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1 Validation of the DFTB methodology

In order to validate the calculations obtained throughout this work using the DFTB+ code,1

we have carried out a series of calculations of molecular and crystalline properties employing

Gaussian and Quantum-Espresso DFT-implementations.2 Thus, we started by relaxing the

structures both in gas- and crystal- phases. In the gas-phase case, the results are assessed

by comparing the DFTB+ outputs with the all-electron implementation.2 For this case, we

focused our study in the distribution of the energy levels and their corresponding molecular

orbitals. Also, the vibrational modes for both molecules have been computed establishing the

accuracy of DFTB+1 to describe molecular mechanical properties. In the case of crystalline

phases, we assessed the accuracy by computing the phonon band structure for tetracene

crystalline structure and compared with the plane-wave software Quantum-Espresso.
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Figure 1: Relaxed gas-phase structures (tetracene) for (a) G09 and (c) DFTB+. Selected
bonds (black) and angles (red for bonds and blue for dihedral) are highlighted.

1.1 Gas-Phase Electronic structure and vibrational frequencies of

Tetracene

The relaxed structures computed by (a) DFTB+, (b) G09 and methodologies are displayed

in Figure 1. As a result of this procedure, one can observe that the bond values computed

by DFTB+ are close to those obtained from the all-electron DFT calculations employing

the B3LYP/6−311G* level of theory (Figure 1(a,b)). Similarly, we report that the energy

differences computed for selected energy levels,namely, HOMO, HOMO-1 and HOMO-2 and

the corresponding wavefunctions are in good agreement as is shown in Table 1.

Finally, we carried out excited state calculations in order to estimate the capability and

accuracy of DFTB+ to describe accurately HOMO-LUMO gap. As presented in Figure 2

there is a reasonable agreement between the Casida implementation used in DFTB+1 and

the TDDFT calculations carried out in G09.2 The excitation symmetry coincides in both

implementations. The underestimation of the HOMO-LUMO gap can be ascribed to the
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Figure 2: Gas-Phase molecular diagram for HOMO and LUMO electronic energy levels
including the associated wavefunctions for each energy level.

lack of a bigger basis-set experienced in the DFTB methodology which can be improved by

creating better slater-koster files with the aim to describe accurately such properties.

Thus, in terms of the geometries and the electronic structure description of the gas-

phase tetracene molecule, we obtain a reasonable agreement between the two methodologies

highlighting the good agreement between the DFTB approach once is compared with the

all-electron reference calculation (for the actual values see Table 2). In the case of the LJ

implementation, we notice a constant underestimation of the value of the frequencies which

can ascribed to the origin of such approximation whose contributions are independently

computed after a SCC–DFTB cycle has been carried out and added to the total energy.

1.2 Gas-Phase Electronic structure and vibrational frequencies of

Rubrene

In terms of bond distances and bond angles (Figure 3), we observe a good agreement between

the discussed methodologies. In the case of dihedral angles, there is a small discrepancy
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Table 1: energy differences (in eV) for tetracene complex. The HOMO-LUMO gap has been
calculated using TDDFT which in the case of DFTB is computed using the Casida formula-
tion. In both cases we can observe the good agreement between the different methodologies
in which the HOMO molecular orbital displays a bonding character while the LUMO level
shows an antibonding shape.

Method ∆EHomo−Homo−1 ∆EHomo−1−Homo−2 ∆EHomo−Lumo

DFTB+ 1.14 0.107 1.6 (Triplet)
B3LYP/6-311G 1.46 0.09 1.1 (Triplet)

Table 2: Vibrational frequencies (cm−1) of the tetracene molecule in gas-phase. The com-
puted values are compared between the different levels of theory, ranging from DFTB+ where
the dispersion forces are included by a Lennard-Jones potential (LJ), to the semi-empirical
implementation using the Grimmes-D3 as is included in DFTB+. Also, all-electron (AE)
computed frequencies are reported.

Mode DFTB-(LJ) DFTB-(D3) DFT(B3LYP)
1 39 51 55
2 74 86 89
3 128 139 149
4 167 168 163
5 174 184 191
6 237 254 270
7 297 306 304
8 311 309 317
9 329 325 317

between the results calculated by G09 and DFTB where small torsion of the tetracene core

is observed in the all-electron calculation while total planarity is reported by the DFTB

approach. In the case of the electronic structure computations, reasonable agreement is

found in terms of the energy difference for selected molecular levels which are reported in

Table 3.

Finally, we carried out excited state calculations for Rubrene in gas-phase and the re-

sults are presented in Figure 4. There is a reasonable agreement between the DFTB+ and

the TDDFT calculations carried out in G09.2 The symmetry of the excitation (triplet) is

correctly described in DFTB+. The underestimation of the HOMO-LUMO gap can be as-

cribed to the lack of a bigger basis-set which can describe Rydberg states important in these
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Figure 3: Relaxed gas-phase structures (Rubrene) for (a) G09 and (b) DFTB+. Selected
Bonds (black) and Angles (red for bonds and blue for dihedral) are highlighted.

kind of big molecules. However, the DFTB methodology can be improved by creating better

slater-koster files with the aim to describe accurately excited-state molecular properties.

To conclude, in terms of the geometries and the electronic structure description of the gas-

phase rubrene molecule, we obtain a reasonable agreement between the two methodologies.

In the case of the gas-phase vibrational frequencies, when compared with the all-electron DFT

results, one can observe that the DFTB-D3 and the Lennard-Jones implementation are in

reasonable agreement with reference values (B3LYP/6-31G) (for the actual values see Table

4). The main discrepancies can be ascribed to differences in the molecular forces computed

with DFTB+ which lack of additional states present in the all-electron implementation that

can provide a better description of the Rydberg-states.
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Table 3: Molecular energy differences (in eV) for rubrene complex. The HOMO-LUMO
gap has been calculated using the TDDFT methodology which in the case of DFTB is
implemented using the Casida formulation.

Method ∆EHomo−Homo−1 ∆EHomo−1−Homo−2 ∆EHomo−Lumo

DFTB+ 1.02 0.13 1.49 (Triplet)
B3LYP/6-311G 1.3 0.05 1.05 (Triplet)

Table 4: Vibrational frequencies (cm−1) of the rubrene molecule in gas-phase. The computed
values are compared between the different levels of theory, ranging from DFTB+ where
the dispersion forces are included by either the Lennard-Jones potential (LJ) or the semi-
empirical implementation using the Grimme-D3. Also here, planewave (PW) and all-electron
(AE) computed frequencies are reported as reference points to assess the accuracy of the
methodology.

Mode DFTB-(LJ) DFTB-(D3) DFT(B3LYP)(AE)
1 15 9 6
2 18 19 22
3 21 23 24
4 48 37 62
5 50 42 65
6 57 57 67
7 60 60 70
8 76 72 74
9 82 79 77
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Figure 4: Gas-Phase molecular diagram for HOMO and LUMO electronic energy levels
including the associated wavefunctions for each Energy level.
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2 Mechanical properties of crystalline phases

In this section, we perform calculations of the mechanical properties of the tetracene and

rubrene molecular crystals comparing the phonon band structure in the case of tetracene

obtained with DFTB+ and compared with both established methodologies and computations

reported in literature.3 This is a crucial issue since the correct description of the mechanical

properties (phonon dispersion relations)depends on a complex interplay between molecular

packing, provided by the underlying lattice, and the weak vdW forces which holds the

molecules together.

2.1 Phonon band structures for tetracene

In order to establish the accuracy of our methodology to describe the phonon behavior at

different points in the q-space the phonon band structure has been computed as is explained

in the main text. These results have been compared with calculations carried out by employ-

ing the plane-wave code Quantum-Espresso where the exchange-correlation C09-vdW-DF2

implementation has been used.4,5 A cut-off energy of 30 Ry in an electronic mesh of 8×8×8

employing the Monkhorst-Pack scheme has been used to relax both the lattice and atomic

positions of the system. The structure is considered relax when the Helmann-Feynman forces

are below 1 × 10−6 Ry/bohr and the total energy to 1 × 10−12 Ry has been reached. The

self-consistent calculations threshold for all self-consistent calculations is set to 1 × 10−12

Ry. The tetracene phonon band structure calculation has been performed on the relaxed

structure unit cell by employing the DFPT.6 The self-consistent calculation threshold is set

to 1 × 10−12 Ry. Fourier interpolation technique of the obtained Dynamical matrices has

been used to construct the continuous sampling of the q-space. The high-symmetry points

used are Γ = (0, 0, 0), B = (0.5, 0, 0), F = (0, 0.5, 0), G = (0, 0, 0.5), Z = (0, 0.5, 0.5) and

K = (0.5, 0.5, 0) which scans the full extension of the irreducible Brillouin zone. The results

of both calculations are presented in Figure 5. Our comparison is focused on the description
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of low-frequency normal modes which are below 200 cm−1 which are the associated modes

active at room temperature. In general terms both phonon band structures are describing the

same phonon behaviour along the selected high-symmetry points. However, some discrep-

ancies in the description of the three lowest normal modes (acoustic) are observed specially

at the B − K, G − Z and Z − F connection paths that can be ascribed to small variations

of the forces computed from the variation in the electronic density due to the minimal basis

set used in the DFTB approach. In frequency regions above 50 cm−1 the curvature of the

phonon band strictures is similar leading us to conclude the suitability of DFTB vdw-D3

approach to describe mechanical properties of organic semiconductors.

2.2 Phonon band structures for rubrene

In the main text we restrict ourselves to the presentation of the phonon band structure be-

tween the Γ and the S high-symmetry points of the Brillouin zone. However, the irreducible

Brillouin zone commonly used to display the electron band structure contains more high-

symmetry points. Therefore, in Figure 6 we present the complete phonon band structure

along the the high-symmetry path Γ = (0, 0, 0), S = (0, 0.5, 0), T(0, 0.5, 0.5), Z = (0, 0, 0.5)

and Y = (0.5, 0, 0). The frequency range chosen to depict the band structure corresponds

to energies around room temperature ' kBT . It is interesting to notice how intricate in-

teractions between different branches in the path Γ− S is rather simplified when compared

with the path S−T where many modes become degenerated. The degeneracy is lifted when

the q-space path is take from T − Z where several branches are observed until the end of

the Brillouin zone. Finally, the path Γ − Y depicts the same behaviour of a manifold of

branches as the the first segment of the irreducible Brillouin zone along a direction in which

no transfer integrals are important but being a possible channel in which heat can be either

transported or dissipated.
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Figure 5: Computed phonon band structures for tetracene molecular crystal employing (a)
DFTB vdW-D3 and (b) c09-vdW-DF2 implementations. All high-symmetry points have
been selected to represent accurately the full Brillouin-zone in the reciprocal space.
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Figure 6: Computed phonon band structures for rubrene molecular crystal employing DFTB
vdW-D3 implementations. All high-symmetry points have been selected to represent accu-
rately the full Brillouin-zone in the reciprocal space.
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3 Nonlocal electron-phonon coupling

Formally, the electron-phonon coupling describes the change in the electronic structure of a

system ascribed to a change of its geometry. Therefore, the electron Hamiltonian elements

(e.g. transfer integral in our case) can be computed from a microscopically viewpoint by

performing a simple Taylor series expansion as a function of the normal modes of the system

in terms of the normal coordinates as:

t = t0 +
∑
I

gIQI +
∑
I,J

χI,JQIQJ + . . . (1)

where,

gI =
∂t

∂QI

, (2)

χI,J =
∂2t

∂QIQJ

(3)

The displacements along the corresponding normal modes are represented by QI . In

this case, we applied a linear approximation for Equation (1) which leads to the following

expression,

t = t0 +
∑
I

gIQI (4)

Considering the supercell approach used in this work for the calculation of phonon normal

modes, the number of phonon modes depend on the sampling number of q points. In our

case, an assumption that the transfer integrals are effected by the dimer systems only is used.

Therefore, we expand transfer integral using a complete basis set of displacement {Bi} for

the dimer system and calculate the first derivatives of the electronic coupling with respect

to this basis set first,

t = t0 +
∑
i

gi,0Bi with gi,0 =
∂t

∂Bi

(5)

where gi,0 represents the first derivative and i = 1, 2, . . . , 3Natom (Natom is the number of
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atoms in the dimer system). Additionally, the total system can be subdivided in terms

of the molecules which are relevant for the electron transfer process and whose associated

normal modes {QI} (I = 1, 2, . . . , Nmode) can be rotated to the vector space of {Bi} and

redundancy part which would not effect the transfer integral,

QI =
∑
i

RIiBi + rest (6)

It is obvious that,

gI =
∂t

∂QI

=
∑
i

∂t

∂Bi

∂Bi

∂Qi

=
∑
i

gi,0RIi (7)

For convenience, we have selected the atomic coordinates as the basis set, i.e.

{Bi} = {x1, y1, z1, . . . xNatom, yNatom, zNatom} (8)

Under this basis set, (∂/∂xa, ∂/∂ya, ∂/∂za)t describe the gradient of the transfer integral t

with respect to a selected atom a displacement, andRI is the atomic Cartesian displacements

in dimer system of phonon modes {Qc
I}, i.e.

gI = ∇t ·Qc
I (9)

The results of gradient are displayed in Figure 7 where the direction of the gradient is

highlighted by red arrows.
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Figure 7: Gradient results (red arrows) for (a) tetracene dimer12, (b) tetracene dimer13, (c)
tetracene dimer23, (d) rubrene dimer12 and (e) rubrene dimer13 based on gi,0.
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