Re(I)-Catalyzed Hydropropargylation of Silyl Enol Ethers Utilizing Dynamic Interconversion of Vinylidene-Alkenylmetal Intermediates via 1,5-Hydride Transfer

Nobuharu Iwasawa, ${ }^{*}$ Shoya Watanabe, Akane Ario, Hideyuki Sogo
Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan

S18 - Intramolecular hydropropargylation reactionS18

S19 Synthesis of malonate S6a and S6b
S20

1. General

All reactions were performed under nitrogen atmosphere. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL ECX$500\left(500 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$) or ECZ-500 (500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$) or ECS-400 (400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$) spectrometer using $\mathrm{CDCl}_{3}\left({ }^{13} \mathrm{C}, \delta=77.0\right)$ as internal standards. IR spectra were recorded on an FT/IR-460 plus (JASCO Co., Ltd.). High-resolution mass analyses (FD ${ }^{+}$) were performed on a JEOL JMST100 GCV mass spectrometer. Single crystals were immersed in immersion oil on micromount and transferred to a Rigaku Varimax with Saturn system equipped with a Rigaku GNNP low temperature device. Gel permeation chromatography (GPC) was performed using LC-918 series (Japan Analytical Industry Co., Ltd.). Silica Gel 60 (Kanto Chemical Co., Inc.) was used for flash column chromatography. Merck Aluminium Oxide 90 (active neutral) was used for alumina flash column chromatography. Merck Kieselgel $60 \mathrm{~F}_{254}\left(0.25 \mathrm{~mm}\right.$ thickness, coated on glass $20 \times 20 \mathrm{~cm}^{2}$) plate was used for analytical thin layer chromatography (TLC), and Wakogel B-5F coated on glass ($20 \times 20 \mathrm{~cm}^{2}$) in a thickness of 0.9 mm was used for preparative TLC.

2. Reagents

Reagents were used as received without further purification, unless otherwise noted. TIPSOTf and triethylamine were purified by distillation over CaH_{2}. THF, $\mathrm{Et}_{2} \mathrm{O}$, and toluene were purified by solvent purification system of GlassContour. Dehydrated 1,4-dioxane was purchased from Kanto Chemical Co., Inc. and was dried over molecular sieves. Dehydrated dichloromethane was purchased from Kanto Chemical Co., Inc. and other solvents were distilled according to the standard procedures and stored over molecular sieves. $\operatorname{ReI}(\mathrm{CO})_{5}$ was prepared according to literature procedure ${ }^{[1]}$ and was recrystallized from acetone/hexane.

3. Experimental Procedure and Physical Data

- Intermolecular hydropropargylation reaction

Synthesis of propargyl ether 1.

1
To a THF suspension (30 ml) of sodium hydride ($60 \%, 1.4 \mathrm{~g}, 36 \mathrm{mmol}$, 1.2 equiv.) was added a THF solution (30 ml) of benzhydrol ($5.5 \mathrm{~g}, 30 \mathrm{mmol}, 1.0$ equiv.) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 30 min . Tetrabutylammonium iodide ($550 \mathrm{mg}, 1.5 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and propargyl bromide ($2.7 \mathrm{ml}, 36 \mathrm{mmol}, 1.2$ equiv.) were added slowly to the reaction mixture at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred at room temperature for 5 h . The reaction mixture was quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with ethyl acetate three times. The combined organic layer was washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude material was purified by silica-gel flash column chromatography (ethyl acetate/hexane $=1 / 19$) to give propargyl ether $\mathbf{1}$ as a yellow oil in 94% yield ($6.3 \mathrm{~g}, 28 \mathrm{mmol}$).

1
IR (neat) $3290,3061,3029,2116,1600,1494,1451,1068,1027,742,700 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=2.49(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.43(\mathrm{~m}, 10 \mathrm{H})$;
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=55.7,74.5,79.7,81.6,127.2,127.6,128.4,141.1$
HRMS (FD^{+}): m / z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}\right]^{+}$222.1045, found 222.1046.

To a dichloromethane solution (5 ml) of $\mathrm{NaI}(15 \mathrm{mg}, 0.10 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$), 3-butyn-2-ol ($0.16 \mathrm{ml}, 2.0 \mathrm{mmol}, 1.0$ equiv.), and N, N-diisopropylethylamine ($0.69 \mathrm{ml}, 4.0 \mathrm{mmol}, 2.0$ equiv.) was added benzyl chloromethyl ether (0.33 ml , $2.4 \mathrm{mmol}, 1.2$ equiv.) at room temperature, and the mixture was stirred at the same temperature for 8 h . The reaction mixture was quenched with water and the aqueous layer was extracted with diethyl ether three times. The combined organic layer was washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude material was purified by silica-gel flash column chromatography (ethyl acetate/hexane $=1 / 9$) and GPC (AcOEt) to give BOM ether of 3-butyn-2-ol as a colorless oil in 39% yield ($150 \mathrm{mg}, 0.79 \mathrm{mmol}$).

IR (neat) 3292, 2890, 2112, 1452,1378, 1176, 1038, 740, 664;
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.46(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.42(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dq}, J=6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.37(\mathrm{~m}, 5 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=21.9,61.4,69.8,72.9,83.3,92.3,127.7,127.9,128.4,137.7$;
HRMS (FD^{+}): m/z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}\right]^{+}$190.09938, found 190.09888.

General procedure for the synthesis of silyl enol ethers $2 \mathrm{a}, 2 \mathrm{c}, 2 \mathrm{i}, 2 \mathrm{k}, 2 \mathrm{n}$, and 2 o .

$\xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \text { to } \mathrm{RT}]{\substack{1 \text { equiv. TIPSOTf } \\ 3 \text { equiv. } \mathrm{Et}_{3} \mathrm{~N}}}$

To a mixture of ketone (1.0 equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ (3.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.5 \mathrm{M}\right.$) was added $\operatorname{TIPSOTf}\left(1.0\right.$ equiv.) at $0^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature overnight, the reaction was quenched with sat. aqueous NaHCO_{3}, and the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic extracts were washed with brine and dried over anhydrous magnesium sulfate. After the filtration of the drying agent, the filtrate was evaporated, and the crude product was purified by flash column chromatography (hexane) using neutral alumina containing $5 \% \mathrm{H}_{2} \mathrm{O}$ to give the corresponding silyl enol ether.
$\mathbf{2 b}{ }^{[2]}, \mathbf{2} \mathbf{d}^{[3]}, \mathbf{2} \mathbf{e}^{[3]}, \mathbf{2} \mathbf{f}^{[4]}, \mathbf{2} \mathbf{g}^{[3]}, \mathbf{2} \mathbf{h}^{[5]}, \mathbf{2} \mathbf{j}^{[3]}$, and $\mathbf{2 \mathbf { I } ^ { [4] }}$ were reported in the literature.

2a
a colorless oil ($413 \mathrm{mg}, 1.53 \mathrm{mmol}, 76 \%$).
IR (neat) 2964, 2946, 2894, 2868, 1667, 1466, 1387, 1362, 1264, 1207, 1169, 1077, 883, $679 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.06(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.10(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 18 \mathrm{H}), 1.12-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H})$, 1.61 (s, 3H), 2.71 (septet, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR (CDCl $3,125 \mathrm{MHz}$) $\delta=14.1,18.3,18.8,19.2,20.5,31.0,104.9,149.7$;
HRMS (FD ${ }^{+}$): m / z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{OSi}\right]^{+} 270.2379$, found 270.2373 .

2c
a colorless oil ($668 \mathrm{mg}, 2.92 \mathrm{mmol}, 75 \%$).

IR (neat) 2945, 2893, 2868, 2724, 1684, 1464, 1385, 1179, 994, 882, 815, $686 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.07(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 18 \mathrm{H}), 1.09-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 6.11-6.14(\mathrm{~m}$, 1H);
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.0,14.7,17.8,19.3,112.4,134.0$;
HRMS (FD^{+}): m/z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{OSi}\right]^{+} 228.1909$, found 228.1907.

$2 i$
a colorless oil ($381 \mathrm{mg}, 1.26 \mathrm{mmol}, 95 \%$).
IR (neat) $3070,3046,3024,2945,2892,2867,1634,1464,1385,1359,1176,996,883,860,685 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 18 \mathrm{H}), 1.23-1.34(\mathrm{~m}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~s}, 2 \mathrm{H}), 7.11(\mathrm{dt}, J=$ $1.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.31(\mathrm{~m}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.5,13.6,18.0,38.5,117.2,118.4,123.2,123.9,125.9,140.8,143.0,148.2$;
HRMS (FD^{+}): m/z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{OSi}\right]^{+} 302.2066$, found 302.2071.

a colorless oil ($643 \mathrm{mg}, 2.03 \mathrm{mmol}, 97 \%$).
IR (neat) $3067,3023,2941,2891,2865,1647,1462,1299,1186,1152,1089,884,794,663 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 18 \mathrm{H}), 1.18-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 2.69 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.05-7.11 (m, 2H), 7.13-7.19 (m, 1H), 7.39 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=13.8,17.4,18.0,28.2,29.5,116.0,121.2,125.9,126.0,126.5,134.9,135.9,143.6 ;$ HRMS (FD^{+}): m/z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{OSi}\right]^{+} 316.2222$, found 316.2227 .

2n
a colorless oil ($423 \mathrm{mg}, 1.50 \mathrm{mmol}, 75 \%$).
IR (neat) 2930, 2867, 1680, 1465, 1380, 1345, 1242, 1176, 1070, 997, 921, 884, 791, $678 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.05-1.21(\mathrm{~m}, 24 \mathrm{H}), 1.40-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.78(\mathrm{~m}$, 1 H), 1.84-2.01 (m, 2H), 2.18 (br s, 1H);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=13.4,17.1,18.09,18.14,18.9,19.3,30.9,31.4,33.9,110.5,147.8 ;$
HRMS (FD^{+}): m/z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{OSi}\right]^{+} 282.2379$, found 282.2375.

20
a colorless oil ($455 \mathrm{mg}, 1.71 \mathrm{mmol}, 85 \%$).
IR (neat) $3078,2961,2946,2893,2868,1612,1468,1334,1231,1147,1110,896,883,808,687 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.00-1.10(\mathrm{~m}, 19 \mathrm{H}), 1.11-1.22(\mathrm{~m}, 4 \mathrm{H}), 1.26-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.59-$ $1.73(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.76(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.5,17.87,17.90,24.7,27.8,40.9,45.8,47.0,104.5,161.6$;
HRMS (FD^{+}): m/z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{OSi}\right]^{+}$266.2066, found 266.2072.

A 1,4-dioxane solution (1.5 ml) of 2-triisopropylsiloxy-3-methyl-1,3-butadiene ${ }^{[6]}(242 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv.) and N -phenylmaleimide ($208 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv.) was heated for 17 h at $100^{\circ} \mathrm{C}$. The reaction mixture was concentrated under reduced pressure in vacuo. The crude product was purified by silica gel column chromatography (ethyl acetate : hexane $=25: 75$) to give the silyl enol ether $\mathbf{2 m}$ in 76% yield ($314 \mathrm{mg}, 0.759 \mathrm{mmol}$) as a white solid.

IR (neat) 2944, 2868, 1713, 1679, 1598, 1498, 1461, 1379, 1196, 882, $689 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.05-1.10(\mathrm{~m}, 18 \mathrm{H}), 1.10-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{dd}, J=6.9,14.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.49-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{dd}, J=2.3,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{ddd}, J=3.5,6.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ (ddd, $J=2.9,8.0,9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 2 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=13.1,16.3,17.92,17.94,29.5,29.8,39.4,40.5,108.7,126.3,128.4,129.0,132.1$, 142.8, 178.7, 179.0;

HRMS (FD^{+}): m / z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{Si}^{+}\right]^{+} 413.2386$, found 413.2391.

General procedure for hydropropargylation of silyl enol ethers.

A mixture of $\operatorname{ReI}(C O)_{5}(1.7 \mathrm{mg}, 0.0038 \mathrm{mmol}, 3.1 \mathrm{~mol} \%)$, propargyl ether $\mathbf{1}(0.15 \mathrm{mmol}, 1.25$ equiv.), and silyl enol ether ($0.12 \mathrm{mmol}, 1.0$ equiv.) in 1,4-dioxane (1.5 mL) was stirred for 10 h at $100^{\circ} \mathrm{C}$. The reaction mixture was quenched with TMEDA (0.2 ml) and the reaction mixture was concentrated under reduced pressure in vacuo. The crude product was purified by preparative TLC or silica gel column chromatography to give the product.

3a
The crude product was purified by silica gel column chromatography (hexane) to give the title compound $\mathbf{3 a}$ as a colorless oil in 85% yield ($32.0 \mathrm{mg}, 0.103 \mathrm{mmol}$).
IR (neat) $3313,2965,2946,2892,2869,2117,1466,1388,1366,1119,1056,883,812,676 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=0.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-1.05(\mathrm{~m}, 9 \mathrm{H}), 1.09-1.17(\mathrm{~m}, 21 \mathrm{H}), 1.93-2.02(\mathrm{~m}, 2 \mathrm{H})$, 2.19 (dd, $J=2.9,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=2.6,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=13.8,18.2,18.62,18.64,22.9,23.7,24.1,29.8,30.8,39.9,70.0,82.96,83.02$;
HRMS (FD ${ }^{+}$): m / z calcd for $\left[\mathrm{M}^{-} \mathrm{Pr}^{\mathrm{Pr}}\right]^{+}\left[\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{OSi}^{+}\right.$267.2144, found 267.2148.

3b
$\operatorname{ReI}(\mathrm{CO})_{5}$ ($3.4 \mathrm{mg}, 0.0075 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$), propargyl ether $1(67.1 \mathrm{mg}, 0.30 \mathrm{mmol}, 2.0$ equiv.), and silyl enol ether $\mathbf{2 b}(45.5 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv.) were used. The crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: hexane $\left.=3: 97\right)$ to give the title compound $\mathbf{3 b}$ as a colorless oil in 96% yield ($49.6 \mathrm{mg}, 0.144 \mathrm{mmol}$).
IR (neat) $3311,3063,3030,2944,2867,2116,1603,1464,1385,1247,1198,1096,1064,882,822,705,680,633 \mathrm{~cm}^{-}$ ${ }^{1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=0.90(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 21 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dd}, J=3.0$, $17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=3.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.36(\mathrm{~m}, 5 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.8,18.1,22.7,23.1,29.0,39.6,70.4,81.0,82.9,127.17,127.19,128.2,141.9$; HRMS (FD^{+}): m/z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{OSi}\right]^{+} 344.2535$, found 344.2544 .

3c
The crude product was purified by silica gel column chromatography (hexane) to give the title compound $\mathbf{3 c}$ as a colorless oil in 62% yield ($20.1 \mathrm{mg}, 0.075 \mathrm{mmol}$).
IR (neat) $3313,2945,2867,2724,2118,1467,1389,1251,1105,999,882,809,683 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=0.96(\mathrm{~s}, 6 \mathrm{H}), 1.03-1.11(\mathrm{~m}, 21 \mathrm{H}), 1.94(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H})$, 3.44 (s, 2H);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.0,18.0,18.1,23.7,28.1,36.0,69.5,70.9,82.8$;
HRMS (FD^{+}): m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{OSi}\right]^{+}$269.2301, found 269.2294.

3d
The crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: hexane $\left.=3: 97\right)$ to give the title compound (a single isomer) as a colorless oil containing unidentified product ($\mathrm{ca} .6 \%$, likely a mixture of vinylcyclopropanes) in 86% yield ($29.0 \mathrm{mg}, 0.103 \mathrm{mmol}$). The stereochemistry of the product was determined by comparing spectral data of the desilylated compound with literature values. ${ }^{[7]}$
IR (neat) $3313,2959,2944,2893,2867,2119,1464,1383,1368,1247,1123,1053,882,680,634 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.06(\mathrm{~s}, 21 \mathrm{H}), 1.34-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.88(\mathrm{~m}$, $1 \mathrm{H}), 1.88-2.03(\mathrm{~m}, 3 \mathrm{H}), 2.16(\mathrm{ddd}, J=3.0,7.0,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, J=3.0,6.0,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{q}, J=5.5 \mathrm{~Hz}$, 1H);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.3,18.07,18.10,21.4,21.6,28.2,34.6,47.0,68.7,77.8,83.3 ;$
HRMS (FD^{+}): m/z calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{OSi}\right]^{+}$281.2301, found 281.2308.

The crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: hexane $\left.=3: 97\right)$ to give the title compound 3 e as a colorless oil containing a trace amount of vinylcyclopropane 4 e in 87% yield ($30.8 \mathrm{mg}, 0.105 \mathrm{mmol}$). Diastereomer ratio of $\mathbf{3 e}$ was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}($ d.r. $=91: 9)$. The stereochemistry of the major isomer was determined by comparing spectral data of the desilylated compound with literature values. ${ }^{[8]}$
IR (neat) $3313,2939,2866,2118,1464,1385,1367,1247,1102,883,678 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.02-1.13(\mathrm{~m}, 21 \mathrm{H}), 1.13-1.80(\mathrm{~m}, 7 \mathrm{H}), 1.87-1.99(\mathrm{~m}, 3 \mathrm{H}), 2.09-2.17(\mathrm{~m}, 0.09 \mathrm{H}), 2.25$ $(\mathrm{ddd}, J=2.5,7.5,16.5 \mathrm{~Hz}, 0.91 \mathrm{H}), 2.33-2.40(\mathrm{~m}, 0.09 \mathrm{H}), 2.53(\mathrm{ddd}, J=3.0,4.0,16.5 \mathrm{~Hz}, 0.91 \mathrm{H}), 3.51(\mathrm{dt}, J=4.0,9.5$ $\mathrm{Hz}, 0.91 \mathrm{H}), 4.06-4.11$ (m, 0.09H);
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.9,18.2,18.3,21.7,24.7,25.1,29.6,35.6,44.4,69.2,74.1,83.5 ;$
HRMS (FD ${ }^{+}$): m/z calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{OSi}\right]^{+}$295.2457, found 295.2463.

The crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: hexane $\left.=3: 97\right)$ to give the title compound as a colorless oil in 90% yield ($33.3 \mathrm{mg}, 0.108 \mathrm{mmol}$) as a single isomer. The stereochemistry of the product was determined by the coupling constant of CH-OTIPS ($3.68 \mathrm{ppm}, \mathrm{dd}, J=4.5,11.5 \mathrm{~Hz}$) and NOE as shown above. IR (neat) $3313,2940,2867,2116,1463,1383,1244,1105,882,676,636 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=0.94(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 21 \mathrm{H}), 1.16-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.62(\mathrm{~m}, 5 \mathrm{H}), 1.63-1.76(\mathrm{~m}, 2 \mathrm{H})$, 1.97 (t, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ (d, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{dd}, J=4.5,11.5 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=13.0,17.0,18.27,18.33,21.2,24.7,30.6,31.2,35.1,39.3,70.2,75.6,82.7$;
HRMS (FD^{+}): m / z calcd for $\left[\mathrm{M}^{-} \mathrm{Pr}^{-}\right]^{+}\left[\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{OSi}^{+}\right.$265.1988, found 265.1982.

3 g

4 g

The crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: hexane $\left.=3: 97\right)$ to give the title compound $\mathbf{3 g}$ as a colorless oil containing a trace amount of vinylcyclopropane $\mathbf{4 g}$ in 88% yield ($32.5 \mathrm{mg}, 0.105 \mathrm{mmol}$). Diastereomer ratio of $\mathbf{3 g}$ was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{d} . \mathrm{r} .=67: 33$). These compounds were separated by GPC (AcOEt). The stereochemistry of the major isomer was determined by comparing spectral data of the compound $\mathbf{S} \mathbf{1}$ with literature values (see page S 11).
3g-major (a colorless oil)
IR (neat) 3313, 2929, 2866, 2117, 1463, 1384, 1365, 1246, 1101, 1065, 882, $677 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.07(\mathrm{~s}, 21 \mathrm{H}), 1.32-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.83(\mathrm{~m}, 7 \mathrm{H}), 1.92(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$
(ddd, $J=2.6,7.8,16.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.39 (ddd, $J=2.6,7.2,16.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 (dt, $J=2.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR (CDCl $3,125 \mathrm{MHz}$) $\delta=12.8,18.2,18.3,21.6,23.4,26.0,28.6,35.2,46.6,68.8,75.8,83.9$;
HRMS (FD^{+}): m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{OSi}\right]^{+} 309.2614$, found 309.2614.
3g-minor (a colorless oil)
IR (neat) $3312,2940,2866,2118,1462,1383,1366,1246,1090,882,678 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.07(\mathrm{~s}, 21 \mathrm{H}), 1.38-1.59(\mathrm{~m}, 5 \mathrm{H}), 1.59-1.80(\mathrm{~m}, 5 \mathrm{H}), 1.81-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{t}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.13 (ddd, $J=2.6,8.9,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{ddd}, J=2.6,6.3,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.17(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (CDCl $3,125 \mathrm{MHz}$) $\delta=12.8,18.2,18.3,21.8,22.9,25.4,27.2,27.8,35.9,44.6,68.5,73.6,84.9 ;$
HRMS (FD^{+}): m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{OSi}\right]^{+} 309.2614$, found 309.2614.

3h

4h

The crude product was purified by preparative TLC (TLC plate was deactivated by treatment with hexane containing $0.5 \% \mathrm{Et}_{3} \mathrm{~N}$ before use, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: hexane $=20: 80$) to give the title compound $\mathbf{3 h}$ as a single isomer along with vinylcyclopropane $\mathbf{4 h}(\mathbf{3 h}: \mathbf{4 h}=88: 12)$ as a colorless oil in 78% yield ($30.6 \mathrm{mg}, 0.093 \mathrm{mmol}$). The ratio of these compounds was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. $\mathrm{CH}=\mathrm{CH}_{2}$ of $\mathbf{4 h}: 5.82\left(\mathrm{dt}, J=9.8,16.9 \mathrm{~Hz}\right.$) and $\mathrm{CH}=\mathrm{CH}_{2}$ of the other isomer of $\mathbf{4 h}$: 4.68$4.76(\mathrm{~m})$. The stereochemistry of the product was determined by X-ray crystal structure analysis of the desilylated compound S2 (see page S11).
IR (neat) 3311, 3072, 3027, 2944, 2893, 2866, 2119, 1462, 1123, 1089, 1065, 882, 743, $679 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.09-1.24(\mathrm{~m}, 21 \mathrm{H}), 2.00(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.56(\mathrm{~m}, 1 \mathrm{H})$, $2.75(\mathrm{dd}, J=6.6,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=7.5,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.39$ (m, 1H);
${ }^{13}{ }^{13} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.9,18.3,21.2,35.0,48.4,70.2,80.2,82.5,124.7,124.9,126.5,127.9,141.6,144.8 ;$ HRMS (FD^{+}): m/z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{OSi}\right]^{+} 328.2222$, found 328.2229 .

$3 i$
The crude product was purified by preparative TLC (TLC plate was deactivated by treatment with hexane containing $0.5 \% \mathrm{Et}_{3} \mathrm{~N}$ before use, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: hexane = $10: 90$) to give the title compound as a colorless oil in 86% yield (35.1 mg , 0.102 mmol) as a single isomer. The stereochemistry of the product was determined by X-ray crystal structure analysis of the desilylated compound $\mathbf{S 3}$ (see page S12).
IR (neat) $3311,3072,3026,2961,2944,2895,2867,2118,1462,1135,1106,1091,1066,882,837,739,678,635 \mathrm{~cm}^{-}$ ${ }^{1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.03(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 9 \mathrm{H}), 1.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 9 \mathrm{H}), 1.13-1.23(\mathrm{~m}, 3 \mathrm{H})$, $2.05(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=2.6,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=2.6,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13}{ }^{3} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=13.3,18.3,18.4,19.9,28.2,41.8,49.0,71.2,81.0,82.4,124.6,125.0,126.2,127.5$, 140.9, 144.8;

HRMS (FD^{+}): m/z calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{OSi}\right]^{+} 343.2457$, found 343.2466.

3j

4j

The crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: hexane $\left.=3: 97\right)$ to give the title compound $\mathbf{3} \mathbf{j}$ as a single isomer along with vinylcyclopropane $\mathbf{~} \mathbf{j} \mathbf{~} \mathbf{~} \mathbf{3} \mathbf{j} \mathbf{4} \mathbf{j}=90: 10)$ as a colorless oil in 89% yield (36.7 mg , $0.107 \mathrm{mmol})$. The ratio of these compounds was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR} . \mathrm{C} H=\mathrm{CH}_{2}$ of $\mathbf{4} \mathbf{j}: 5.90(\mathrm{dt}, J=9.2,17.5 \mathrm{~Hz})$. The stereochemistry of the product was determined by NOE as shown above. IR (neat) $3311,3019,2941,2892,2866,2118,1458,1362,1247,1085,1061,881,741,677,634 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.05-1.18(\mathrm{~m}, 12 \mathrm{H}), 1.69-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{t}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.05(\mathrm{dd}, J=2.6,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.26-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{ddd}, J=6.4,10.5,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{ddd}, J=3.5,6.6$, $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.8,18.2,18.3,19.9,21.4,24.5,39.8,69.3,71.9,82.9,125.6,127.5,128.8,130.6$, 136.4, 136.8;

HRMS (FD^{+}): m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{OSi}\right]^{+} 343.2457$, found 343.2449.

The crude product was purified by preparative TLC (TLC plate was deactivated by treatment with hexane containing $0.5 \% \mathrm{Et}_{3} \mathrm{~N}$ before use, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: hexane $=10: 90$) to give the title compound as a colorless oil in 91% yield (38.9 mg , 0.109 mmol) as a single isomer. The stereochemistry of the product was determined by NOE as shown above.

IR (neat) $3310,3064,3021,2943,2891,2866,2117,1459,1384,1375,1243,1085,1065,883,819,681,634 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=0.84-0.91(\mathrm{~m}, 9 \mathrm{H}), 1.03-1.06(\mathrm{~m}, 12 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{ddd}, J=3.5,7.5,13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.91(\mathrm{dd}, J=3.3,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{ddd}, J=7.8,9.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.90$ (ddd, $J=3.5,7.8,17.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 7.06-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{dt}, J=1.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 1H);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=13.4,18.1,18.5,23.4,25.6,26.9,27.7,38.1,70.1,76.3,81.8,125.3,127.6,128.7$, 129.8, 136.3, 138.0;

HRMS $\left(\mathrm{FD}^{+}\right): \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{OSi}\right]^{+} 357.2614$, found 357.2615.

31
$\operatorname{ReI}(\mathrm{CO})_{5}(3.4 \mathrm{mg}, 0.0075 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$), propargyl ether $1(67.1 \mathrm{mg}, 0.30 \mathrm{mmol}, 2.0$ equiv.), and silyl enol ether 21 ($47.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv.) were used. The crude product was purified by silica gel column chromatography (ethyl acetate : hexane $=2.5: 97.5$) to give the title compound as a colorless oil in 89% yield ($47.1 \mathrm{mg}, 0.134 \mathrm{mmol}$). Diastereomer ratio was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}($ d.r. $=82: 18)$. The stereochemistry of the product was determined by the coupling constant of CH-OTIPS ($3.67 \mathrm{ppm}, \mathrm{dt}, J=4.0,9.0 \mathrm{~Hz}$) and by comparing the coupling pattern of CH OTIPS with that of compound $\mathbf{3 e}$.
IR (neat) $3310,2944,2866,2116,1634,1463,1380,1253,1108,1064,881,680,639 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.05-1.10(\mathrm{~m}, 21 \mathrm{H}), 1.49-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.83-2.01(\mathrm{~m}, 4 \mathrm{H}), 2.14$
$(\mathrm{ddd}, J=3.0,7.5,17.5 \mathrm{~Hz}, 0.18 \mathrm{H}), 2.29-2.47(\mathrm{~m}, 1.82 \mathrm{H}) 3.67(\mathrm{dt}, J=4.0,9.0 \mathrm{~Hz}, 0.82 \mathrm{H}), 3.89-4.00(\mathrm{~m}, 4 \mathrm{H}), 4.15$ (brs, 0.18 H);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
Major isomer $\delta=12.8,18.2,21.4,31.7,32.5,36.9,41.5,64.2,64.4,69.8,72.2,82.7,108.4$;
Minor isomer $\delta=12.8,18.2,21.6,29.3,31.0,34.8,40.8,64.2,64.3,68.0,69.2,83.6,108.9$;
HRMS (FD^{+}): m/z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}^{+}\right]^{+} 352.2434$, found 352.2439.

$\operatorname{ReI}(\mathrm{CO})_{5}(3.4 \mathrm{mg}, 0.0075 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$, propargyl ether $1(67.1 \mathrm{mg}, 0.30 \mathrm{mmol}, 2.0$ equiv.), and silyl enol ether $\mathbf{2 m}(61.7 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv.) were used. The crude product was purified by silica gel column chromatography (ethyl acetate : hexane $=15: 85$) to give the title compound as a yellow oil in 88% yield ($59.9 \mathrm{mg}, 0.132 \mathrm{mmol}$). Two diastereomers were obtained in $93: 7$ ratio and the ratio was determined by integration of CH-OTIPS signal at $\delta=3.96$ and 3.76. From the result of the related product $\mathbf{3 f}$, the stereochemistry of the hydropropargylated product moiety was assumed to be trans as shown in $\mathbf{3 m}$, and two diastereomers were thought to be isomers concerning the succinimide moiety. However, the relative stereochemistry could not be determined.
IR (neat) 3308, 2943, 2891, 2866, 2114, 2017, 1920, 1844, 1715, 1598, 1501, 1459, 1379, 1186, 1110, 881, 752, 681 cm^{-1};
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=0.99(\mathrm{~s}, 3 \mathrm{H}), 1.02-1.15(\mathrm{~m}, 21 \mathrm{H}), 1.89-1.99(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-$
$2.24(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{dd}, J=2.3,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=2.9,16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{dd}, J=4.0,9.2$
$\left.{ }^{\mathrm{Hz}}, 1 \mathrm{H}\right), 7.27-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.50(\mathrm{~m}, 2 \mathrm{H})$;
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.9,18.3,19.8,28.9,29.4,31.1,37.6,38.2,38.6,71.4,71.9,81.0,126.3,128.4$, 129.1, 132.0, 177.7, 178.3;

HRMS (FD^{+}): m / z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{Si}^{+}\right]^{+} 453.2699$, found 453.2702.

The crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: hexane $\left.=3: 97\right)$ to give the title compound as a colorless oil in 86% yield ($33.1 \mathrm{mg}, 0.103 \mathrm{mmol}$). Two diastereomers were obtained in $80: 20$ ratio, which were thought to be isomers concerning the methyl group at C-6.
IR (neat) $3312,2944,2929,2867,2116,1459,1385,1253,1107,1013,883,787,677,636 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=0.94-0.98(\mathrm{~m}, 6 \mathrm{H}), 1.06-1.15(\mathrm{~m}, 22 \mathrm{H}), 1.27-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.98(\mathrm{t}$, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=2.9,16.6 \mathrm{~Hz}, 0.2 \mathrm{H}), 2.20(\mathrm{dd}, J=2.3,16.1 \mathrm{~Hz}, 0.8 \mathrm{H}), 2.28(\mathrm{dd}, J=2.9,16.0 \mathrm{~Hz}, 0.8 \mathrm{H})$, 2.33 (dd, $J=2.9,16.6 \mathrm{~Hz}, 0.2 \mathrm{H}), 3.30(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 0.8 \mathrm{H}), 3.76$ (d, $J=3.5 \mathrm{~Hz}, 0.2 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$)
Major isomer $\delta=14.2,17.2,18.6,20.4,21.0,31.3,34.5,35.4,36.1,39.9,70.5,82.6,82.8$;
Minor isomer $\delta=13.8,17.7,18.51,18.54,20.0,23.4,28.7,28.9,32.9,33.4,39.2,70.4,78.2,82.3$;
HRMS (FD^{+}): m / z calcd for $\left[\mathrm{M}^{-}{ }^{-} \mathrm{Pr}\right]^{+}\left[\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{OSi}^{+}\right.$279.2144, found 279.2148.

30

40

The crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: hexane $\left.=3: 97\right)$ to give the title compound $\mathbf{3 0}$ (a single isomer) containing vinylcyclopropane $\mathbf{4 o}(\mathbf{3 o}: \mathbf{4 o}=95: 5)$ as a colorless oil in 86% yield (31.5 mg , 0.103 mmol). The ratio of these compounds was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR} . \mathrm{C} H=\mathrm{CH}_{2}$ of $4 \mathrm{o}: 5.60(\mathrm{dt}, J=10.0,17.2 \mathrm{~Hz}$). The stereochemistry of the product was determined by NOE as shown above.
IR (neat) $3313,2946,2890,2868,2119,1367,1237,1105,1067,882,832,633 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.05(\mathrm{~s}, 21 \mathrm{H}), 1.15-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.63(\mathrm{~m}$, $1 \mathrm{H}) 1.92(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{ddd}, J=2.6,10.6,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\operatorname{brd}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ (brs, 1H), 2.32 (ddd, $J=2.6,4.3,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (CDCl $3,125 \mathrm{MHz}$) $\delta=12.3,18.1,19.7,23.3,30.0,34.2,41.1,43.8,51.0,68.2,79.7,84.0 ;$
HRMS (FD^{+}): m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{OSi}^{+}\right.$307.2457, found 307.2454.

3p
BOM ether of 3-butyn-2-ol was used instead of propargyl ether $\mathbf{1}$. The yield was determined by ${ }^{1} \mathrm{H}$-NMR analysis of the crude product using 1,1,2,2-tetrachloroethane as the internal standard (45%) because the product cannot be purified completely by preparative TLC (hexane). Two diastereomers were obtained in $83: 17$ ratio, which were thought to be isomers concerning the methyl group. The ratio was determined by integration of CH-OTIPS signal at $\delta=3.96$ and 4.14.The stereochemistry of the two contiguous stereogenic centers on the bicyclo[2.2.1]heptane ring of the major isomer of $\mathbf{3 p}$ was determined by NOE as shown above. Spectra of the major isomer of $\mathbf{3} \mathbf{p}$ were shown below.
IR (neat) $3310,2949,2869,2721,2112,1462,1244,1125,1100,883,847,632 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.06(\mathrm{~s}, 21 \mathrm{H}), 1.11-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.35(\mathrm{~m}, 5 \mathrm{H}), 1.52-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{dt}, J=$ $10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.25(\mathrm{br} \mathrm{d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.49$ $(\mathrm{m}, 1 \mathrm{H}), 3.96(\mathrm{dt}, J=4.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$;

Determination of the stereochemistry of 3g-major, $\mathbf{3 h}$, and 3 i

A mixture of Lindlar's cat. (300 mg), $\mathbf{3 g}$ ($463 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.0$ equiv.), and quinoline ($375 \mu \mathrm{l}, 3.15 \mathrm{mmol}, 2.1$ equiv.) in hexane (9 ml) was stirred under H_{2} atmosphere (balloon) for 30 min at room temperature. The reaction mixture was filtered through Celite pad and concentrated under reduced pressure. The crude material was filtered through silica gel column chromatography (hexane) to remove quinoline. The obtained product ($407 \mathrm{mg}, \mathrm{ca} .1 .3 \mathrm{mmol}$) was used for the next reaction without further purification.
To a THF solution (5 ml) of the crude material was added TBAF (1 M THF solution, $1.8 \mathrm{ml}, 1.8 \mathrm{mmol}, 1.4$ equiv.) slowly at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 4 h . The reaction mixture was quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with diethyl ether three times. The combined organic layer was washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude material was purified by silica gel column chromatography (ethyl acetate : hexane = $20: 80$) to give $\mathbf{S 1}$ as a colorless oil in 56% yield ($130 \mathrm{mg}, 0.84 \mathrm{mmol}$). Spectral data of the major diastereomer of $\mathbf{S} 1$ were in good agreement with literature values. ${ }^{[9]}$

To a THF solution (8 ml) of $\mathbf{3 h}(259 \mathrm{mg}, 0.79 \mathrm{mmol}, 1.0$ equiv.) was added TBAF (1 M THF solution, $1.2 \mathrm{ml}, 1.2$ $\mathrm{mmol}, 1.5$ equiv.) slowly at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 1 h . The reaction mixture was quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with diethyl ether three times. The combined organic layer was washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude material was purified by silica gel column chromatography (ethyl acetate : hexane $=25: 75$) to give $\mathbf{S} \mathbf{2}$ as a pale yellow solid in 65% yield ($88.6 \mathrm{mg}, 0.51 \mathrm{mmol}$).

S2
IR (neat) $3295,3072,3025,2909,2849,2116,1607,1460,1323,1206,1059,747,637 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=2.03-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{dd}, J=8.6,15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.14(\mathrm{dd}, J=8.0,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.42(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=21.3,35.2,48.9,70.2,80.1,82.5,123.9,124.7,126.9,128.2,141.1,144.2$;
HRMS (FD^{+}): m/z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}\right]^{+}$172.0888, found 172.0884.

To a THF solution (8 ml) of $\mathbf{3 i}$ ($548 \mathrm{mg}, 1.60 \mathrm{mmol}, 1.0$ equiv.) was added TBAF (1 M THF solution, 2.4 ml , 2.4 mmol, 1.5 equiv.) slowly at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 1 h . The reaction mixture was quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with diethyl ether three times. The combined organic layer was washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude material was purified by silica gel column chromatography (ethyl acetate : hexane $=16: 84$) to give $\mathbf{S 3}$ as a white solid in 59% yield ($175 \mathrm{mg}, 0.94 \mathrm{mmol}$).

S3
IR (neat) $3297,3073,3026,2964,2901,2846,2116,1609,1460,1377,1297,1208,1177,1054,741,638 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.11(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=2.3,16.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=2.3,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.17-7.26 (m, 3H), 7.35-7.40 (m, 1H);
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=19.2,28.8,42.5,47.5,70.9,81.1,82.2,124.3,125.0,126.7,128.1,140.6,143.6 ;$
HRMS (FD^{+}): m / z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}\right]^{+}$186.1045, found 186.1042.

ORTEP of S3

- Mechanistic studies

Deuterium-labelling experiment

Propargyl ether $\mathbf{1}_{\mathrm{D}}(96 \%-\mathrm{D})$ was synthesized according to the same procedure for the preparation of $\mathbf{1}$ (see page S2) by using deuterated benzhydrol, which was prepared by the reduction of benzophenone with sodium borodeuteride. Degree of deuteration was determined by integration of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\delta=5.67$ vs 4.16).
Propargyl ether $\mathbf{1}_{\mathbf{D}}$ ' ($>98 \%-\mathrm{D}$) was synthesized by the deuteration of propargyl ether $\mathbf{1}$ by treatment of $\mathbf{1}$ with ${ }^{n} \mathrm{BuLi}$ followed by addition of $\mathrm{D}_{2} \mathrm{O}$. Degree of deuteration was determined by integration of ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta=2.45$ vs 4.16$)$.

A mixture of $\operatorname{ReI}(C O)_{5}(1.7 \mathrm{mg}, 0.0038 \mathrm{mmol}, 3.1 \mathrm{~mol} \%)$, propargyl ether $\mathbf{1}_{\mathrm{D}}(33.8 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.25$ equiv.), and silyl enol ether $2 \mathbf{2 a}\left(32.5 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0\right.$ equiv.) in 1,4-dioxane (1.5 mL) was stirred for 10 h at $100^{\circ} \mathrm{C}$. The reaction mixture was quenched with TMEDA $(0.2 \mathrm{ml})$ and the mixture was concentrated under reduced pressure in vacuo. The crude product was purified by silica gel column chromatography (hexane) to give silyl ether 3ab in 87% yield ($32.5 \mathrm{mg}, 0.104 \mathrm{mmol}$). Degree of deuteration was determined to be 95% by integration of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\delta=3.64 \mathrm{vs} 2.22$).

[^0]

A mixture of $\operatorname{ReI}(C O)_{5}(1.7 \mathrm{mg}, 0.0038 \mathrm{mmol}, 3.1 \mathrm{~mol} \%)$, propargyl ether $\mathbf{1}_{\mathbf{D}}{ }^{\prime}(33.5 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.25$ equiv. $)$, and silyl enol ether $\mathbf{2 a}\left(32.5 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0\right.$ equiv.) in 1,4-dioxane (1.5 mL) was stirred for 10 h at $100^{\circ} \mathrm{C}$. The reaction mixture was quenched with TMEDA $(0.2 \mathrm{ml})$ and the mixture was concentrated under reduced pressure in vacuo. The crude product was purified by silica gel column chromatography (hexane) to give silyl ether 3ad' in 73% yield $(27.3 \mathrm{mg}, 0.088 \mathrm{mmol})$. Degree of deuteration was determined to be 93% by integration of ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta=1.79 \mathrm{vs}$ 3.68)Loss of deuterium (ca. 5\%) probably occurred during the reaction by exchange with a small amount of $\mathrm{H}_{2} \mathrm{O}$ in the solvent. $\mathrm{C}_{6} \mathrm{D}_{6}$ was used as a deuterated solvent to determine the deuteration ratio of $\mathbf{3} \mathbf{a}_{\mathbf{D}}$. Chemical shifts of $\mathbf{3} \mathbf{a}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ was shown below.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right) \delta=0.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.13-1.18$ $(\mathrm{m}, 21 \mathrm{H}), 1.79(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=16.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=16.6,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$

Cross-over experiment

>98\%-D
A mixture of $\operatorname{ReI}(C O)_{5}(1.7 \mathrm{mg}, 0.0038 \mathrm{mmol}, 3.1 \mathrm{~mol} \%)$, propargyl ether $\mathbf{1}_{\mathbf{D}}(16.7 \mathrm{mg}, 0.075 \mathrm{mmol}, 0.50$ equiv.), propargyl ether 10' ($16.6 \mathrm{mg}, 0.075 \mathrm{mmol}, 0.50$ equiv.), and silyl enol ether $\mathbf{2 a}$ ($40.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv.) in 1,4-dioxane (1.5 mL) was stirred for 10 h at $100^{\circ} \mathrm{C}$. The reaction mixture was quenched with TMEDA (0.2 ml) and the mixture was concentrated under reduced pressure in vacuo. The crude material was filtered through silica gel column chromatography (hexane) to afford a mixture of silyl ethers 3a $\mathbf{3 a}_{\mathbf{D}}$, 3ab' and unreacted silyl enol ether 2a. The yield of the product was estimated by integration of ${ }^{1} \mathrm{H}$ NMR to be 53%, and the ratio of $\mathbf{3} \mathbf{a}_{\mathrm{D}}$ and $\mathbf{3} \mathrm{a}_{\mathrm{D}}$ ' was about $6: 4$. The isotope ratio was determined by GC-MS.
A theoretical isotope ratio was calculated by following formula: $\%(\mathrm{M}+1)=\left(1.1 \times \mathrm{C}_{n}\right)+\left(5.1 \times \mathrm{Si}_{n}\right)=(1.1 \times 16)+(5.1)$ $=22.7 \%$.
An actual isotope ratio was determined by comparing intensity of $\mathrm{m} / \mathrm{z}=268$ ($\mathbf{3 a b}_{\mathrm{D}}{ }^{i} \mathrm{Pr}$ and $\mathbf{3 a b}^{\prime}{ }^{\prime}-{ }^{i} \mathrm{Pr}$) with $\mathrm{m} / \mathrm{z}=269$: $100 \times 8.22 / 36.17=22.73 \%$, which coincided with the theoretical value.
This result suggested that di-deuterated product was not formed to an appreciable amount and hydride transfer occurred in an intramolecular manner.

Isomerization of $\mathbf{3 g}$

A mixture of $\operatorname{ReI}(\mathrm{CO})_{5}(1.0 \mathrm{mg}, 0.0022 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and $\mathbf{3 g}$-major ($0.011 \mathrm{mmol}, 1.25$ equiv.) in 1,4-dioxane $(0.75 \mathrm{~mL})$ was stirred for 13 h at $100^{\circ} \mathrm{C}$. The reaction mixture was quenched with TMEDA $(0.2 \mathrm{ml})$ and the reaction mixture was concentrated under reduced pressure in vacuo. The crude product was purified by silica gel column chromatography to give $\mathbf{3 g}$ as a colorless oil in 69% yield ($2.4 \mathrm{mg}, 0.0078 \mathrm{mmol}$). Diastereomer ratio was determined by ${ }^{1} \mathrm{H}$-NMR (d.r. $=67$: 33).

Isomerization of 3g-Me

To a THF solution (6 ml) of $\mathbf{3 g}$-major ($90.3 \mathrm{mg}, 0.29 \mathrm{mmol}, 1.0$ equiv.) was added ${ }^{n} \operatorname{BuLi}(1.6 \mathrm{M}$ THF solution, 280 $\mu \mathrm{l}, 0.44 \mathrm{mmol}, 1.5$ equiv.) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 3 h . MeI ($36 \mu \mathrm{l}, 0.59 \mathrm{mmol}$, 2.0 equiv.) was added slowly to the reaction mixture at $-78^{\circ} \mathrm{C}$ and the resulting mixture was gradually warmed up to room temperature over 4 h with stirring. The reaction mixture was quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with diethyl ether three times. The combined organic layer was washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude mixture was purified by silica gel column chromatography (hexane) to give $\mathbf{3 g}$-Me as a colorless oil in 71% yield ($63.2 \mathrm{mg}, 0.21 \mathrm{mmol}$).

IR (neat) 2926, 2865, 2236, 1462, 1384, 1248, 1098, 1064, 998, 884, $677 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.07(\mathrm{~s}, 21 \mathrm{H}), 1.23-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.82(\mathrm{~m}, 7 \mathrm{H}), 1.77(\mathrm{t}, J=2.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.10-$ $2.19(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.32(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{dt}, J=6.3,2.9 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=3.49,12.8,18.2,18.3,21.5,23.7,25.7,28.8,28.9,34.9,46.9,75.6,76.0,78.4 ;$
HRMS (FD^{+}): m/z calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{OSi}\right]^{+} 323.2770$, found 323.2774.

quant. (NMR yield)
A mixture of $\operatorname{ReI}(C O)_{5}(1.1 \mathrm{mg}, 0.0025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$) and $\mathbf{3 g - M e}(32.5 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.25$ equiv.) in $1,4-$ dioxane (1.0 mL) was stirred for 10 h at $100^{\circ} \mathrm{C}$. The reaction mixture was quenched with TMEDA (0.2 ml) and the reaction mixture was concentrated under reduced pressure in vacuo. The starting material was recovered without change in nearly quantitative yield as judged by ${ }^{1} \mathrm{H}$-NMR analysis of the crude product using 1,1,2,2-tetrachloroethane as the internal standard.

- Intramolecular hydropropargylation reaction

Synthesis of substrate.

S4a ${ }^{[10]}$ and $\mathbf{S 4 b}{ }^{[11]}$ were prepared according to the reported procedures.

Synthesis of alcohol S5a and S5b.

Typical procedure was described for preparation of S5a.
To a THF solution (30 ml) of triisopropylsilylacetylene (12 ml , 53 mmol , 1.1 equiv.) was added ${ }^{n} \mathrm{BuLi}$ (1.6 M THF solution, $33 \mathrm{ml}, 53 \mathrm{mmol}, 1.1$ equiv.) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 30 min . A THF solution (18 ml) of aldehyde $\mathbf{S 4 a}\left(9.0 \mathrm{~g}, 48 \mathrm{mmol}, 1.0\right.$ equiv.) was added slowly to the reaction mixture at $-78^{\circ} \mathrm{C}$ and the resulting mixture was gradually warmed up to room temperature over 2 h with stirring. The reaction mixture was quenched with water and the aqueous layer was extracted with ethyl acetate three times. The combined organic layer was washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude alcohol was used for the next reaction without further purification.
To a THF suspension (100 ml) of sodium hydride ($60 \%, 2.5 \mathrm{~g}, 62 \mathrm{mmol}, 1.3$ equiv.) was added a THF solution (20 ml) of crude alcohol at $0^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 30 min . Benzyl bromide (6.8 ml , $58 \mathrm{mmol}, 1.2$ equiv.) was added slowly to the reaction mixture at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred at room temperature for 16 h . The reaction mixture was quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with ethyl acetate three times. The combined organic layer was washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude propargyl ether was used for the next reaction without further purification.
To an acetone $(152 \mathrm{ml})$ and water $(8 \mathrm{ml})$ solution of crude propargyl ether was added p-toluenesulfonic acid monohydrate ($3.7 \mathrm{~g}, 19 \mathrm{mmol}, 0.4$ equiv.) and the solution was stirred at room temperature for 4 h . Pyridine ($1.6 \mathrm{ml}, 19 \mathrm{mmol}$, 0.4 equiv.) was added to the reaction mixture and the solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate, which was washed with brine. The organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude material was purified by silica gel column chromatography (ethyl acetate : hexane $=25: 75$) to give alcohol $\mathbf{S 5 a}$ as a yellow oil in 61% yield (in 3 steps, $10 \mathrm{~g}, 29 \mathrm{mmol}$).

S5a
Spectral data were in good agreement with literature values. ${ }^{[12]}$

S5b
S4b ($10 \mathrm{~g}, 50 \mathrm{mmol}$) was used. a yellow oil ($12 \mathrm{~g}, 33 \mathrm{mmol}, 66 \%$ yield in 3 steps).
IR (neat) 3437, 3032, 2943, 2892, 2865, 2163, 1462, 1381, 1054, 882, 736, $676 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.11(\mathrm{~s}, 21 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{ddd}, J=3.5,6.0,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{ddd}, J=4.0$, $8.5,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.80-3.88(\mathrm{~m}, 1 \mathrm{H}), 4.06-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=11.0$ Hz, 1H), 7.26-7.38 (m, 5H);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=11.0,18.5,26.8,44.2,60.1,66.6,75.1,87.4,107.9,127.6,127.8,128.2,138.3$; HRMS (FD ${ }^{+}$): m/z calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{Si}^{+} 361.2563\right.$, found. 361.2565

Synthesis of malonate S6a and S6b.

Typical procedure was described for preparation of S6a.

To a DMF solution (145 ml) of alcohol S5a ($10 \mathrm{~g}, 29 \mathrm{mmol}, 1.0$ equiv.) and N, N-diisopropylethylamine ($8.6 \mathrm{ml}, 49$ mmol, 1.7 equiv.) was added methanesulfonyl chloride ($3.4 \mathrm{ml}, 44 \mathrm{mmol}, 1.5$ equiv.) slowly at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature overnight. To the reaction mixture was added lithium bromide ($13 \mathrm{~g}, 145 \mathrm{mmol}, 5.0$ equiv.) and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 7 h . The reaction mixture was quenched with water and the aqueous layer was extracted with diethyl ether three times. The combined organic layer was washed with water and brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude alkyl bromide was used for the next reaction without further purification.
To a DMF suspension (84 ml) of sodium hydride ($60 \%, 1.1 \mathrm{~g}, 27 \mathrm{mmol}, 1.1$ equiv.) was slowly added a DMF solution $(20 \mathrm{ml})$ of diethyl malonate ($4.4 \mathrm{~g}, 27 \mathrm{mmol}, 1.1$ equiv.) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 30 \min. A DMF solution (20 ml) of the crude alkyl bromide and tetrabutylammonium iodide ($2.7 \mathrm{~g}, 7,4 \mathrm{mmol}, 30 \mathrm{~mol} \%$) was added to the reaction mixture and the resulting mixture was stirred at $120^{\circ} \mathrm{C}$ for 8 h . The reaction mixture was quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with diethyl ether three times. The combined organic layer was washed with water and brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude malonate was used for the next reaction without further purification.
To a THF solution (49 ml) of the crude malonate was added TBAF (1 M THF solution, $30 \mathrm{ml}, 30 \mathrm{mmol}, 1.2$ equiv.) slowly at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 1 h . The reaction mixture was quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with ethyl acetate three times. The combined organic layer was washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude material was purified by silica gel column chromatography (ethyl acetate : hexane $=10: 90$) to give malonate S6a as a yellow oil in 65% yield (in 3 steps, $6.3 \mathrm{~g}, 19 \mathrm{mmol}$).

S6a
IR (neat) $3278,2981,2938,2870,2112,1731,1453,1370,1301,1253,1157,1095,1027,859,699 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.74-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.16(\mathrm{~m}$, $2 \mathrm{H}), 2.49(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dt}, J=1.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.26(\mathrm{~m}, 4 \mathrm{H}), 4.49(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.39(\mathrm{~m}, 5 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=14.1,24.5,33.1,51.5,61.4,67.8,70.5,74.4,82.1,127.7,128.0,128.4,137.6,169.2$; HRMS (FD^{+}): m/z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{5}\right]^{+} 332.1624$, found. 332.1617

S6b
S5b ($12 \mathrm{~g}, 33 \mathrm{mmol}$) was used. a yellow oil ($5.4 \mathrm{~g}, 16 \mathrm{mmol}, 48 \%$ yield in 3 steps).
IR (neat) 3277, 3064, 3032, 2982, 2937, 2871, 2108, 1731, 1452, 1371, 1179, 1055, 737, $697 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.88(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~s}$, $1 \mathrm{H}), 3.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.26(\mathrm{~m}, 4 \mathrm{H}), 4.58(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.29(\mathrm{~m}$, 1H), 7.30-7.38 (m, 4H);
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=14.1,23.7,26.2,39.0,51.8,61.3,66.2,73.1,73.9,84.5,127.3,127.6,128.3,138.8$, 169.3;

HRMS (FD^{+}): m/z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{5}\right]^{+} 346.1780$, found. 346.1779

Synthesis of 5a and 5b.

Typical procedure was described for preparation of 5a.

Solution 1: To a THF suspension (3 ml) of sodium hydride ($60 \%, 60 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5$ equiv.) was added a THF solution (2 ml) of malonate $\mathbf{S 6 a}$ ($365 \mathrm{mg}, 1.1 \mathrm{mmol}, 1.1$ equiv.) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 45 min .
Solution 2: To a THF solution (5 ml) of cyclohexenone ($100 \mu \mathrm{l}, 1.0 \mathrm{mmol}, 1.0$ equiv.) was added $\operatorname{TIPSOTf}(300 \mu \mathrm{l}, 1.1$ $\mathrm{mmol}, 1.1$ equiv.) slowly at $0^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 30 min . Solution 1 was added slowly to solution 2 with syringe at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 3.5 h . The reaction mixture was quenched with sat. aqueous NaHCO_{3} and the aqueous layer was extracted with ethyl acetate three times. The combined organic layer was washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude material was purified by silica gel column chromatography (ethyl acetate : hexane =5:95) to give the silyl enol ether $5 \mathbf{5}$ as a yellow oil in 72% yield ($422 \mathrm{mg}, 0.72 \mathrm{mmol}$).

Diastereomer ratio was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (d.r. = ca. 50 : 50).
IR (neat) $3304,3063,3032,2942,2867,2759,2112,1726,1663,1461,1370,1194,1096,883,739,685 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.06(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 18 \mathrm{H}), 1.09-1.21(\mathrm{~m}, 3 \mathrm{H}), 1.21-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.26-1.34(\mathrm{~m}, 1 \mathrm{H})$, $1.49-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.90-2.18(\mathrm{~m}, 4 \mathrm{H}), 2.46(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.47(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.92-$ $2.99(\mathrm{~m}, 1 \mathrm{H}), 4.03-4.09(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.21(\mathrm{~m}, 4 \mathrm{H}), 4.50(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.79(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 0.5 \mathrm{H}$), $4.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.26-7.37(\mathrm{~m}, 5 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.4,14.02,14.04,17.9,22.5,24.1,28.2,29.5,30.8,30.9,39.47,39.51,60.7,60.78$, $60.82,68.4,70.28,70.30,74.06,74.12,82.25,82.27,104.1,127.6,127.8,128.3,137.7,151.9,170.78,170.80$;
HRMS (FD ${ }^{+}$: m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{34} \mathrm{H}_{53} \mathrm{O}_{6} \mathrm{Si}^{+}{ }^{+} 585.3611\right.$, found 585.3613

a yellow oil ($467 \mathrm{mg}, 0.78 \mathrm{mmol}, 78 \%$ yield). Diastereomer ratio was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (d.r. = ca. $50: 50$). IR (neat) $3305,3064,3031,2942,2867,2726,2108,1727,1663,1462,1370,1197,1065,914,883,736,686 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 18 \mathrm{H}), 1.09-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.26-1.36(\mathrm{~m}, 1 \mathrm{H})$, $1.50(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{dt}, J=4.5,13.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.74-1.86(\mathrm{~m}, 3.5 \mathrm{H}), 1.94(\mathrm{br} \mathrm{dd}, J=5.5,17.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.02-2.17(\mathrm{~m}, 2.5 \mathrm{H}), 2.21(\mathrm{dt}, J=4.5,13.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.485(\mathrm{~s}, 0.5 \mathrm{H}), 2.489(\mathrm{~s}, 0.5 \mathrm{H}), 2.91-2.98(\mathrm{~m}, 1 \mathrm{H}), 4.10-$
$4.26(\mathrm{~m}, 4 \mathrm{H}), 4.59(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.22-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.36(\mathrm{~m}$, 4H);
${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.4,14.1,18.0,22.5,24.1,24.2,26.1,26.2,27.4,27.5,29.6,36.2,36.3,39.3,39.4$, $60.7,60.79,60.83,66.0,73.19,73.23,73.6,73.7,84.7,84.8,104.1,104.3,127.2,127.5,128.2,138.9,151.86,151.92$, 170.9;

HRMS (FD^{+}): m/z calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{35} \mathrm{H}_{55} \mathrm{O}_{6} \mathrm{Si}^{+}\right.$599.3768, found 599.3776

Synthesis of 5c.

S5a

1) $\mathrm{MsCl}, \mathrm{NEt}_{3} ; \mathrm{LiBr}$
2) NaH ,

To a DMF solution (20 ml) of alcohol $\mathbf{S 5 a}(1.4 \mathrm{~g}, 4.0 \mathrm{mmol}, 1.0$ equiv.) and N, N-diisopropylethylamine ($1.2 \mathrm{ml}, 6.8$ mmol, 1.7 equiv.) was added methanesulfonyl chloride ($0.46 \mathrm{ml}, 6.0 \mathrm{mmol}, 1.5$ equiv.) slowly at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature overnight. To the reaction mixture was added lithium bromide ($1.7 \mathrm{~g}, 20 \mathrm{mmol}, 5.0$ equiv.) and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 7 h . The reaction mixture was quenched with water and the aqueous layer was extracted with diethyl ether three times. The combined organic layer was washed with water and brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude alkyl bromide was used for the next reaction without further purification.
To a DMF solution (10 ml) of sodium hydride $(60 \%, 180 \mathrm{mg}, 4.4 \mathrm{mmol}, 1.1$ equiv.) was added a DMF solution (10 ml) of ethyl 2-oxocyclohexanecarboxylate ($0.70 \mathrm{ml}, 4.4 \mathrm{mmol}, 1.1$ equiv.) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 30 min . A DMF solution $(10 \mathrm{ml})$ of the crude alkyl bromide and tetrabutylammonium iodide (440 mg , $1,2 \mathrm{mmol}, 30 \mathrm{~mol} \%$) was added to the reaction mixture and the resulting mixture was stirred at $120^{\circ} \mathrm{C}$ for 10 h . The reaction mixture was quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with diethyl ether three times. The combined organic layer was washed with water and brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude β-keto ester was used for the next reaction without further purification.
To a THF solution (8 ml) of the crude β-keto ester was added TBAF (1 M THF solution, $4.8 \mathrm{ml}, 4.8 \mathrm{mmol}, 1.2$ equiv.) slowly at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 1 h . The reaction mixture was quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with ethyl acetate three times. The combined organic layer was washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude material was filtered through silica gel column chromatography (ethyl acetate/hexane $=1 / 9$), and the obtained material was used for the next reaction without further purification.
To a dichloromethane solution (40 ml) of the crude material and 2,6-lutidine ($4.6 \mathrm{ml}, 40 \mathrm{mmol}, 10$ equiv.) was added $\operatorname{TIPSOTf}\left(1.6 \mathrm{ml}, 6.0 \mathrm{mmol}, 1.5\right.$ equiv.) slowly at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 24 h . The reaction mixture was quenched with sat. aqueous NaHCO_{3} and the aqueous layer was extracted with dichloromethane three times. The combined organic layer was dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude material was purified by silica gel column chromatography (ethyl acetate : hexane $=10: 90$) to give silyl enol ether $5 \mathbf{c}$ as a yellow oil in 23% yield (in 4 steps, $460 \mathrm{mg}, 0.92 \mathrm{mmol}$).

Diastereomer ratio was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (d.r. $=58: 42$).
IR (neat) $3306,3032,2943,2867,2759,2720,2111,1728,1662,1460,1188,927,882,738,684 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.02-1.10(\mathrm{~m}, 18 \mathrm{H}), 1.12-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-1.71(\mathrm{~m}, 3 \mathrm{H})$,
$1.73-2.09(\mathrm{~m}, 7 \mathrm{H}), 2.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.42 \mathrm{H}), 2.46(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.58 \mathrm{H}), 4.00-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.50$ $(\mathrm{d}, J=11.5 \mathrm{~Hz}, 0.42 \mathrm{H}), 4.51(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.58 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 0.58 \mathrm{H}), 4.80(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.42 \mathrm{H}), 4.83-$ $4.87(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.38(\mathrm{~m}, 4 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.8,14.2,18.1,18.2,19.2,23.9,30.7,30.81,30.83,31.7,31.8,50.3,60.4,68.9,69.0$, $70.35,70.38,73.8,73.9,82.8,103.2,127.6,127.9,128.0,128.3,137.9,138.0,149.8,175.5$; HRMS (FD ${ }^{+}$): m/z calcd for $[M]^{+}\left[\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Si}\right]^{+} 498.3165$, found 498.3169

Synthesis of 5d.

S6a

Solution 1: To a THF suspension (3 ml) of sodium hydride ($60 \%, 80 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0$ equiv.) was added a THF solution (2 ml) of S6a ($500 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5$ equiv.) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 45 min.
Solution 2: To a THF solution (5 ml) of benzalacetone ($150 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv.) was added TIPSOTf ($400 \mu \mathrm{l}$, $1.5 \mathrm{mmol}, 1.5$ equiv.) and dimethyl sulfide ($220 \mu \mathrm{l}, 3.0 \mathrm{mmol}, 3$ equiv.) slowly at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 30 min . Solution 1 was added slowly to solution 2 with syringe at $-78{ }^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 5 h . The reaction mixture was quenched with sat. aqueous NaHCO_{3} and the aqueous layer was extracted with ethyl acetate three times. The combined organic layer was washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude material was purified by silica gel column chromatography (ethyl acetate : hexane $=5: 95$) and GPC (AcOEt) to give silyl enol ether $\mathbf{5 d}$ as a yellow oil in 42% yield ($260 \mathrm{mg}, 0.42 \mathrm{mmol}$).

Diastereomer ratio was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (d.r. $=50: 50$)
IR (neat) $3285,3087,3063,3030,2944,2867,2758,2112,1728,1659,1458,1384,1194,1030,883,699 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}), 1.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}), 1.13-1.25(\mathrm{~m}, 9 \mathrm{H}), 1.61-2.10(\mathrm{~m}$, $4 \mathrm{H}), 1.757(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.763(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1.5 \mathrm{H}), 2.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.46(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 0.5 \mathrm{H})$, $3.94-4.03(\mathrm{~m}, 2 \mathrm{H}), 4.06-4.25(\mathrm{~m}, 4 \mathrm{H}), 4.476(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.481(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.76(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $0.5 \mathrm{H}), 4.77(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.38-5.43(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.38(\mathrm{~m}, 5 \mathrm{H})$;
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.5,13.9,17.9,18.0,31.1,31.21,31.23,49.2,49.3,60.87,60.92,62.1,62.2,68.2$, $68.3,70.2,73.9,74.1,82.2,82.3,105.58,105.61,126.5,127.6,127.8,127.86,127.89,128.3,129.0,129.1,137.72$, $137.74,140.8,150.0,170.1,170.2,170.48,170.53$;
HRMS (FD^{+}): m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{O}_{6} \mathrm{Si}^{+} 635.3768\right.$, found 635.3762

General procedure for intramolecular hydropropargylation

A mixture of $\operatorname{ReI}(\mathrm{CO})_{5}(2.3 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and silyl enol ether $(0.10 \mathrm{mmol})$ in 1,4-dioxane (1.0 ml) was stirred for 5 h at $100^{\circ} \mathrm{C}$. The reaction mixture was quenched with TMEDA $(0.2 \mathrm{ml})$ and concentrated under reduced pressure in vacuo. The crude material was purified by silica gel column chromatography (ethyl acetate : hexane $=5$: $95)$ to give the product.

6a
a white solid. ($38.2 \mathrm{mg}, 0.080 \mathrm{mmol}, 80 \%$). Diastereomer ratio was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (d.r. $=88: 12$). The stereochemistry of the product was determined by NOE of the desilylated compound $\mathbf{S 7}$ (see page S 18).
IR (neat) 3306, 2940, 2866, 2109, 1734, 1462, 1234, 1096, 1035, 882, $680 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=0.90-1.16(\mathrm{~m}, 22 \mathrm{H}), 1.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.66(\mathrm{~m}$, $3 \mathrm{H}), 1.72-2.00(\mathrm{~m}, 3 \mathrm{H}), 2.02-2.50(\mathrm{~m}, 4 \mathrm{H}), 2.04(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 0.12 \mathrm{H}), 2.14(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 0.88 \mathrm{H}), 2.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.89(\mathrm{dt}, J=4.0,14.0 \mathrm{~Hz}, 0.88 \mathrm{H}) 2.94-3.01(\mathrm{~m}, 0.12 \mathrm{H}), 3.94(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.88 \mathrm{H}), 4.06-4.26(\mathrm{~m}, 4 \mathrm{H}), 4.45(\mathrm{br} \mathrm{s}$, 0.12 H);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
Major isomer $\delta=12.3,14.0,14.1,18.1,18.2,20.4,23.0,23.6,27.7,29.2,29.5,35.1,42.3,59.0,60.96,60.98,71.4$, 72.3, 88.5, 170.9, 171.3;

Minor isomer $\delta=12.3,14.0,14.1,18.1,18.2,19.7,25.7,26.8,28.1,29.9,34.0,44.5,58.7,61.08,61.13,68.5,69.9$, 86.5, 170.3, 171.0;

HRMS (FD^{+}): m/z calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{O}_{5} \mathrm{Si}^{+} 479.3193\right.$, found 479.3192

6b
a white solid. ($34.3 \mathrm{mg}, 0.070 \mathrm{mmol}, 70 \%$). The stereochemistry of the product was determined by X-ray crystal structure analysis.
IR (neat) $3305,2866,2103,1734,1462,1237,1147,1038,882,680 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=0.89-0.96(\mathrm{~m}, 1 \mathrm{H}), 1.04-1.30(\mathrm{~m}, 31 \mathrm{H}), 1.45-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.96-$ $2.13(\mathrm{~m}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H}), 2.33-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{dt}, J=13.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}) 4.06-4.24(\mathrm{~m}, 4 \mathrm{H}), 4.27(\mathrm{br} \mathrm{d}, J=1.7 \mathrm{~Hz}$, 1H);
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.3,14.0,14.1,18.1,18.2,20.0,23.0,24.2,28.8,30.7,31.7,34.9,39.0,48.6,59.2$, 60.87, 60.93, 67.4, 72.6, 91.6, 170.8, 171.3;

HRMS (FD^{+}): m/z calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{28} \mathrm{H}_{49} \mathrm{O}_{5} \mathrm{Si}\right]^{+} 493.3349$, found 493.3358

ORTEP of $\mathbf{6 b}$

a white solid ($32.1 \mathrm{mg}, 0.082 \mathrm{mmol}, 82 \%$). The stereochemistry of the product was determined by X-ray crystal structure analysis.
IR (neat) $3309,2942,2866,2111,1728,1462,1239,1102,884,803,677 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=1.01-1.10(\mathrm{~m}, 21 \mathrm{H}), 1.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.84(\mathrm{~m}, 5 \mathrm{H})$, $2.03-2.16(\mathrm{~m}, 3 \mathrm{H}), 2.13(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{br} \mathrm{d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dq}, J=7.0,11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.17$ (dq, $J=7.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.8,14.0,18.17,18.21,20.3,23.6,25.5,26.3,32.3,33.2,39.9,47.3,60.3,69.2,70.1$, 87.8, 177.0;

HRMS (FD^{+}): m/z calcd for $\left[\mathrm{M}_{-}{ }^{i} \mathrm{Pr}\right]^{+}\left[\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}\right]^{+} 349.2199$, found 349.2194

6d-major

6d-minor

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{b}}=12 \mathrm{~Hz} \\
& \mathrm{H}_{\mathrm{b}}-\mathrm{H}_{\mathrm{c}}=12 \mathrm{~Hz}
\end{aligned}
$$

6d-major: a white solid. 6d-minor: a colorless oil. ($32.6 \mathrm{mg}, 0.062 \mathrm{mmol}, 62 \%$). Diastereomer ratio was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (d.r. $=84: 16$). These compounds were separated by GPC (AcOEt). The stereochemistry of $\mathbf{6 d}$-major was determined by X-ray crystal structure analysis. The stereochemistry of the three contiguous stereogenic centers on the cyclohexane ring of $\mathbf{6 d}$-minor was proposed by the coupling constant as shown above and the stereochemistry of OTIPS group on the side chain was not determined.

6d-major

IR (neat) 3309, 2941, 2866, 2111, 1725, 1464, 1368, 1254, 1154, 1064, 884, $679 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=0.73-0.88(\mathrm{~m}, 3 \mathrm{H}), 0.89-1.00(\mathrm{~m}, 21 \mathrm{H}), 1.09(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.80-1.93(\mathrm{~m}, 2 \mathrm{H}), 2.08,(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dt}, J=13.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.69(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.19(\mathrm{~m}, 1 \mathrm{H})$, $3.66(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dq}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-4.03(\mathrm{~m}, 2 \mathrm{H}), 4.03-4.13(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.22(\mathrm{~m}, 3 \mathrm{H})$, 7.38 (br s, 2H);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.9,13.5,13.8,18.2,18.4,22.0,27.1,29.0,30.0,44.9,47.6,60.3,60.7,61.0,68.0$, 71.7, 86.0, 126.5, 127.2, 129.9 (br), 132.3 (br), 138.7, 171.0, 171.7;

HRMS (FD^{+}): m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{O}_{5} \mathrm{Si}^{+} 529.3349\right.$, found 529.3362

6d-minor

IR (neat) $3309,2942,2865,2113,1726,1458,1367,1261,1160,1063,884,703 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=0.71(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.99-1.09(\mathrm{~m}, 21 \mathrm{H}), 1.19(\mathrm{t}, J=6.8$
$\mathrm{Hz}, 3 \mathrm{H}), 1.60-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{t}$,
$J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dq}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dq}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{br}, 2 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=12.6,13.4,14.0,18.2,18.3,22.4,28.7,31.8,33.5,47.7,50.5,60.6,60.7,61.0,69.4$, $70.0,87.9,126.8,127.4,130.4$ (br), 131.9 (br), 140.1, 170.6, 171.6;
HRMS (FD^{+}): m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{O}_{5} \mathrm{Si}^{+}\right]^{+} 529.3349$, found 529.3349

ORTEP of 6d-major

Determination of the stereochemistry of decalin 6a.

To a THF solution (3 ml) of $\mathbf{6 a}(92 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.0$ equiv.) was added TBAF (1 M THF solution, $960 \mu \mathrm{l}, 0.96$ mmol, 5.0 equiv.) slowly at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 24 h . The reaction mixture was quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with ethyl acetate three times. The combined organic layer was washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure. The crude material was purified by silica gel column chromatography (ethyl acetate : hexane $=50: 50$) and GPC (AcOEt) to give major diastereomer of $\mathbf{S} 7$ as a yellow oil in 30% yield ($18 \mathrm{mg}, 0.057 \mathrm{mmol}$). The stereochemistry of the product was determined by NOE as shown below.

S7
IR (neat) $3526,3284,2932,2868,2106,1729,1449,1238,1176,626 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta=0.95-1.05(\mathrm{~m}, 1 \mathrm{H}), 1.225(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.228(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.45(\mathrm{~m}$, $1 \mathrm{H}), 1.54-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.88(\mathrm{dq}, J=13.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{dq}, J=4.0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{br} \mathrm{d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.15(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.41(\mathrm{dt}, J=3.0,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.83(\mathrm{dt}, J$ $=13.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{br} \mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.26(\mathrm{~m}, 4 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta=14.0,14.1,20.3,22.8,23.2,27.6,27.9,29.3,35.2,41.6,58.6,61.1,61.3,70.9,72.5$, 87.9, 170.9, 171.1;

HRMS (FD^{+}): m/z calcd for $[\mathrm{M}]^{+}\left[\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{5}\right]^{+} 322.1780$, found 322.1786

4. Reference

(1) Darst, K. P.; Lukehart, C. M. J. Organometal. Chem. 1979, 171, 65.
(2) Nanteuil, de. F.; Waser, J. Angew. Chem. Int. Ed. 2011, 50, 12075.
(3) Yu, J.-Q.; Wu, H.-C.; Corey, E. J. Org. Lett. 2005, 7, 1415.
(4) Magnus, P.; Lacour, J. J. Am. Chem. Soc. 1992, 114, 767.
(5) Luttikhedde, H. J. G.; Leino, R.; Lehtonen, A.; Näsman, J. H. Organomet. Chem. 1998, 555, 127.
(6) Liu, H.-J.; Wang, D.-X.; Kim, J. B.; Browne, E. N. C.; Wang, Y. Can. J. Chem. 1997, 75, 899.
(7) Ovaska, T. V.; Reisman, S. E.; Flynn, M. A. Org. Lett. 2001, 3, 115.
(8) Seo, S. Y.; Yu, X.; Marks, T. J. J. Am. Chem. Soc. 2009, 131, 263.
(9) Lavinda, O.; Tran, V. T.; Woerpel, K. A. Org. Biomol. Chem. 2014, 12, 7083.
(10) Marshall, J. A.; Van Devender, E. A. J. Org. Chem. 2001, 66, 8037.
(11) Liu, J. L.; Seo, R. S.; Yoo, S. W.; Choi, J.; Hong, J. H. Bull. Korean Chem. Soc. 2010, 31, 915.
(12) Lee, H.-J.; Lim, C.; Hwang, S.; Jeong, B.-S.; Kim, S. Chem. Asian J. 2011, 6, 1943.

X : parts per Million : Proton

X : parts per Million : Proton

[^0]:

