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S.1 Derivation of the Diffusion Constants, D‖ and D⊥

We begin with a hole state located at site m as described in the main text. Here, we define this

site m to be at the position (i, j), where i denotes the x-component and j denotes the y-component,

and i and j take on discrete, integer values (Figure S1). In Figure S1, we define the crystal c-axis

and orthorhombic x–y plane exactly as they are in the main text, with the crystal c-axis coinciding

with the orthorhombic y-axis. We have rotated the lattice in the x–y plane clockwise by 90 degrees

with respect to what is shown in the main text ("Top View" of Figure 1B, and Figure 4B) so that

the x- and y-axis are now positioned in the typical fashion.

i, j i+1, ji-1, j

i+1, j+1i, j+1i-1, j+1

i-1, j-1 i, j-1 i+1, j-1

c-
ax

is

x

y

Figure S1: Schematic of the surface sulfur sites. A hole located at position (i, j) can jump to any
of its nearest- and next-nearest-neighbors. Nearest-neighbors include (i± 1, j) in the horizontal
direction and (i, j± 1) in the vertical direction. Next-nearest-neighbors include the remaining
positions: (i±1, j±1). The crystal c-axis and orthorhombic x–y plane are defined exactly as they
are in the main text. We have rotated the lattice in the x–y plane clockwise by 90 degrees with
respect to what is shown in the main text (Figure 1B and Figure 4B) so that the x- and y-axis are
now positioned in the typical fashion (horizontal x, vertical y).
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Utterback et al.1 discovered that surface-trapped holes in CdS nanorods execute a diffusive

random walk at room temperature. The equation governing the time evolution of a random walker

starting at position m = (i, j) and moving to any of its 8 nearest- or next-nearest-neighbors is

dPi, j(t)
dt

= k⊥
[
Pi+1, j(t)+Pi−1, j(t)−2Pi, j(t)

]
+ k‖

[
Pi, j+1(t)+Pi, j−1(t)−2Pi, j(t)

]
+ k′

[
Pi+1, j+1(t)+Pi−1, j−1(t)−2Pi, j(t)

]
+ k′

[
Pi+1, j−1(t)+Pi−1, j+1(t)−2Pi, j(t)

]
, (1)

where Pi, j(t) is the probability of finding a hole at position m = (i, j) at time t; k⊥, k‖, and k′ are

the rates corresponding to the possible paths of motion (see Figure 4B in the main text). We define

nearest-neighbors to be "on axis" in both dimensions at the positions (i±1, j) and (i, j±1), and we

define next-nearest-neighbors to be "off axis" at positions (i±1, j±1). In what follows, we derive

the solution to eq 1 using approximation techniques and arrive at an anisotropic two-dimensional

diffusion equation with two uncoupled diffusion constants, D‖ and D⊥. The approach we take here

follows the derivation for one-dimensional diffusion presented in ref 2.

We first convert to a probability density P(x,y, t) by introducing an area, dA = αε = ξ ε2, such

that

Pi, j(t) = P(x,y, t)dA, (2)

where x and y describe the positions i and j, respectively. The lengths, α and ε , correspond to

the DFT-relaxed lattice spacings between sulfur atoms in the x- and y-directions, respectively, and

their values are α = 4.2040 Å and ε = 6.8417 Å. The quantity ξ = α/ε is a fixed aspect ratio of

the lattice spacings on the rectangular lattice. We now convert eq 1 to a diffusion equation for the
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probability density, P(x,y, t). Using the aspect ratio, ξ , to put all lengths in terms of ε , we find

∂tP(x,y, t) = k⊥
[
P(x+ξ ε,y, t)+P(x−ξ ε,y, t)−2P(x,y, t)

]
+ k‖

[
P(x,y+ ε, t)+P(x,y− ε, t)−2P(x,y, t)

]
+ k′

[
P(x+ξ ε,y+ ε, t)+P(x−ξ ε,y− ε, t)−2P(x,y, t)

]
+ k′

[
P(x+ξ ε,y− ε, t)+P(x−ξ ε,y+ ε, t)−2P(x,y, t)

]
. (3)

Our focus is to capture diffusion along the y-axis to compare with the results presented in ref 1;

therefore, we want to expand each term in eq 3 asymptotically in ε . For any point (x,y), this yields

P(x,y, t) = P(0)(x,y, t)+ εP(1)(x,y, t)+ ε
2P(2)(x,y, t)+ ..., (4)

where the {P(i)} are analytic functions. In the derivation to come, we only take eq 4 out to first

order in ε for reasons that will soon become clear. Since the {P(i)} are analytic functions in x

and y, they also have Taylor series representations about points close to (x,y). For this derivation,

we only need to take each Taylor expansion out to second-order; all odd-ordered terms cancel

after substitution into eq 3. For compactness, we will temporarily suppress the time variable, t.

Substituting eq 4 into eq 3 and Taylor expanding each relevant term to second-order, we find

∂tP(x,y)≈ ∂t

[
P(0)(x,y)+ εP(1)(x,y)

]
≈ k⊥

[
ξ

2
ε

2
∂

2
xP(0)(x,y)+ ε

(
ξ

2
ε

2
∂

2
xP(1)(x,y)

)]
+ k‖

[
ε

2
∂

2
yP(0)(x,y)+ ε

(
ε

2
∂

2
yP(1)(x,y)

)]
+ k′

[
2ξ

2
ε

2
∂

2
xP(0)(x,y)+2ε

2
∂

2
yP(0)(x,y)+ ε

(
2ξ

2
ε

2
∂

2
xP(1)(x,y)+2ε

2
∂

2
yP(1)(x,y)

)]
.

(5)

It is notable that the second-order cross terms from the Taylor expansions cancel due to the sym-

metry of the problem and do not appear in eq 5. Upon rescaling time2 as τ = ε2t and collecting
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like terms, we arrive at

∂τP(0)(x,y,τ)≈
[
k⊥ξ

2
∂

2
x + k‖∂

2
y + k′

(
2ξ

2
∂

2
x +2∂

2
y

)]
P(0)(x,y,τ) (6)

∂τP(1)(x,y,τ)≈
[
k⊥ξ

2
∂

2
x + k‖∂

2
y + k′

(
2ξ

2
∂

2
x +2∂

2
y

)]
P(1)(x,y,τ). (7)

The above expressions illustrate that P(0)(x,y,τ) and P(1)(x,y,τ) have the same form, with

P(1)(x,y,τ) providing higher-order corrections to the full P(x,y,τ). Therefore, to lowest order

in ε , the distribution P(0)(x,y,τ) captures the relevant physics for diffusion on a rectangular lat-

tice. Putting the unscaled time, t, back into eq 6, we arrive at the final two-dimensional diffusion

equation,

∂tP(0)(x,y, t) =
[
k⊥α

2
∂

2
x +2k′α2

∂
2
x + k‖ε

2
∂

2
y +2k′ε2

∂
2
y

]
P(0)(x,y, t)

=
[
D⊥∂

2
x +D‖∂

2
y

]
P(0)(x,y, t), (8)

which depends on two uncoupled diffusion constants:

D⊥ = α
2(k⊥+2k′) (9)

D‖ = ε
2(k‖+2k′). (10)

Here, D⊥ governs diffusion around the waist of a nanorod, and D‖ governs diffusion down the

c-axis of a nanorod. Utterback et al.1 observed trapped-hole diffusion along the c-axis of their CdS

nanorods, and from their experimental data, they calculated an upper bound for the corresponding

diffusion constant, D‖. They did not put a bound on D⊥, and such an estimate is currently unknown;

therefore, the focus of this work is dedicated only to D‖. Lastly, because the value of D‖ depends

on the lattice spacing between surface sulfur atoms in the crystal c-direction, we replace ε from eq

10 with the letter c in the main text, yielding the final reported equation,

D‖ = c2(k‖+2k′). (11)
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S.2 Crystal Structure / VASP Convergence Details

S.2.1 Bulk Cell Parameters

The CdS bulk unit cell comprises four atoms with the following fractional positions: (0,0,0)

and (1
3 ,

2
3 ,

1
2) for Cd; (0,0,0.37715) and (1

3 ,
2
3 ,0.87715) for S.3 We define the corresponding unit

cell with lattice parameters a = 4.136 and c = 6.713 and the vectors (a,0,0), (−a
2 ,

a
√

3
2 ,0), and

(0,0,c). These definitions yield a wurtzite crystal structure. Using these parameters, we construct

a 2×2×2 bulk supercell and a 3×3×4 bulk supercell. We will discuss the reasons for the latter

bulk cell in the coming sections (section S.2.4). We create all variants of surface "slab" supercells

from these two bulk cells. All VASP (Vienna Ab initio Simulation Package) calculations presented

are non spin-polarized, and we enforce a 520 eV plane-wave energy cutoff (1.9 times the default).

All k-point meshes are centered at the Γ-point. All structural relaxations make use of the conjugate

gradient algorithm.

S.2.2 Bulk Convergence Details

For the 2×2×2 supercell, we use a 6×6×4 k-point mesh, which converges the energy to less

than 0.01 meV/atom relative to the most dense k-point mesh we considered, a 24×24×16 mesh.

We achieve similar convergence for the 3×3×4 supercell by using a 4×4×2 k-point mesh. We

relax all degrees of freedom (ionic positions, cell volume, and cell shape) for each bulk supercell

and employ the tetrahedron method with Blöchl corrections as the method of smearing. For bulk

CdS, this method is variational since no partial occupancies appear in the band structure. We use

an additional support grid for the evaluation of augmentation charges, in combination with "high"

precision and an augmentation-charge cutoff energy of 520 eV, to reduce the noise in the forces.

We find "high" precision works better than the more modern "accurate" precision by providing the

smallest noise in forces for bulk CdS. Using these settings, we require strict cutoffs of 1× 10−4

eV/Å for the force convergence and 1×10−9 eV for the energy convergence of each ionic step.
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S.2.3 (1010) Surface Slab Parameters

According to Sun and Ceder,4 one can define the (1010) Miller-Bravais facet of a hexago-

nal/wurtzite cell with a simple orthorhombic cell by performing a symmetry transform of the old

hexagonal coordinates. Such a transformation is useful because defining a surface slab cell with

completely orthorhombic coordinates minimizes k-point dispersion errors during a calculation.4

Furthermore, this transformation makes band structure and density of states (DOS) calculations

unambiguous in terms of k-point sampling. Indeed, previous work by Rantala et al.5 defined a

CdS (1010) surface with an orthorhombic cell. Using the code presented by Sun and Ceder,4 we

successfully transform the coordinates of the DFT-relaxed bulk supercells to orthorhombic coordi-

nates, and with the z-axis perpendicular to the (1010) facet. Here and in the main text, we refer to

the dimensions of the surface slabs using the new orthorhombic x–y–z coordinates instead of the

original wurtzite a–b–c coordinates. The various surface slab sizes we consider are as follows:

• two 2×2×8 surfaces (symmetric and asymmetric),

• one 2×2×3 surface (asymmetric),

• one 3×4×3 surface (asymmetric),

where the symmetric and asymmetric labels correspond to the passivation/relaxation scheme we

employ (see section S.2.5).

We vary the thickness and relaxation scheme between slabs to test for convergence of the

surface geometry, which is important for achieving convergence of the tunneling matrix elements

(results in Table S1). We only report on the 2×2×8 symmetric surface slab in the main text. As

evident from the dimensionalities, we construct all 2× 2×N surface slabs from the DFT-relaxed

2× 2× 2 bulk supercell, and we construct the thin, wide 3× 4× 3 surface slab from the DFT-

relaxed 3× 3× 4 bulk supercell. The mismatch of the indices between the 3× 4× 3 surface slab

and the 3× 3× 4 bulk supercell arises from the change to orthorhombic coordinates, where the

wurtzite c-axis (third index for the bulk supercell) coincides with the orthorhombic y-axis (second

index for the surface slab).
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S.2.4 3×4×3 "Anti-Aliased" Surface Slab

The purpose of constructing a wide 3×4×3 surface slab (3×4 surface, 3 layers in thickness)

is to determine if wave function aliasing is an issue for the Wannier localization procedure. We

use a 3× 4× 3 slab instead of a 3× 3× 3 slab because pseudohydrogen passivation (see section

S.2.5) introduces fractional electrons per individual species, and a 3× 4× 3 slab guarantees that

the total electron count is a whole number. The concern for the wave function aliasing effect is

that the distances between nearest-neighbor sulfur atoms on the surface are roughly L/2 apart in

the 2×2×N slabs, where L is the length of the slab cell in either the x- or y-direction. This L/2

separation is the greatest distance two neighboring surface sulfur atoms can be from each other in

the 2× 2×N periodic system, suggesting that unphysical interactions with their periodic images

may occur. Because of this, one could conclude that the periodic copies of the electron density

calculated by VASP lead to unphysical delocalization of the final diabatic states. This would lead

to artificially high values of the tunneling matrix elements presented in the main text, thereby

implying diffusion is "fast" relative to the actual value. Our findings for the 3× 4× 3 surface

slab, located in Table S1, suggest that wave function aliasing is not an issue since the calculated

tunneling matrix elements are nearly identical to those of the 2× 2× 3 slab, which was relaxed

using comparable settings (see Table S1).

S.2.5 Pseudohydrogen Passivation and Ionic Relaxation Scheme

For all surface slabs, we begin by capping all surface cadmium and sulfur atoms with their

respective pseudohydrogen (PH) species. We relax the positions of the PH atoms until the forces

they experience fall below 10 meV/Å to ensure proper passivation and to ensure all slabs start from

similar initial conditions. From here, we construct the symmetric and asymmetric cases as follows.

For the symmetric 2×2×8 case (Figure S2A), we uncap all sulfur atoms on both surfaces, leaving

only the surface cadmium atoms passivated. We hold the middle 2 layers of CdS fixed at their

initial positions and relax all other atoms in a "middle-out" manner, thereby simulating surface-like

behavior at both ends. For all asymmetric surface variants (Figure S2B), we keep full passivation
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               Asymmetric               A B

Figure S2: Side views of 2× 2× 8 symmetric and asymmetric surface slabs. Cadmium atoms
are gray, sulfur atoms are yellow, and pseudohydrogen (PH) passivants are blue. Surface sulfur
atoms are labeled with orange circles. The regions boxed in dark blue contain the fixed, "bulk-
like" atoms. (A) The symmetric slab. Only the surface cadmium atoms are passivated in the slab,
leaving all surface sulfur atoms undercoordinated by 1 bond. The boxed region contains 2 layers
of CdS. (B) The asymmetric slab. PH atoms passivate all cadmium and sulfur atoms on the bottom
surface. Cadmium atoms on the top surface are also passivated, while sulfur atoms on the top
surface are undercoordinated by 1 bond. The boxed region contains 1 layer of PH atoms and 1
layer of CdS. The thinner asymmetric slabs (not shown) follow the same passivation scheme as the
2×2×8 asymmetric slab.

on the bottom surface to completely eliminate surface states arising from that layer. On the top

surface, we remove all sulfur-capped PH species and leave the cadmium passivation intact, thus

simulating the presence of hole states on the top surface only. We enforce that the bottom layer of

PH and the adjacent layer of CdS represent the "bulk-like" part of the system during relaxation by

keeping their positions fixed at all times. We allow all other atoms to relax. We do not charge the

system or account for differences in geometry between the uncharged and charged systems for any
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calculation. Thus, we employ the Condon and frozen orbital approximations for all calculations.

S.2.6 Surface Convergence Details

For the slab calculations, we turn symmetrization protocols off except for |Ψk〉= |Ψ−k〉, where

|Ψk〉 is the Bloch state at wave vector k. During relaxations, we require a force convergence cutoff

of 10 meV/Å and an energy convergence cutoff of 1× 10−6 eV for each ionic step. We employ

Gaussian smearing during geometry relaxations, keeping the cell shape and volume fixed. The

tetrahedron method is not viable for our surface slab relaxations because of partial occupancies in

the band structure that arise from the undercoordinated sulfur atoms at the surface. We again use

an additional support grid for the evaluation of augmentation charges. For all calculations except

the 2×2×8 surfaces, we use "accurate" precision because this minimizes the noises in the forces.

For the 2×2×8 variants, however, we find the "high" precision tag with an augmentation-charge

cutoff energy of 750 eV provides the best accuracy in the forces.

Keeping the previous settings fixed, we carry out numerous convergence tests for the tunneling

matrix elements, t⊥, t‖, and t ′, using the slabs mentioned in section S.2.3. To test for convergence

for each slab, we vary the k-point density and the smearing width since partial occupancies arise in

the band structure near the Fermi energy, EF . These partial occupancies require that we carefully

sample the Brillouin zone to achieve the most accurate ground-state surface geometry. The results,

summarized in Table S1, show that the matrix elements are fairly insensitive to the k-point mesh

and smearing width choices we considered, implying that our lowest-quality choices are adequate

for finding the approximate ground-state surface structure. This is especially evident in the results

for the symmetric 2× 2× 8 slab, where all variants yield |t‖| ≈ |t ′| ≈ 3 meV and |t⊥| ≈ 80 meV.

The calculated lower bound on the reorganization energy, λ ≥ 1 eV, is the same for all calculations

presented in Table S1. We use 293 K as the definition for room temperature when calculating λ .
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Table S1: Calculated tunneling matrix elements for the surface slabs. We test convergence
of the matrix elements by employing various k-point meshes and Gaussian smearing widths
during structural relaxations. The (s) and (a) labels for the 2×2×8 surfaces denote symmet-
ric and asymmetric, respectively. All other surfaces are asymmetric by default.

surface k-point mesh smearing (meV) |||ttt⊥||| (meV) |||ttt‖||| (meV) |||ttt ′′′||| (meV)

2×2×3
6×4×1 50 79.1 2.2 3.6
8×5×1 2 79.1 2.5 3.4

12×8×1 2 79.1 2.5 3.4

2×2×8(s)
6×4×1 50 80.0 3.0 2.9
8×5×1 10 79.8 2.9 3.0
8×5×1 2 79.8 2.9 3.0

2×2×8(a)
6×4×1 50 79.8 2.9 2.9
8×5×1 2 79.6 3.2 2.8

3×4×3 4×2×1 50 79.4 2.2 3.6

S.3 Wannier Localization Procedure

S.3.1 Wannier90: A Brief Description

Wannier90 converts the adiabatic plane-wave results to maximally-localized Wannier functions

(MLWFs) through a series of unitary transformations of the original Bloch states. Wannier90

quantifies the degree of localization by calculating the spatial "spread" of the orbitals, which the

code minimizes to generate the MLWFs. The spread takes on units of Å2. Details and additional

information on these topics can be found in the Wannier90 manual and various references.6–9

S.3.2 Convergence Criteria

For our system and choice of MLWF basis (sulfur-centered sp3 orbitals), Wannier90 must

complete two phases: "disentanglement" and "Wannierisation." The former extracts the optimal

subspace of states from the original DFT calculation for building the MLWFs, and the latter maxi-

mally localizes these states. For all calculations, we use the default disentanglement convergence

criteria supplied by Wannier90: disentanglement terminates when the fractional change between

successive iterations in the spread is less than 1×10−10 Å2 for 3 iterations. For the Wannierisation

phase, we enforce a convergence of 1× 10−11 Å2 over 10 successive iterations for the fractional
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change in the spread. We find that convergence is most stable when we construct sulfur-centered

sp3 orbitals throughout the entire structure. In fact, doing so leads directly to the first tight-binding

Hamiltonian,HT B, discussed in the main text.

S.3.3 The Outer and Inner Energy Windows

The two most important tunable parameters that determine how the spread is minimized are the

"outer" and "inner" energy windows. The outer window should encompass any states believed to

contribute to the desired diabatic picture, and the inner window should encompass only the states

that need to be reproduced exactly after Wannier localization. The inner window is often called

the "frozen" window for this reason. For all calculations, we set the outer window to include all

states below EF +0.2 eV. This choice excludes all purely-unoccupied (conduction) bands that exist

above EF +1.3 eV since we find that the conduction bands do not aid in constructing the sp3 orbital

subspace.

Determining the inner window range is a much more delicate process that requires extensive

testing since the choice of inner window may dramatically alter some of the desired properties.

Because the hole states localized on surface sulfur atoms correspond to the top-most bands of the

valence manifold, we know that we need to preserve, at a minimum, the electronic properties of

the region between EF and EF +0.2 eV. Therefore, we set the initial inner window to encompass

the states in this region. Since we define the inner window maximum to coincide with the outer

window maximum, this value need not change if we must preserve all states between EF and

EF +0.2 eV. Thus, the inner window minimum, which has an upper bound equal to EF , is the only

unknown variable we still need to determine for our system.

In the main text, we show that the hole states are well localized on the surface sulfur atoms;

therefore, we use the spread of the converged nonbonding sp3 orbitals in the system to determine

the proper inner window minimum value for all calculations. We use this as a metric for the

following reason: increasing the width of the inner window for a fixed outer window range will

always increase the total spread since the inner window imposes a constraint on the final diabatic
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states; however, individual spreads need not follow this trend. As such, we hypothesize that some

value of the inner window minimum will minimize the spreads of the nonbonding sp3 orbitals

within the manifold of all sulfur-centered sp3 orbitals. Taking into account this information, we

perform numerous Wannier localizations for all slabs starting with an inner window minimum

value of EF and scanning below to the nearest meV to determine the optimal value. For this work,

an inner window width of about 1.6 eV, corresponding to an inner window minimum value of

approximately EF −1.4 eV, leads to maximally-localized nonbonding sp3 orbitals for all 2×2×8

slabs. For the symmetric 2×2×8 slab in particular, the nonbonding sp3 orbitals attain final spreads

of ∼1.6 Å2, and all sp3 orbitals in the structure in general attain spreads between 1.6 and 2.1 Å2.

S.4 Alternate Electronic Structure Comparisons

S.4.1 Fully-Passivated 2×2×8 Surface Slab

In the main text, we mention that passivating all surface sulfur and cadmium atoms with their

respective PH species gives rise to "bulk-like" behavior. Figure S3A shows a DOS calculation for

such a fully-passivated surface slab, which we construct by taking our final 2× 2× 8 symmetric

slab (10 meV smearing width, Table S1) and then passivating the bare sulfur atoms. We relax

the positions of these PH species, holding all other atoms fixed, to ensure complete passivation

of the surface sulfur dangling bonds. In this DOS, we notice no states exist immediately above

the "Fermi" level, EF , which here is defined as the energy at the valence band maximum. All

states below EF are fully occupied and all states above EF are completely unoccupied; no partial

occupancies exist with this passivation scheme. To compare with bulk CdS, we calculate the DOS

for the relaxed 2×2×2 bulk supercell, shown in Figure S3B. As evident, there is qualitatively no

difference in the DOS between the fully-passivated surface slab and a bulk cell. We verify these

results by inspecting the electron density for the surface slab within 25 meV below EF . The results

(Figure S3C) show that all of the electron density in this energy range resides in the bulk of the

material, delocalized throughout most of the structure, with no discernible states localized to the
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surface sulfur atoms.
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Figure S3: (A) Total DOS within the range EF ± 4 eV for a fully-passivated 2× 2× 8 surface
slab, showing the elimination of states beyond EF . (B) Total DOS within the range EF ± 4 eV
for the 2× 2× 2 bulk supercell. Qualitatively, there is virtually no difference between the two
DOS calculations. (C) Fully-passivated 2×2×8 surface slab electron density (red) at the valence
maximum (between the range EF −0.025 eV and EF ).
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S.4.2 Asymmetric 2×2×8 Surface Slab

Here, we compare the calculations presented in the main text for the converged 2×2×8 sym-

metric slab to those of a 2× 2× 8 asymmetric slab, whose final positions were calculated using

an 8×5×1 k-point mesh and a smearing width of 2 meV. The results for the DOS (Figure S4A)

reveal that the asymmetric and symmetric variants yield qualitatively the same DOS, with a region

between EF and EF + 0.2 eV containing bands that are mostly unoccupied. EF here is exactly as

it is in the main text: the energetic point at which bands are exactly 50% occupied. An electron

density calculation of the states between EF and EF + 0.2 eV for the asymmetric slab gives the

same result as seen in the main text, so we do not show that result here for the asymmetric slab.

Figure S4B shows the corresponding band structure for the 2× 2× 8 asymmetric slab. Like with

the DOS, we find qualitative agreement between this band structure and the one found in the main

text (Figure 3) for the symmetric slab.
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Figure S4: (A) Total DOS within the range EF ± 4 eV for the 2× 2× 8 asymmetric slab relaxed
using an 8×5×1 k-point mesh. We see qualitatively similar results as those described in the main
text. (B) Band structure calculation for the 2×2×8 asymmetric slab. Again, we find qualitatively
similar results with those found in the main text.
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