Supporting Information

Mixing-to-Answer Iodide Sensing with Commercial Chemicals

Yuexiao Jia,^{†,‡} Wenshu Zheng,^{†,‡} Xiaohui Zhao,[†] Jiangjiang Zhang,^{†,‡} Wenwen Chen,[†] and Xingyu Jiang*,^{†,‡}

Contents:

Figure S1 Color changes of HAuCl₄, the mixture of HAuCl₄ and PEI, and Au/PEI in the absence and presence of iodide

Figure S₂ Color changes of Au/PEI, Au/PL, Au/PVP and Au/PEG in the absence and presence of iodide (20 μM).

Figure S₃ Color changes of Au/PEI with different ratio of PEI and HAuCl₄ in response to iodide.

Figure S₄ Color changes of Au/PEI prepared at different temperature for different length of time in response to iodide.

Figure S5 Selectivity of Au/PEI and Au/PEI/GH.

Figure S6 Au/PEI/GH micro-pipette tips and Au/PEI/GH tube for iodide sensing.

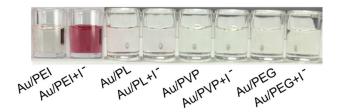
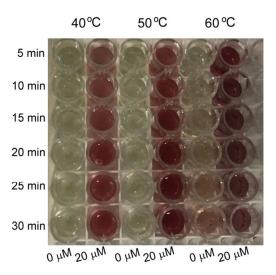
[†] Beijing Engineering Research Center for BioNanotechnology & Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, China.

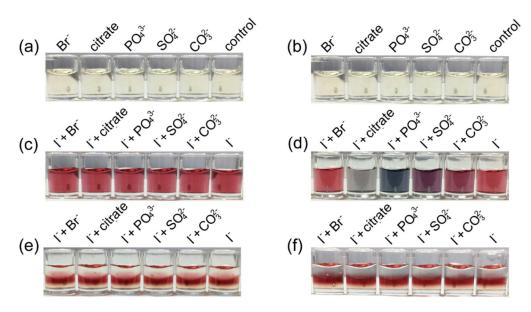
[‡] University of Chinese Academy of Sciences, Beijing 100049, China.

^{*}Correspondence: xingyujiang@nanoctr.cn.

			(i) p		(p	
HAuCl ₄	+	+	+	+	+	+
PEI			+	+	+	+
Incubation					+	+
Ī-		+		+		+

Figure S₁ Color changes of HAuCl₄, the mixture of HAuCl₄ and PEI, and Au/PEI in the absence and presence of iodide.


Figure S2 Color changes of Au/PEI, Au/PL, Au/PVP and Au/PEG in the absence and presence of iodide (20 μ M). Au/PL, Au/PVP and Au/PEG are fabricated following the same protocol as Au/PEI's by incubating HAuCl₄ with poly-lysine (PL), polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG) at 60 °C for 5 min.

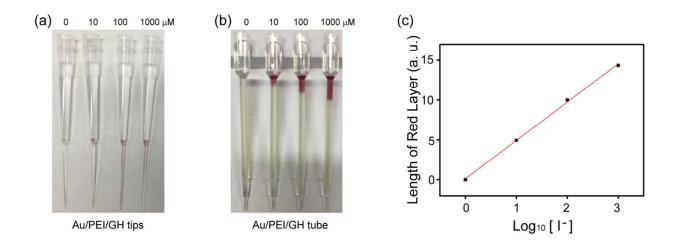

Figure S₃ Color changes of Au/PEI with different ratio of PEI and HAuCl₄ including 2.5 (Au/PEI_{2.5}), 5 (Au/PEI₅), 10 (Au/PEI₁₀) and 20 (Au/PEI₂₀) in the absence and presence of iodide (20 μ M).

Figure S₄ Color changes of Au/PEI prepared at different temperature for different length of time in response to iodide.

Figure S5 Selectivity of Au/PEI and Au/PEI and Au/PEI in the presence of (a) 100 μM and (b) 500 μM anions including Br citrate, $PO_4^{3^-}$, $SO_4^{2^-}$ and $CO_3^{2^-}$. Au/PEI in the presence of the mixture of Γ (20 μM) and (c) 100 μM and (d) 500 μM anions including Br citrate, $PO_4^{3^-}$, $SO_4^{2^-}$ and $CO_3^{2^-}$. Au/PEI/GH in the presence of the mixture of Γ (20 μM) and (e) 100 μM and (f) 500 μM anions including Br citrate, $PO_4^{3^-}$, $SO_4^{2^-}$ and $CO_3^{2^-}$.

Figure S6 Length-based devices based on Au/PEI/GH. (a) Au/PEI/GH micro-pipette tips and (b) Au/PEI/GH tube for iodide sensing. (c) Linear relationship of the length of red layers of Au/PEI/GH tube to Log₁₀[Γ].