2B), indicating the role of hydrophobic interactions as well as a strong effect of molecular 

concentration. 

 

Figure S8. Nile Red fluorescence maxima, which change with polarity, of different solvent-water 

mixtures. Water acts as precipitator for Nile Red in all mixtures except methanol-water, inducing low-

polarity droplets. At the CWC, the fluorescence spectra can not be explained with a single peak and 

are solved with convolution into two peaks (1 and 2), each peak representing a sub-population of the 

Nile Red.   
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Figure S9. Kinetic measurements of the thermal isomerization step 2 in THF. (A) UV/vis spectral 

changes during heating at 55 oC. (B) The linear fitting of ln (k/T) by 1/T using Erying equation 

. The rate constants of the first-order decay k were obtained from equation 

A/Ao = e-kt, at 55 oC, 57.5 oC, 60 oC, 62.5 oC, and 65 oC. (C) The calculated standard enthalpy Δ‡Ho, 

entropy Δ‡So, Gibbs energy Δ‡Go of activation, and the half-life of cis-unstable 1 at 298.15 K. 

 

Δ‡Ho  (kJ * 
mol -1) 

Δ‡So (J * 
mol-1 * K-
1) 

Δ‡Go  (kJ * 
mol-1) 

t1/2 (h) 

84.3±4.2 -60.2±5.5 102.2±4.2 26 
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Figure S10. 1H NMR spectrum of the powder of trans-stable 1 after 2h irradiation with 312 nm UV 

light. No cis-unstable 1 is observed. 

 

 

 

Figure S11.  1H NMR spectrum of solid cis-unstable 1 after 48h. Trans-stable 1 in CDCl3 was irradiated 

to its PSS with 312 nm UV light. After fast evaporating the solvent, the solid was placed at 50 oC for 

48h which was then used for NMR. No significant cis-stable 1 is observed. 
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Figure S12. AIE quantum yields of cis-unstable 1 determined by comparison with a standard 

compound (quinine in 0.05 M H2SO4 solution). 
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Figure S13. UV-vis absorption spectra of trans-stable 1 in THF/water mixture with different φw (c = 3 x 

10-6 M)。 
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Figure S14. UV-vis absorption spectra of cis-unstable 1 in THF/water mixture with different φw (c = 3 x 

10-6 M). 
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Figure S15. 1H NMR spectra (CDCl3) of (A) PSS after irradiating trans-stable 1 aggregates (φw = 90 %) 

with 312 nm UV light for 1 h and (B) the resulting THI at 50 oC for 48h. 
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Figure S16. 1H NMR spectra (CDCl3) of (A) PSS after irradiating trans-stable 1 aggregates (φw = 60 %) 

with 312 nm UV light for 30 min and (B) the resulting THI at 50 oC for 24h. 



S18 

 

 

 

 

Figure S17. 1H NMR spectrum of cis-unstable 1 in the aggregates (φw = 90%) after heating. Trans-

stable 1 was irradiated to PSS in THF which was followed by adding water. The resulting mixture was 

heated at 50 oC for 48h. The aggregates were then centrifuged and dissolved in CDCl3 for NMR. 
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