### **Supporting Information for Manuscript Entitled**

### "Use of In vitro Systems to Model In vivo Degradation of Therapeutic Monoclonal antibodies""

#### Authors:

Na Yang\*, Qing (Mike) Tang\*, Ping Hu and Michael J. Lewis

Large Molecule Analytical Development, Pharmaceutical Development and Manufacturing Science, Janssen Research & Development LLC, 200 Great Valley Parkway, Malvern, PA 19355, USA.

\* The authors contributed equally to the work

#### Table of Contents:

- 1. Table S1: Relative quantitation results of mAb1 degradation in spiked serum
- 2. Table S2: Relative quantitation results of major mAb1 degradation in clinical serum samples
- 3. Table S3: Relative quantitation results of major mAb1 degradation in spiked PBS
- 4. Table S4: mAb1 concentration in clinical serum samples
- 5. Table S5: Recovery of mAb1 in spiked serum
- 6. Table S6: ANOVO summary of mAb1 attributes across 3 systems
- 7. Table S7: Assessing variation of Linear regression slopes for mAb1 attributes
- 8. Table S8: Confidence intervals of Linear regression slopes for mAb1 attributes
- 9. Table S9. Deamidation of IgG1 mAb at different pH conditions by LysC peptide-mapping
- 10. Materials and Methods: SDS-PAGE and cSDS separation of mAb1 from serum
- 11. Figure S1: cSDS separation of mAb1 from serum
- 12. Figure S2: Intact MS representative of mAb1 from serum by intact MS analysis
- 13. Figure S3: UV chromatograph representative from serum by LC-MS peptide-mapping
- 14. Figure S4: Time-course plot of *In vivo* HC deamidation rates
- 15. Figure S5: Time-course plot of In vivo N-terminal PyroE rates
- 16. Figure S6: Time-course plot of In vivo LC Asp95 isomerization rates
- 17. Figure S7: Time-course plot of In vivo glycation rates
- 18. Figure S8: N-terminal Glu Cyclization Rates of mAb2
- 19. Figure S9: N-terminal Glu Cyclization Rates of mAb3

| Madification Sitor                 | Attributo     |                      |       |       | Re    | elative Abu | ndance (%) | а      |        |        |        |
|------------------------------------|---------------|----------------------|-------|-------|-------|-------------|------------|--------|--------|--------|--------|
| Modification Sites                 | Attribute     | Control <sup>b</sup> | Day 1 | Day 2 | Day 4 | Day 8       | Day 15     | Day 22 | Day 29 | Day 36 | Day 43 |
| HC Trp33                           | Oxidation     | 0.1                  | 0.1   | 0.1   | 0.1   | 0.0         | 0.1        | 0.1    | 0.1    | 0.2    | 0.2    |
| HC Met40                           | Oxidation     | 2.5                  | 4.0   | 5.7   | 7.0   | 4.5         | 7.7        | 9.3    | 12.1   | 9.6    | 12.3   |
| HC Met93                           | Oxidation     | 0.7                  | 1.7   | 1.9   | 1.8   | 1.3         | 1.5        | 2.4    | 2.5    | 2.7    | 2.5    |
| HC Trp99                           | Oxidation     | 0.1                  | 0.1   | 0.2   | 0.2   | 0.2         | 0.1        | 0.1    | 0.1    | 0.2    | 0.2    |
| HC Met252                          | Oxidation     | 2.2                  | 3.4   | 3.9   | 3.8   | 3.1         | 3.0        | 4.6    | 5.1    | 4.5    | 4.8    |
| HC Met428                          | Oxidation     | 1.2                  | 2.0   | 2.4   | 2.4   | 1.9         | 1.7        | 2.9    | 3.0    | 2.8    | 3.2    |
| LC Trp93                           | Oxidation     | 1.0                  | 1.1   | 1.1   | 1.1   | 0.9         | 1.1        | 1.3    | 1.1    | 1.2    | 1.4    |
| HC Asn55                           | Deamidation   | 0.7                  | 0.6   | 0.6   | 0.7   | 0.7         | 1.0        | 1.3    | 1.3    | 1.8    | 2.1    |
| HC Asn286                          | Deamidation   | 0.1                  | 0.2   | 0.2   | 0.1   | 0.2         | 0.2        | 0.3    | 0.4    | 0.5    | 0.6    |
| HC Asn315                          | Deamidation   | 11.1                 | 10.8  | 10.5  | 11.5  | 11.0        | 11.4       | 11.3   | 11.8   | 13.1   | 13.3   |
| HC Asn325                          | Deamidation   | 0.1                  | 0.1   | 0.1   | 0.1   | 0.1         | 0.1        | 0.1    | 0.2    | 0.3    | 0.2    |
| HC Asn384/Asn389                   | Deamidation   | 11.8                 | 13.7  | 13.9  | 14.6  | 15.8        | 20.4       | 24.5   | 27.0   | 31.6   | 33.2   |
| LC Asn53                           | Deamidation   | 0.3                  | 0.4   | 0.4   | 0.5   | 0.4         | 0.6        | 0.6    | 0.7    | 0.7    | 0.8    |
| HC Asp280/Asp283                   | Isomerization | 0.5                  | 0.4   | 0.5   | 0.5   | 0.5         | 0.7        | 0.8    | 0.9    | 1.1    | 1.3    |
| LC Asp95                           | Isomerization | 5.5                  | 3.5   | 4.0   | 4.2   | 3.9         | 6.1        | 7.2    | 8.1    | 9.5    | 13.4   |
| HC Glu1                            | Cyclization   | 1.4                  | 1.6   | 1.9   | 2.3   | 3.7         | 5.7        | 7.9    | 9.9    | 11.7   | 12.7   |
| LC Gln1                            | Cyclization   | 98.2                 | 98.3  | 99.3  | 99.8  | 99.9        | 99.9       | 99.9   | 99.9   | 99.9   | 99.9   |
| HC Lys447                          | CT Des-Lys    | 97.1                 | 99.1  | 100.0 | 100.0 | 100.0       | 100.0      | 100.0  | 100.0  | 100.0  | 100.0  |
| Mono-Glycated (Total) <sup>c</sup> | Glycation     | 4.5                  | 4.5   | 5.2   | 5.7   | 7.8         | 12.2       | 15.3   | 19.0   | 21.5   | 26.9   |

Table S1. Relative Quantitation Results of mAb1 Degradation in Spiked Serum

<sup>a</sup> Relative abundance was calculated using integrated peak area from the selected ion chromatogram (LC-MS peptide-mapping). <sup>b</sup> MAb1 was dosed in the clinical study and analyzed along with other serum samples for control.

<sup>c</sup> Relative percentage of total glycation was calculated using peak height intensity from intact MS.

| Subject | Modification Site                  | Attribute     |                      | Relative Abundance (%) <sup>a</sup> |       |       |       |        |        |        |        |        |
|---------|------------------------------------|---------------|----------------------|-------------------------------------|-------|-------|-------|--------|--------|--------|--------|--------|
| Subject |                                    | ALLIDULE      | Control <sup>ь</sup> | Day 1                               | Day 2 | Day 4 | Day 8 | Day 15 | Day 22 | Day 29 | Day 36 | Day 43 |
| 000001  | HC Met40                           | Oxidation     | 1.7                  | 2.3                                 | 2.2   | 2.1   | 2.5   | 3.7    | 3.7    | 4.4    | 5.0    | 5.9    |
|         | HC Met252                          | Oxidation     | 2.0                  | 3.2                                 | 3.0   | 3.0   | 3.3   | 3.9    | 4.0    | 4.1    | 4.3    | 4.8    |
|         | HC Asn55                           | Deamidation   | 0.8                  | 1.1                                 | 1.0   | 1.1   | 1.3   | 1.6    | 2.1    | 2.5    | 2.7    | 2.8    |
|         | HC Asn384/Asn389                   | Deamidation   | 12.8                 | 17.5                                | 15.9  | 17.2  | 20.3  | 25.1   | 29.0   | 32.1   | 32.3   | 37.4   |
|         | LC Asp95                           | Isomerization | 5.1                  | 4.8                                 | 4.7   | 4.6   | 5.1   | 6.3    | 8.6    | 10.0   | 12.2   | 13.2   |
|         | HC Glu1                            | Cyclization   | 1.1                  | 1.4                                 | 1.7   | 2.2   | 2.9   | 4.7    | 6.5    | 8.3    | 9.9    | 11.6   |
|         | Mono-Glycated (Total) <sup>c</sup> | Glycation     | 4.3                  | 4.3                                 | 5.4   | 6.3   | 8.7   | 12.3   | 16.3   | 17.8   | 20.4   | 23.7   |
| 000004  | HC Met40                           | Oxidation     | 1.7                  | 1.9                                 | 1.8   | 3.5   | 2.3   | 4.2    | 4.7    | 6.1    | 6.1    | 7.1    |
|         | HC Met252                          | Oxidation     | 2.0                  | 2.6                                 | 2.5   | 4.9   | 2.9   | 4.2    | 5.3    | 5.2    | 5.9    | 6.2    |
|         | HC Asn55                           | Deamidation   | 0.8                  | 0.8                                 | 0.9   | 1.0   | 1.3   | 1.8    | 2.2    | 1.6    | 2.3    | 2.5    |
|         | HC Asn384/Asn389                   | Deamidation   | 12.8                 | 15.9                                | 15.9  | 17.9  | 19.8  | 24.6   | 28.6   | 30.4   | 33.2   | 36.5   |
|         | LC Asp95                           | Isomerization | 5.1                  | 4.7                                 | 4.4   | 5.1   | 5.7   | 6.1    | 8.8    | 8.6    | 10.6   | 14.6   |
|         | HC Glu1                            | Cyclization   | 1.1                  | 1.2                                 | 1.4   | 1.9   | 2.5   | 3.7    | 5.2    | 6.9    | 8.7    | 10.0   |
|         | Mono-Glycated (Total) <sup>c</sup> | Glycation     | 4.2                  | 4.6                                 | 5.5   | 6.4   | 9.7   | 13.5   | 16.3   | 19.1   | 21.7   | 22.7   |
| 000005  | HC Met40                           | Oxidation     | 1.7                  | 1.4                                 | 1.5   | 1.5   | 1.9   | 2.2    | 3.6    | 5.7    | 4.5    | 5.5    |
|         | HC Met252                          | Oxidation     | 2.0                  | 2.4                                 | 2.5   | 2.7   | 2.8   | 2.9    | 4.0    | 6.4    | 4.1    | 4.0    |
|         | HC Asn55                           | Deamidation   | 0.8                  | 0.9                                 | 1.1   | 1.0   | 1.4   | 1.6    | 2.1    | 2.3    | 2.7    | 2.9    |
|         | HC Asn384/Asn389                   | Deamidation   | 12.8                 | 15.6                                | 17.5  | 17.5  | 21.1  | 25.1   | 28.1   | 31.7   | 36.1   | 38.5   |
|         | LC Asp95                           | Isomerization | 5.1                  | 4.4                                 | 4.6   | 3.9   | 5.3   | 5.6    | 8.3    | 6.7    | 10.0   | 12.0   |
|         | HC Glu1                            | Cyclization   | 1.1                  | 1.5                                 | 1.7   | 2.2   | 3.2   | 4.8    | 6.4    | 8.0    | 9.6    | 10.9   |
|         | Mono-Glycated (Total) <sup>c</sup> | Glycation     | 4.5                  | 4.5                                 | 5.1   | 6.7   | 9.3   | 12.8   | 16     | 18.6   | 22.1   | 24.2   |
| Average | HC Met40                           | Oxidation     | 1.7                  | 1.9                                 | 1.8   | 2.4   | 2.2   | 3.4    | 4.0    | 5.4    | 5.2    | 6.2    |
|         | HC Met252                          | Oxidation     | 2.0                  | 2.7                                 | 2.7   | 3.5   | 3.0   | 3.7    | 4.4    | 5.2    | 4.8    | 5.0    |
|         | HC Asn55                           | Deamidation   | 0.8                  | 0.9                                 | 1.0   | 1.0   | 1.3   | 1.7    | 2.1    | 2.1    | 2.6    | 2.7    |
|         | HC Asn384/Asn389                   | Deamidation   | 12.8                 | 16.3                                | 16.4  | 17.5  | 20.4  | 24.9   | 28.6   | 31.4   | 33.9   | 37.5   |
|         | LC Asp95                           | Isomerization | 5.1                  | 4.6                                 | 4.6   | 4.5   | 5.4   | 6.0    | 8.6    | 8.4    | 10.9   | 13.3   |
|         | HC Glu1                            | Cyclization   | 1.1                  | 1.4                                 | 1.6   | 2.1   | 2.9   | 4.4    | 6.0    | 7.7    | 9.4    | 10.8   |
|         | Mono-Glycated (Total) <sup>c</sup> | Glycation     | 4.3                  | 4.5                                 | 5.3   | 6.5   | 9.2   | 12.9   | 16.2   | 18.5   | 21.4   | 23.5   |

Table S2. Relative Quantitation Results of Major mAb1 Degradation in Clinical Serum

| STDEV | HC Met40                           | Oxidation     | 0.0 | 0.5 | 0.4 | 1.0 | 0.3 | 1.0 | 0.6 | 0.9 | 0.8 | 0.8 |
|-------|------------------------------------|---------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|       | HC Met252                          | Oxidation     | 0.0 | 0.4 | 0.3 | 1.2 | 0.3 | 0.7 | 0.8 | 1.2 | 1.0 | 1.1 |
|       | HC Asn55                           | Deamidation   | 0.0 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 0.2 | 0.2 |
|       | HC Asn384/Asn389                   | Deamidation   | 0.0 | 1.0 | 0.9 | 0.4 | 0.7 | 0.3 | 0.5 | 0.9 | 2.0 | 1.0 |
|       | LC Asp95                           | Isomerization | 0.0 | 0.2 | 0.2 | 0.6 | 0.3 | 0.4 | 0.3 | 1.7 | 1.1 | 1.3 |
|       | HC Glu1                            | Cyclization   | 0.0 | 0.2 | 0.2 | 0.2 | 0.4 | 0.6 | 0.7 | 0.7 | 0.6 | 0.8 |
|       | Mono-Glycated (Total) <sup>c</sup> | Glycation     | 0.2 | 0.2 | 0.2 | 0.2 | 0.5 | 0.6 | 0.2 | 0.7 | 0.9 | 0.8 |

<sup>a</sup> Relative abundance was calculated using integrated peak area from the selected ion chromatogram (LC-MS peptide-mapping).
 <sup>b</sup> MAb1 was dosed in the clinical study and analyzed along with other serum samples for method control.
 <sup>c</sup> Relative percentage of total glycation was calculated using peak height intensity from intact MS.

|                                    |               | Relative Abundance (%) <sup>a</sup> |       |       |       |       |        |        |        |        |        |
|------------------------------------|---------------|-------------------------------------|-------|-------|-------|-------|--------|--------|--------|--------|--------|
| Modification Site                  | Attribute     | Control <sup>b</sup>                | Day 1 | Day 2 | Day 4 | Day 8 | Day 15 | Day 22 | Day 29 | Day 36 | Day 43 |
| HC Met40                           | Oxidation     | 6.5                                 | 6.0   | 6.4   | 5.7   | 5.6   | 5.7    | 5.5    | 5.8    | 5.9    | 5.8    |
| HC Met252                          | Oxidation     | 5.1                                 | 5.0   | 5.2   | 5.0   | 4.9   | 4.9    | 5.0    | 5.0    | 5.2    | 5.5    |
| HC Asn55                           | Deamidation   | 0.8                                 | 0.8   | 0.8   | 1.0   | 1.0   | 1.4    | 1.4    | 1.6    | 1.9    | 2.1    |
| HC Asn384/Asn389                   | Deamidation   | 9.3                                 | 8.3   | 9.3   | 10.1  | 12.6  | 16.7   | 20.4   | 24.5   | 29.8   | 31.2   |
| LC Asp95                           | Isomerization | 5.5                                 | 5.3   | 5.4   | 6.4   | 7.5   | 9.8    | 11.8   | 14.0   | 15.6   | 17.2   |
| HC Glu1                            | Cyclization   | 1.2                                 | 1.3   | 1.5   | 2.2   | 3.2   | 5.3    | 7.4    | 9.4    | 11.4   | 13.3   |
| Mono-Glycated (Total) <sup>c</sup> | Glycation     | 5.7                                 | 4.8   | 5.4   | 6.4   | 8.5   | 12.1   | 15.0   | 18.0   | 19.8   | 22.0   |

Table S3. Relative Quantitation Results of Major mAb1 Degradation in Spiked PBS

<sup>a</sup> Relative abundance was calculated using integrated peak area from the selected ion chromatogram (LC-MS peptide-mapping). <sup>b</sup> MAb1 was dosed in the clinical study and analyzed along with other serum samples for method control. <sup>c</sup> Relative percentage of total glycation was calculated using peak height intensity from intact MS.

| Clinical Subject ID | Time Point | Concentration (ug/mL) |  |  |
|---------------------|------------|-----------------------|--|--|
|                     | Predose    | 0.0                   |  |  |
|                     | Day 1 1h   | 288.9                 |  |  |
|                     | Day 2 24h  | 246.2                 |  |  |
|                     | Day 4 72h  | 184.5                 |  |  |
| Subject 01          | Day 8 168h | 120.2                 |  |  |
| Subject OI          | Day 15     | 74.1                  |  |  |
|                     | Day 22     | 59.7                  |  |  |
|                     | Day 29     | 42.1                  |  |  |
|                     | Day 36     | 33.1                  |  |  |
|                     | Day 43     | 18.3                  |  |  |
|                     | Predose    | 0.0                   |  |  |
|                     | Day 1 1h   | 271.3                 |  |  |
|                     | Day 2 24h  | 272.7                 |  |  |
|                     | Day 4 72h  | 186.7                 |  |  |
| Subject 02          | Day 8 168h | 120.3                 |  |  |
| 500,000             | Day 15     | 86.9                  |  |  |
|                     | Day 22     | 62.7                  |  |  |
|                     | Day 29     | 45.6                  |  |  |
|                     | Day 36     | 36.1                  |  |  |
|                     | Day 43     | 29.9                  |  |  |
|                     | Predose    | 0.0                   |  |  |
|                     | Day 1 1h   | 283.0                 |  |  |
|                     | Day 2 24h  | 257.4                 |  |  |
|                     | Day 4 72h  | 176.4                 |  |  |
| Subject 02          | Day 8 168h | 108.6                 |  |  |
| Subject 03          | Day 15     | 80.2                  |  |  |
|                     | Day 22     | 62.8                  |  |  |
|                     | Day 29     | 48.4                  |  |  |
|                     | Day 36     | 34.4                  |  |  |
|                     | Day 43     | 30.4                  |  |  |

Table S4. mAb1 Concentration in Clinical Serum Samples

| Spike Sample ID | Recovery (%) <sup>a,b</sup> |  |  |  |  |  |  |  |
|-----------------|-----------------------------|--|--|--|--|--|--|--|
| Control         | 75                          |  |  |  |  |  |  |  |
| Day 1           | 90                          |  |  |  |  |  |  |  |
| Day 2           | 99                          |  |  |  |  |  |  |  |
| Day 4           | 103                         |  |  |  |  |  |  |  |
| Day 8           | 81                          |  |  |  |  |  |  |  |
| Day 15          | 94                          |  |  |  |  |  |  |  |
| Day 22          | 83                          |  |  |  |  |  |  |  |
| Day 29          | 78                          |  |  |  |  |  |  |  |
| Day 36          | 76                          |  |  |  |  |  |  |  |
| Day 43          | 84                          |  |  |  |  |  |  |  |

Table S5. Recovery of mAb1 from Spiked Serum

<sup>a</sup> Recovery is assessed by A280 measurement

<sup>b</sup> Average recovery = 86% (± 11%)

| ANOVA <sup>*</sup> summary                | HC Asn384/389 | HC Asn55 | N-term PyroGlu | LC Asp95 | Total Glycation |
|-------------------------------------------|---------------|----------|----------------|----------|-----------------|
| F                                         | 1.688         | 2.495    | 0.2248         | 2.499    | 0.02554         |
| P value                                   | 0.2061        | 0.1037   | 0.8003         | 0.1033   | 0.9748          |
| P value summary                           | ns            | ns       | ns             | ns       | ns              |
| Significant diff. among means (P < 0.05)? | No            | No       | No             | No       | No              |
| R square                                  | 0.1233        | 0.1721   | 0.01839        | 0.1724   | 0.002124        |

# Table S6. ANOVO Analysis Summary on mAb1 Attributes across 3 systems

\*ANOVO analysis performed on 3 systems (in vivo, in vitro-serum and in vitro-PBS) on listed attributes using GraphPad Prism7.00

| A               |         | <b>O</b> L ( ( ( ) ) |                |        |
|-----------------|---------|----------------------|----------------|--------|
| Attributes      | In vivo | In vitro (Serum)     | In vitro (PBS) | CV (%) |
| Asn384/389      | 0.512   | 0.495                | 0.567          | 7.2    |
| Asn55           | 0.044   | 0.034                | 0.030          | 20.0   |
| IsoAsp95        | 0.198   | 0.206                | 0.291          | 22.2   |
| N-term PyroE    | 0.227   | 0.278                | 0.289          | 12.5   |
| Total Glycation | 0.458   | 0.518                | 0.419          | 10.7   |
| Met252          | 0.058   | 0.037                |                |        |
| Met40           | 0.106   | 0.177                |                |        |

| Table S7. Assessing Variation of Li | ar Regression Slo | pes for mAb1 Attributes |
|-------------------------------------|-------------------|-------------------------|
|-------------------------------------|-------------------|-------------------------|

|                 | h           | In vivo In vi   |               | o (serum)       | In viti       | ro (PBS)        |
|-----------------|-------------|-----------------|---------------|-----------------|---------------|-----------------|
| Attribute       | k (% day⁻¹) | 95% CI (%)      | k (% day ⁻¹ ) | 95% CI (%)      | k (% day ⁻¹ ) | 95% CI (%)      |
| Asn384/389      | 0.512       | 0.4814 - 0.5418 | 0.495         | 0.4571 – 0.5337 | 0.567         | 0.5290 - 0.6053 |
| Asn55           | 0.044       | 0.0382 - 0.0492 | 0.034         | 0.0284 - 0.0403 | 0.031         | 0.0263 - 0.0339 |
| IsoAsp95        | 0.198       | 0.1718 - 0.2245 | 0.206         | 0.1590 - 0.2519 | 0.291         | 0.2732 - 0.3084 |
| N-term PyroE    | 0.227       | 0.2232 - 0.2316 | 0.278         | 0.2591 – 0.2975 | 0.289         | 0.2855 - 0.2932 |
| Total Glycation | 0.458       | 0.4100 - 0.5050 | 0.518         | 0.4882 - 0.5474 | 0.419         | 0.3792 - 0.4585 |
| Met252          | 0.058       | 0.0365 - 0.0802 | 0.037         | 0.0072 - 0.0645 |               |                 |
| Met40           | 0.106       | 0.0892 - 0.1223 | 0.177         | 0.1011 - 0.2518 |               |                 |

 Table S8. 95% Confidence Interval of Linear Regression Slopes for mAb1 Attributes

\*Confidence interval was calculated for each listed attribute using GraphPad Prism7.00

| Constant of the second se | 1044 | 11057 | 110200 | 110210 |                |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|--------|--------|----------------|------------|
| Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LC41 | HC57  | HC206  | HC318  | HC387/392 (UV) | HC437 (UV) |
| Reference Std                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |        |        |                |            |
| (pH8.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.3  | 1.8   | 0.0    | 9.3    | 10.5           | 1.5        |
| Ctrl pH7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4  | 1.5   | 0.0    | 4.2    | 5.4            | 1.2        |
| Ctrl pH7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.7  | 1.6   | 0.0    | 7.4    | 6.1            | 1.2        |
| Ctrl pH8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.9  | 1.6   | 0.1    | 10.8   | 8.9            | 1.6        |

 Table S9. Deamidation of IgG1 mAb at different pH Conditions by LysC peptide-mapping

## Materials and Methods: SDS-PAGE and cSDS separation of mAb1 from serum

**Materials.** Invitrogen NuPAGE 4-12% Bis-Tris gel, LDS Sample Buffer, NuPAGE MOPS SDS Running Buffer and SimplyBlue SafeStain was purchased from Life Technologies (Carlsbad, CA). N-ethylmaleimide was purchased from Research Organics. Materials used for cSDS analysis were provided in the Beckman Coulter SDS-MW Analysis Kit (PN 390953), including capillary (50 μm I.D. bare-fused silica), SDS-MW gel buffer (proprietary formulation, pH 8, 0.2% SDS), SDS-MW sample buffer (100 mM Tris-HCl, pH 9.0, 1% SDS), 10 kDa internal standard (I.S., 5mg/mL), acidic wash solution (0.1 N HCl), and basic wash solution (0.1 N NaOH).

## SDS-PAGE analysis of mAb1 from serum

The NuPAGE Bis-Tris electrophoresis system is a discontinuous SDS-PAGE, pre-cast polyacrylamide minigel system. In this study, NuPAGE Bis-Tris 4-12% gel was used and the samples was prepared according to manual instruction. Briefly, the loading sample mixture (total volume of 10  $\mu$ L) was heated for denaturing electrophoresis at 70 °C for 10 min and cooled to room temperature. 3  $\mu$ g of non-reduced sample was loaded, and the gel was run using Invitrogen XCell *SureLock* Mini-Cell at 200mV in 1X MOPS SDS Running Buffer for 50 min. After separation, the gel was stained by Coomassie blue for 1 hr and washed by water according to SimplyBlue SafeStain user instructions. Precision plus protein dual color standard (BioRad, CA) was used as protein marker.

## cSDS analysis of mAb1 from serum

The mAb1 samples were diluted to 10 mg/mL with water before cSDS analysis. For NR cSDS analysis, 30  $\mu$ L of each sample was diluted with 156  $\mu$ L of 25 mM bis-tris/citrate buffer (pH 7.0) in 1% SDS, 4  $\mu$ L of 5 mg/mL 10 kDa Internal Standard, and 10  $\mu$ L of 125 mM N-ethylmaleimide. The diluted samples were incubated at 70 °C for 5 min and then cooled to room temperature. NR cSDS were performed on a Beckman Coulter Proteome-Lab<sup>TM</sup> PA 800 Protein Characterization System equipped with PDA detection. Each sample was injected into the capillary for 20 seconds at 5 kV (reverse polarity), with a 10  $\mu$ L injection volume, followed by separation at 15 kV (reverse polarity) for 35 minutes in the capillary containing SDS-MW gel buffer.

Figure S1. cSDS (Capillary sodium dodecyl Sulfate electrophoresis) Separation of Non-reduced mAb1 Purified from Spiked-serum.

Purity of purified mAb1: 97.3%. Peak identification: 1- internal standard with MW of 10,000 Da; 2- largest impurity peak (mAb1-HC<sub>1-212,1-133</sub>); 3- mAb1 IgG. The analysis was performed on a Beckman PA 800(s) system with UV detection.

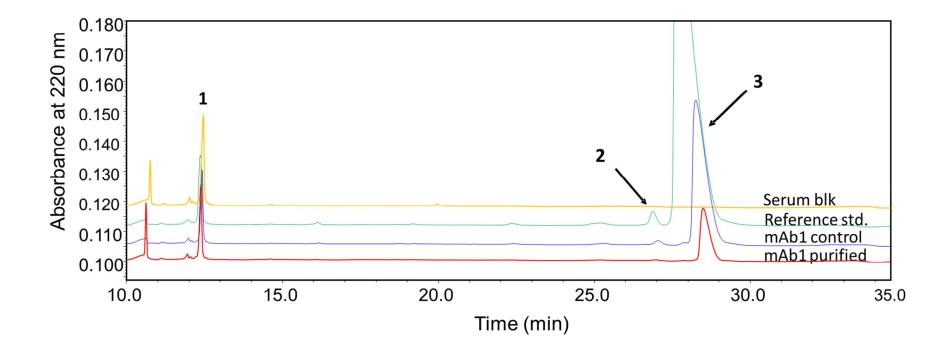



Figure S2. Deconvoluted Intact MS Profile Representative of purified mAb1 from Serum. (A)- Purified mAb1 from serum, (B)- mAb1 control.

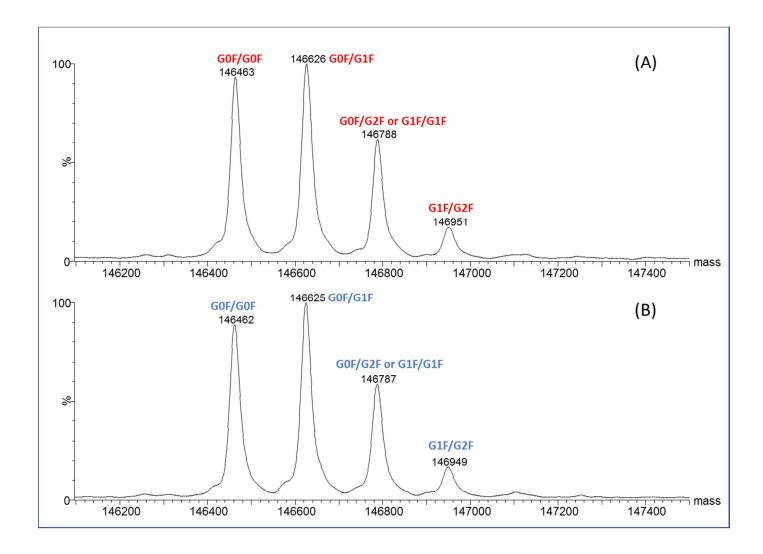
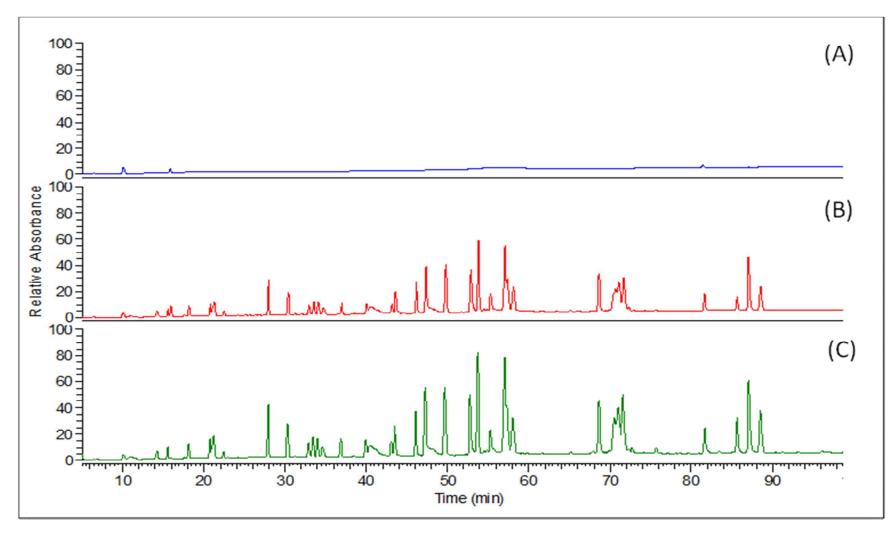




Figure S3. UV Chromatograph Representative of Digested Peptides from mAb1 by Peptide-mapping.

UV absorbance at 214 nm. Purified mAb1 from unspiked serum (A), spiked serum (B), and the mAb1 control (C).



As shown in Figure S3, the UV chromatogram for mAb1 isolated from the spiked serum sample (B) was comparable to the chromatogram for the mAb1 control (C). It showed that mAb1 isolated from the spiked serum sample was also very pure. Furthermore, there was no interfering IgG peptides detected in the purified unspiked serum sample (A), which was consistent with the SDS-PAGE analysis. Together, these results indicated that the anti-id affinity purification was highly selective for mAb1, which enabled reliable relative quantitation of the extracted ion chromatograms from MS full scan. In order to evaluate any potential bias introduced by the affinity purification of mAb1, a method control (mAb1 used in clinical dosing but not subjected to purification) was performed along with other samples in peptide-mapping quantitation. The relative abundance of attributes from purified mAb1 (post-infusion) was comparable with the method control (Table S1), which suggested that isolation of mAb1 from serum samples did not induce significant bias in the MS analysis.

Figure S4. Time-course Plot of In vivo HC Deamidation Rates

*In vivo* HC Deamidation Change in Human Subjects (n=3). Error bars represent ± one standard deviation.

- A) HC Asn384/389 Deamidation (For some points, the error bars would be shorter than the height of the symbol. In these cases, the error bars do not show)
- B) HC Asn55 Deamidation

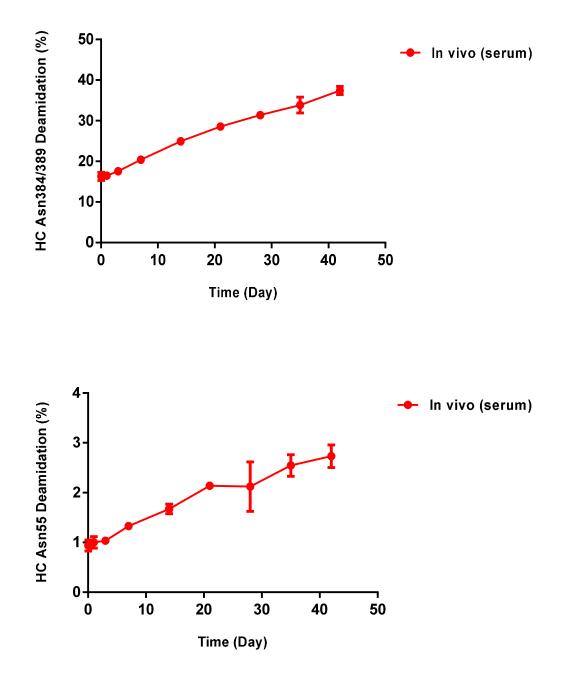



Figure S5. Time-course Plot of In vivo N-terminal PyroE Rates

*In vivo* N-terminal PyroE Change of Human Subjects (n=3). Error bars represent  $\pm$  one standard deviation. For some points, the error bars would be shorter than the height of the symbol. In these cases, the error bars do not show.

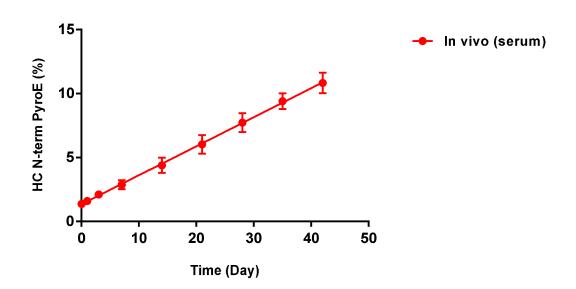



Figure S6. Time-course Plot of In vivo LC Asp95 Isomerization Rates

In vivo LC Asp95 isomerization change of human subjects (n=3). Error bars represent  $\pm$  one standard deviation. For some points, the error bars would be shorter than the height of the symbol. In these cases, the error bars do not show.

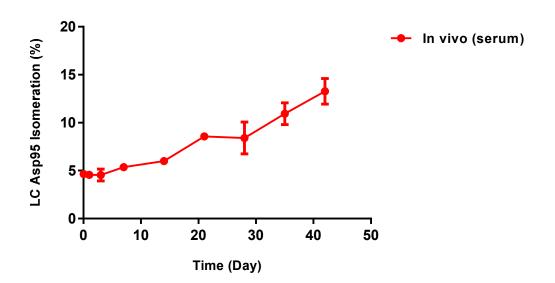



Figure S7. Time-course Plot of In vivo Glycation Rates

In vivo total glycation change from human subjects (n=3). Error bars represent  $\pm$  one standard deviation. For some points, the error bars would be shorter than the height of the symbol. In these cases, the error bars do not show.

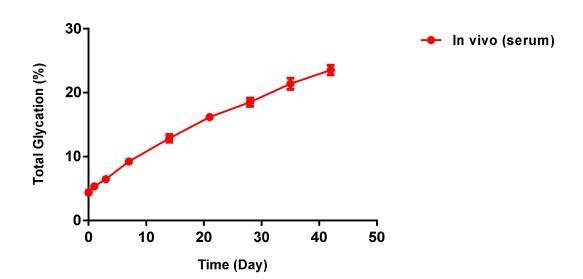



Figure S8. N-terminal Glu Cyclization Rates of mAb2

The levels of pyroE are presented for mAb2 isolated from clinical serum, spiked serum and spiked PBS samples. The *in vivo* data represent the average results from two human subjects. Error bars represent  $\pm$  one standard deviation. For some points, the error bars would be shorter than the height of the symbol. In these cases, the error bars do not show.

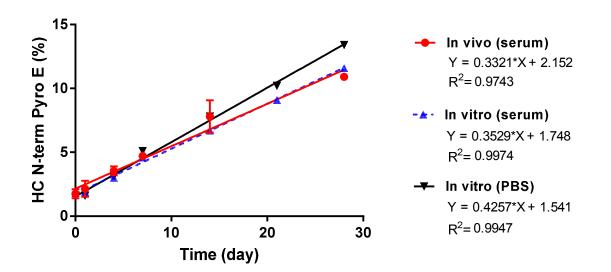
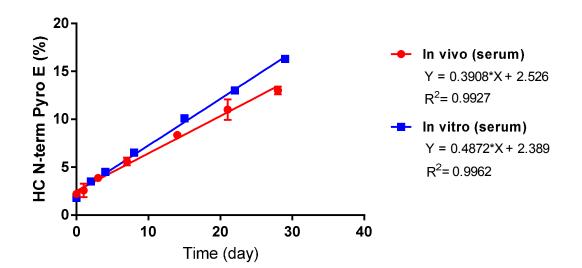




Figure S9. N-terminal Glu Cyclization Rates of mAb3

The levels of pyroE are presented for mAb2 isolated from clinical serum and spiked serum samples. The *in vivo* data represent the average results from four human subjects. Error bars represent  $\pm$  one standard deviation. For some points, the error bars would be shorter than the height of the symbol. In these cases, the error bars do not show.

