Physical Behavior of the Phases from the Liquid–Liquid Equilibrium of Citrus Essential Oils Systems at 298.2 K

Daniel Gonçalves,* Mayara F. Paludetti, Priscila M. Florido, Camila Tonetti, Cintia B. Gonçalves,* and Christianne E. C. Rodrigues*

Separation Engineering Laboratory (LES), Department of Food Engineering (ZEA/FZEA), University of Sao Paulo (USP), Avenida Duque de Caxias Norte 225, 13635-900 Pirassununga, Brazil

Corresponding Authors

*E-mail: <u>danielg@usp.br</u>

*E-mail: <u>cintiabg@usp.br</u>

*E-mail: <u>chrisrodrigues@usp.br</u>

Supporting Information

Equations for the implementation of the UNIFAC-VISCO thermodynamic model.

The UNIFAC-VISCO model is based on the Eyring model¹ for kinematic viscosity, as eq S1.

$$\ln(vM) = \sum_{i}^{i} x_{i} \ln(v_{i}M_{i}) + \frac{\Delta^{*}G^{E}}{RT}$$
(S1)

Where $\Delta^* G^E$ is the excess molar free energy of the mixture, *v* and *M* are the kinematic viscosity and molar mass of the mixture, respectively. *v_i*, *M_i*, and *x_i* are the kinematic viscosity, molar mass, and the molar fraction of the pure component *i* present in the mixture, *R* is the universal gas constant, and *T* is the mixture temperature.

In this model, $\Delta^* G^E$ is assumed as the sum of two contributions: (i) combinatorial, $\Delta^* G^{EC}$ (eq S2), which refers to the difference among the molecules sizes, and (ii) residual, $\Delta^* G^{ER}$ (eq S3), that considers the interaction energy among the different groups present in the mixture.

$$\Delta^* G^E = \Delta^* G^{EC} + \Delta^* G^{ER} \tag{S2}$$

$$\Delta^* G^E = RT \sum_{i}^{i} x_i \ln \gamma_i^*$$
(S3)

Where γ_i^* is a function of the combinatorial γ_i^{*C} and the residual γ_i^{*R} . The combinatorial term ($\Delta^* G^{EC}$) is presented in eq S4.

$$\frac{\Delta^* G^{EC}}{RT} = \sum_{i}^{i} x_i \ln \frac{\Phi_i}{x_i} + \frac{z}{2} \sum_{i}^{i} q_i x_i \ln \frac{\theta_i}{\Phi_i}$$
(S4)

Where z is the coordinate number (z = 10). Φ_i and θ_i are the volume and the superficial area fractions, respectively, which can be calculated by eqs S5 and S6.

$$\theta_i = \frac{q_i x_i}{\sum^j q_j x_j} \tag{S5}$$

$$\Phi_i = \frac{r_i x_i}{\sum^j r_j x_j} \tag{S6}$$

Where q_i and r_i are the volume and superficial area parameters of the component *i*, respectively, which are calculated by eqs S7 and S8.

$$q_i = \sum^k n_k^{(i)} Q_k \tag{S7}$$

$$r_i = \sum^k n_k^{(i)} R_k \tag{S8}$$

Where $n_k^{(i)}$ is the number of *k* groups existing in the component *i*. R_k and Q_k are the volume and superficial area parameters of the group *k*, respectively, which were obtained from Fredenslund et al.² Table S1 shows the $n_k^{(i)}$ of each component *i* studied.

Component (i)	Group k						
	CH ₃	CH_2	OH	СН	H_2O	С	
Limonene	2	4	0	2	0	2	
β -Pinene	2	4	0	2	0	0	
γ-Terpinene	3	2	0	3	0	0	
Linalool	3	3	1	2	0	2	
Citral	3	2	0	2	1	0	
Ethanol	1	1	1	0	0	0	
Water	0	0	0	0	1	0	

Table S1 – Number of k groups existing in each component $i(n_k^{(i)})$.

The residual term ($\Delta^* G^{ER}$) is calculated by eqs S9 and S10.

$$\frac{\Delta^* G^{ER}}{RT} = -\sum_{i}^{i} x_i \ln \gamma_i^{*R}$$
(S9)

$$\gamma_i^{*R} = \sum^k n_k^{(i)} \left(\ln \gamma_k^* - \ln \gamma_k^{*(i)} \right)$$
(S10)

Where $\ln \gamma_k^*$ is the individual contribution of each *k* group of the component *i* present in the mixture and $\ln \gamma_k^{*(i)}$ is the individual contribution of the group *k* in a reference solution composed of only the component *i* (pure solution). The term $\ln \gamma_k^*$ is calculated by eqs S11 to S14.

$$\ln \gamma_k^* = Q_k \left[1 - \ln \left(\sum_{m=1}^m \theta_m \varphi_{mk}^* \right) - \sum_{m=1}^m \frac{\theta_m \varphi_{km}^*}{\sum_{m=1}^n \theta_m \varphi_{nm}^*} \right]$$
(S11)

$$\theta_m = \frac{Q_m X_m}{\sum^n Q_n X_n} \tag{S12}$$

$$X_{m} = \frac{\sum^{j} n_{m}^{(j)} x_{j}}{\sum^{j} \sum^{n} n_{n}^{(j)} x_{j}}$$
(S13)

$$\varphi_{nm}^* = exp\left(-\frac{\alpha_{nm}}{T}\right) \tag{S14}$$

Where α_{nm} is the interaction parameter between the groups *n* and *m*, being $\alpha_{nm} \neq \alpha_{mn}$. The interaction parameters among the groups present in the mixtures studied were previously adjusted by Florido et al.³ for the following systems: bergamot essential oil (limonene + linalyl acetate + linalool + ethanol + water), lemon/lime essential oil (limonene + γ -terpinene + citral + ethanol + water), and mint essential oil (limonene + carvone + ethanol + water), at $T = (298.2 \pm 0.1)$ K. The α_{nm} used for the prediction procedure is exposed in Table S2. Eq S11 can be also used to calculate the term $\gamma_k^{*(i)}$.

Table S2 – Interaction parameters between the *k* groups present in the components of the systems (α_{nm}).

Group <i>n</i> –	Group <i>m</i>							
	CH ₃	CH_2	OH	CH	H ₂ O	С		
CH ₃	-	-1015.8	1143.3	331.6	-1537.1	1570.4		
CH_2	1850.0	-	-1041.5	1343.9	1130.3	399.5		
OH	-445.0	-1032.0	-	-138.8	629.8	337.5		
СН	-1301.1	-692.1	1905.1	-	-857.7	-79.1		
H ₂ O	-1416.5	562.4	212.2	1267.5	-	-1254.0		
С	1024.0	959.4	2006.0	-33.2	1130.3	-		

References

- Chevalier, J. L.; Petrino, P.; Gaston-Bonhomme, Y. Estimation Method for the Kinematic Viscosity of a Liquid-Phase Mixture. *Chem. Eng. Sci.* 1988, 43 (6), 1303–1309.
- (2) Fredenslund, A.; Jones, R. L.; Prausnitz, J. M. Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures. *AlChE J.* 1975, 21 (6), 1086 – 1099.
- (3) Florido, P. M.; Andrade, I. M. G.; Capellini, M. C.; Carvalho, F. H.; Aracava, K. K.; Koshima, C. C.; Rodrigues, C. E. C.; Gonçalves, C. B. Viscosities and Densities of Systems Involved in the Deterpenation of Essential Oils by Liquid-Liquid Extraction: New UNIFAC-VISCO Parameters. *J. Chem. Thermodyn.* 2014, 72, 152–160.