Supporting Information for:

Theoretical Insight into Catalytic Propane Dehydrogenation on Ni(111)

Tinnakorn Saelee,[†] Supawadee Namuangruk,[§] Nawee Kungwan,^{*,†,‡} and Anchalee Junkaew^{*,§}

[†]Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand

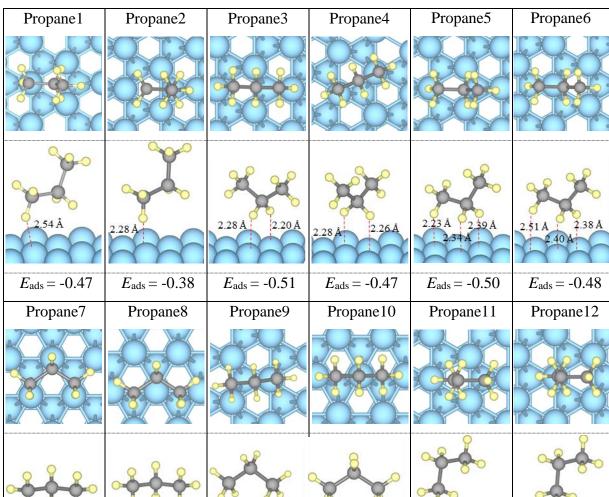
[‡]Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand

[§]National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand

*Corresponding author e-mails: <u>naweekung@gmail.com</u> (N.K), <u>anchalee@nanotec.or.th</u> (A.J.)

1. Propane and propylene adsorption on Ni(111)

2.30 A 2.32


 $E_{\rm ads} = -0.57$

2 4

2.23 A

 $E_{\rm ads} = -0.61*$

Optimized possible structures of propane and propylene adsorption on Ni(111). An asterisk (*) denotes the most stable adsorbed structure of each adsorbate.

2.45 Å

2.59 Å

 $E_{\rm ads} = -0.54$

2.54 Å

 $E_{\rm ads} = -0.51$

2.56

52 A

Table S1. All possible configurations of propane adsorption on Ni(111) and E_{ads} in eV

.71 Å

 $E_{\rm ads} = -0.36$

2.50 Å

2.58 Å

 $E_{\rm ads} = -0.38$

2.5

Propylene1 Propylene2 Propylene3 Propylene4 Propylene5 Propylene7 Propylene8 Propylene6 2.60 Å 2.46 Å 2.29 Å 2.31 Å 2.45 Å 2.24 Â 2.27 Å 2.05 $E_{\rm ads} = -0.31$ $E_{\rm ads} = -0.38$ $E_{\rm ads} = -0.41$ $E_{\rm ads} = -0.40$ $E_{\rm ads} = -0.41$ $E_{\rm ads} = -0.44$ $E_{\rm ads} = -1.15$ $E_{\rm ads} = -1.39*$ Propylene9 Propylene10 Propylene11 Propylene12 Propylene13 Propylene14 Propylene15 Propylene16 2.66 Å 2.67 Å 2.59 A 2.34 A 2.34 Å 2.66 Å 2.36 Å 2.51 Å 2.28 2.25 Å 2.26 Å 2.24 A 2.17 A 2.58 Å 2.48 A 2.59 $E_{\rm ads} = -0.43$ $E_{\rm ads} = -0.27$ $E_{\rm ads} = -0.30$ $E_{\rm ads} = -0.44$ $E_{\rm ads} = -0.35$ $E_{\rm ads} = -0.34$ $E_{\rm ads} = -0.43$ $E_{\rm ads} = -0.44$

Table S2. All possible configurations of propylene adsorption on Ni(111) and Eads in eV

2. Electronic charge analysis

Table S3. Bader charge analysis of selected atoms of Ni(111), propane and propylene before and during adsorption represented in Figure 2

Bader Charge change (/e/)							
Creat and	N12/11	(1)	Adsorbed molecules				
System	Ni(111)		Propane		Propylene		
Isolated phase	Total	(0.000)	Total	(0.000)	Total	(0.000)	
	Subsurface layer	(-0.084)	C1	(+0.178)			
	Top layer	(-0.060)	C ²	(-0.221)			
	I		C ³	(+0.162)			
	Ni ¹	(-0.026)	H ¹	(-0.048)			
	Ni ²	(+0.046)	H ²	(-0.047)			
	Ni ³	(-0.150)	H ³	(-0.039)			
	Ni ¹	(-0.057)			C^1	(-0.109)	
	Ni ²	(-0.041)	-		C^2	(-0.102)	
	Ni ³	(+0.046)	-		C ³	(-0.192)	
	I		-		H^{1}	(+0.134)	
					H^2	(-0.042)	
Propane adsorption	Total	(-0.264)	Total	(+0.264)		I	
	Subsurface layer	(-0.027)	C ¹	(-0.097)			
	Top layer	(-0.236)	C^2	(-0.206)			
			C ³	(-0.161)			
	Ni ¹	(+0.129)	H ¹	(+0.272)			
	Ni ²	(+0.316)	H ²	(+0.202)			
	Ni ³	(+0.072)	H ³	(+0.135)			
	Total	(-0.545)			Total	(+0.545)	
	Subsurface layer	(-0.643)	1				
	Top layer	(+0.303)	1				
Propylene	Ni ¹	(+0.020)	1		\mathbf{C}^1	(+0.013)	
adsorption	Ni ²	(+0.139)	1		C^2	(+0.085)	
	Ni ³	(-0.138)	1		C ³	(-0.186)	
	<u> </u>		1		H^{1}	(+0.154)	
					H ²	(+0.160)	

3. Kinetic analysis

To indicate the kinetically favorable pathway for the main PDH in this study, we have compared the reaction rates of IS \rightarrow TSA1 and IS \rightarrow TSB1, the rate determining steps for C-H activation of pathways A and B.

Based on the transition-state theory (TST), a rate constant of an elementary reaction can be calculated from Eq. S1. [1]

$$k = A \exp\left(-\frac{E_a}{k_B T}\right) \tag{S1}$$

where A is the pre-exponential/frequency factor. E_a is an activation energy of the elementary step, k_b is Boltzmann's constant, and T is temperature. The pre-exponential factor can be obtained from Eq. S2.

$$A = \frac{k_B T}{h} exp\left(\frac{\Delta S^{\ddagger}}{k_B}\right) \tag{S2}$$

where the entropy barrier, ΔS^{\ddagger} , can be calculated from S_{TS}- S_{reactant}. E_a can be obtained from Eq. S3.

$$E_a = \Delta^{\ddagger} E_{DFT} + \Delta^{\ddagger} ZPE \tag{S3}$$

$$ZPE = \sum_{i=1}^{\#modes} \frac{h\nu_i}{2} \tag{S4}$$

 $\Delta^{\ddagger}E_{DFT}$ and $\Delta^{\ddagger}ZPE$ denote the energy barrier from DFT calculation and the zero point energy barrier, respectively. *h* and v_i are Plank's constant and the vibrational frequency of *i* mode.

In this study, the reactions rates of IS \rightarrow TSA1 and IS \rightarrow TSB1, which are the rate determining steps for C-H activation of pathways 1A and 2A, are defined as k^{TSA1} and k^{TSB1}, respectively. It is to be noted that these two elementary steps have the same initial state (IS), therefore the ratio of k^{TSA1} and k^{TSB1} can be obtained by Eq. S5 or S6.

$$\frac{k^{TSA1}}{k^{TSB1}} = \frac{A^{TSA1}}{A^{TSB1}} exp\left(-\frac{(E_a^{TSA1} - E_a^{TSB1})}{k_B T}\right)$$
(S5)

$$\frac{k^{TSA1}}{k^{TSB1}} = exp\left(\frac{S^{TSA1} - S^{TSB1}}{k_B}\right)exp\left(-\frac{\left(E_{DFT}^{TSA1} + ZPE^{TSA1} - E_{DFT}^{TSA1} - ZPE^{TSA1}\right)}{k_BT}\right)$$
(S6)

By neglecting entropy contributions from the translational and rotational degree of freedom, the entropy of the adsorbed intermediate can be estimated from vibrational contribution, S_{vib} , in Eq. S7 and S8.

$$S \approx S_{vib} = k_B \sum_{i=1}^{\# \ modes \ hv_i} \left(\frac{x_i}{e^{x_{i-1}}} - \ln(1 - e^{-x_i}) \right)$$
(S7)

$$x_i = \frac{h v_i}{k_B T} \tag{S8}$$

As a result, the calculated k^{TSA1}/k^{TSB1} values in range of 298K to 900K signify that pathway A is more kinetically preferable than another pathway (see Table S4).

T (K)	k ^{TSA1} /k ^{TSB1}
298	2.05×10^4
400	4.87×10^{3}
500	2.12×10^{3}
600	1.23×10 ³
700	8.34×10 ²
800	6.24×10 ²
900	4.99×10 ²

Table S4 Comparison of k^{TSA1}/k^{TSB1} at different temperature

References:

[1] Gokhale, A. A.; Kandoi, S.; Greeley, J.P.; Mavrikakis, M.; Dumesic, J.A. Molecular-level Descriptions of Surface Chemistry in Kinetic Models using Density Functional Theory. Chem. Eng. Sci. **2004**, *59* (22-23), 4679-4691.