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1. Propane and propylene adsorption on Ni(111) 

Optimized possible structures of propane and propylene adsorption on Ni(111). An asterisk 

(*) denotes the most stable adsorbed structure of each adsorbate. 

Table S1. All possible configurations of propane adsorption on Ni(111) and Eads in eV

Propane1 

 

Propane2 

 

Propane3 

 

Propane4 

 

Propane5 

 

Propane6 

 

      

Eads = -0.47 Eads = -0.38 Eads = -0.51 Eads = -0.47 Eads = -0.50 Eads = -0.48 

Propane7 

 

Propane8 

 

Propane9 

 

Propane10 

 

Propane11 

 

Propane12 

 

      

Eads = -0.61* Eads = -0.57 Eads = -0.54 Eads = -0.51 Eads = -0.38 Eads = -0.36 
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Table S2. All possible configurations of propylene adsorption on Ni(111) and Eads in eV 

Propylene1 

 

Propylene2 

 

Propylene3 

 

Propylene4 

 

Propylene5 

 

Propylene6 

 

Propylene7 

 

Propylene8 

 

        

Eads = -0.31 Eads = -0.38 Eads = -0.41 Eads = -0.40 Eads = -0.41 Eads = -0.44 Eads = -1.15 Eads = -1.39* 

Propylene9 

 

Propylene10 

 

Propylene11 

 

Propylene12 

 

Propylene13

 

Propylene14

 

Propylene15

 

Propylene16

 

        

Eads = -0.44 Eads = -0.43 Eads = -0.35 Eads = -0.34 Eads = -0.27 Eads = -0.30 Eads = -0.43 Eads = -0.44 
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2. Electronic charge analysis 

Table S3. Bader charge analysis of selected atoms of Ni(111), propane and propylene before 

and during adsorption represented in Figure 2 

 

 

Bader Charge change (|e|) 

System Ni(111) 
Adsorbed molecules 

Propane Propylene 

Isolated phase 

Total (0.000) Total (0.000) Total (0.000) 

Subsurface layer (-0.084) C1 (+0.178) 

 

Top layer (-0.060) C2 (-0.221) 

 C3 (+0.162) 

Ni1 (-0.026) H1 (-0.048) 

Ni2 (+0.046) H2 (-0.047) 

Ni3 (-0.150) H3 (-0.039) 

Ni1 (-0.057) 

 

C1 (-0.109) 

Ni2 (-0.041) C2 (-0.102) 

Ni3 (+0.046) C3 (-0.192) 

 

H1 (+0.134) 

H2 (-0.042) 

Propane adsorption 

Total (-0.264) Total (+0.264) 

 

Subsurface layer (-0.027) C1 (-0.097) 

Top layer (-0.236) C2 (-0.206) 

 C3 (-0.161) 

Ni1 (+0.129) H1 (+0.272) 

Ni2 (+0.316) H2 (+0.202) 

Ni3 (+0.072) H3 (+0.135) 

Propylene 

adsorption 

Total (-0.545) 

 

Total (+0.545) 

Subsurface layer (-0.643) 
 

Top layer (+0.303) 

Ni1 (+0.020) C1 (+0.013) 

Ni2 (+0.139) C2 (+0.085) 

Ni3 (-0.138) C3 (-0.186) 

 

H1 (+0.154) 

H2 (+0.160) 
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3. Kinetic analysis 

To indicate the kinetically favorable pathway for the main PDH in this study, we have 

compared the reaction rates of ISTSA1 and ISTSB1, the rate determining steps for C-H 

activation of pathways A and B.  

Based on the transition-state theory (TST), a rate constant of an elementary reaction can be 

calculated from Eq. S1. [1]  

𝑘 = 𝐴 𝑒𝑥𝑝 (−
𝐸𝑎

𝑘𝐵𝑇
)     (S1) 

 

where A is the pre-exponential/frequency factor. Ea is an activation energy of the elementary 

step, kb is Boltzmann’s constant, and T is temperature. The pre-exponential factor can be 

obtained from Eq. S2. 

 

𝐴 =
𝑘𝐵𝑇

ℎ
𝑒𝑥𝑝 (

∆𝑆‡

𝑘𝐵
)    (S2) 

where the entropy barrier, ΔS‡, can be calculated from STS- Sreactant. Ea can be obtained from 

Eq. S3.  

𝐸𝑎 = ∆‡𝐸𝐷𝐹𝑇 + ∆‡𝑍𝑃𝐸    (S3) 

 

𝑍𝑃𝐸 = ∑
ℎ𝜈𝑖

2

#𝑚𝑜𝑑𝑒𝑠
𝑖=1      (S4) 

 

Δ‡EDFT and Δ‡ZPE denote the energy barrier from DFT calculation and the zero point energy 

barrier, respectively. h and νi are Plank’s constant and the vibrational frequency of i mode.  

In this study, the reactions rates of ISTSA1 and ISTSB1, which are the rate 

determining steps for C-H activation of pathways 1A and 2A, are defined as kTSA1 and kTSB1 , 

respectively. It is to be noted that these two elementary steps have the same initial state (IS), 

therefore the ratio of kTSA1 and kTSB1 can be obtained by Eq. S5 or S6. 

𝑘𝑇𝑆𝐴1

𝑘𝑇𝑆𝐵1
=

𝐴𝑇𝑆𝐴1

𝐴𝑇𝑆𝐵1
𝑒𝑥𝑝 (−

(𝐸𝑎
𝑇𝑆𝐴1−𝐸𝑎

𝑇𝑆𝐵1)

𝑘𝐵𝑇
)     (S5) 

 

𝑘𝑇𝑆𝐴1

𝑘𝑇𝑆𝐵1 = 𝑒𝑥𝑝 (
𝑆𝑇𝑆𝐴1−𝑆𝑇𝑆𝐵1

𝑘𝐵
) 𝑒𝑥𝑝 (−

(𝐸𝐷𝐹𝑇
𝑇𝑆𝐴1+𝑍𝑃𝐸𝑇𝑆𝐴1−𝐸𝐷𝐹𝑇

𝑇𝑆𝐴1−𝑍𝑃𝐸𝑇𝑆𝐴1)

𝑘𝐵𝑇
)  (S6) 

 

By neglecting entropy contributions from the translational and rotational degree of freedom, 

the entropy of the adsorbed intermediate can be estimated from vibrational contribution, Svib, 

in Eq. S7 and S8.  

𝑆 ≈ 𝑆𝑣𝑖𝑏 = 𝑘𝐵 ∑
ℎ𝜈𝑖

2

# 𝑚𝑜𝑑𝑒𝑠
𝑖=1  (

𝑥𝑖

𝑒𝑥𝑖−1
− ln (1 − 𝑒−𝑥𝑖)    (S7) 

𝑥𝑖 =
ℎ𝜈𝑖

𝑘𝐵𝑇
      (S8) 
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As a result, the calculated kTSA1/kTSB1 values in range of 298K to 900K signify that pathway 

A is more kinetically preferable than another pathway (see Table S4).  

 

Table S4 Comparison of kTSA1/kTSB1 at different temperature   

T (K) kTSA1/kTSB1 

298 2.05×104 

400 4.87×103 

500 2.12×103 

600 1.23×103 

700 8.34×102 

800 6.24×102 

900 4.99×102 
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