Supporting Information

Hierarchical Self-Assembly and Chiroptical Studies of Luminescent 4d-4f Cages

Zhuo Wang,^{†,§,‡} Li-Peng Zhou,^{†,‡} Tong-Han Zhao,[†] Li-Xuan Cai,[†] Xiao-Qing Guo,[†] Peng-Fei Duan,^{*,†} Qing-Fu Sun^{*,†}

[†]State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.

[§]University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.

^{II}CAS Center for Excellence in Nanoscience, Division of Nanophotonic, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China.

Contents

1. Synthetic Procedures	S3
2. Single crystal X-ray diffraction studies	
3. Chiroptical Studies	
4. Detection of Antibiotics	
5. DFT calculation:	S45

1. Synthetic Procedures

The synthetic route of Ligand $1H^{R}$ and $1H^{S}$

Scheme S1 The synthetic route of the ligand 1H

S4

Figure S4. ¹³C NMR spectrum of 6^{R} (101 MHz, CDCl₃, 298 K).

Figure S6. ¹³C NMR spectrum of 7^{R} (101 MHz, d_{6} -DMSO, 298 K).

Figure S8. ¹³C NMR spectrum of **8** (101 MHz, d_6 -DMSO, 298 K).

Figure S10. ¹³C NMR spectrum of 9^R (101 MHz, CDCl₃, 298 K).

Figure S12. ¹³C NMR spectrum of $1H^R$ (101 MHz, d_6 -DMSO, 298 K).

Figure S14. ¹H NMR spectrum of 2^{R} •NO₃ (400 M Hz, d_6 -DMSO, 298K).

Figure S16. ¹H-¹H COSY NMR spectra of 2^{R} •NO₃ (400 MHz, d_6 -DMSO, 298 K).

Figure S17. ESI-TOF-MS spectra of the self-assembly complex of $2^{R} \cdot NO_3$ with insets showing the observed and calculated isotopic patterns of the peaks at m/z 816.1716 and 1694.3299, corresponding to $[(bpy)_2Pd_2(1^R)_2]^{2+}$ and $[(bpy)_2Pd_2(1^R)_2(NO_3)]^+$, respectively.

Figure S18. ¹H DOSY spectra of $2^{R} \cdot NO_3$ (log D = -9.871, r = 8.310Å, 400 MHz, d_6 -DMSO, 298 K).

Figure S21. ESI-TOF-MS spectra of the self-assembly complex of $2^{R_{\bullet}}$ OTf with insets showing the observed and calculated isotopic patterns of the peaks at m/z 816.1705 corresponding to $[(bpy)_2Pd_2(1^R)_2]^{2+}$.

Figure S23. ¹H-¹H COSY NMR spectra of 3^{R} -Eu (400 MHz, CD₃CN, 298 K).

Figure S24. ¹H DOSY spectra of 3^{R} -Eu (log D = -9.123, r = 8.443 Å, 400 MHz, CD₃CN, 298 K).

Figure S25. The ESI-TOF-MS spectra of 3^{R} -Eu with the observed and simulated isotopic patterns of the peaks corresponding to $[Eu_{2}(bpy)_{6}Pd_{6}(1^{R})_{6}(OTf)_{5}]^{7+}$ and $[Eu_{2}(bpy)_{6}Pd_{6}(1^{R})_{6}(OTf)_{6}]^{6+}$, respectively.

---79.185

Figure S27. ¹H NMR spectra of 3^{R} -Eu (400 MHz, CD₃OD, 298 K).

Figure S29. The ESI-TOF-MS spectra of 3^{R} -Nd with the observed and simulated isotopic patterns of the peaks corresponding to $[Nd_{2}(bpy)_{6}Pd_{6}(1^{R})_{6}(OTf)_{4}-2H]^{6+}$.

Figure S31. The ESI-TOF-MS spectra of 3^{R} -Yb with the observed and simulated isotopic patterns of the peaks corresponding to $[Yb_{2}(bpy)_{6}Pd_{6}(1^{R})_{6}(OTf)_{7}]^{5+}$.

Figure S32. The ESI-TOF-MS spectra of $\mathbf{3}^{R}$ -Gd with the observed and simulated isotopic patterns of the peaks corresponding to $[\text{Gd}_2(\text{bpy})_6\text{Pd}_6(\mathbf{1}^{R})_6(\text{OTf})_4-3\text{H}]^{5+}$.

Figure S34. The ESI-TOF-MS spectra of 4^{R} -Eu with the observed and simulated isotopic patterns of the peaks corresponding to $[Eu(1H^{R})_{3}]^{3+}$ and $[Eu(1H^{R})_{3}(OTf)]^{2+}$, respectively.

Figure S36. The ESI-TOF-MS spectra of 4^{R} -Nd with the observed and simulated isotopic patterns of the peaks corresponding to $[Nd(1H^{R})_{3}]^{3+}$ and $[Nd(1H^{R})_{3}(OTf)]^{2+}$, respectively.

Figure S38. The ESI-TOF-MS spectra of 4^{R} -Yb with the observed and simulated isotopic patterns of the peaks corresponding to $[Yb(1H^{R})_{3}]^{3+}$ and $[Yb(1H^{R})_{3}(OTf)]^{2+}$, respectively.

Figure S39. The ESI-TOF-MS spectra of 4^{R} -Gd with the observed and simulated isotopic patterns of the peaks corresponding to $[Gd(1H^{R})_{3}]^{3+}$ and $[Gd(1H^{R})_{3}-H]^{2+}$, respectively.

2. Single crystal X-ray diffraction studies

-			
Identification code	i213_sq	i213_sq	
Empirical formula	C261 H198 Eu2 F9 N48 O27 Pd6 S3	C261 H198 Eu2 F9 N48 O27 Pd6 S3	
Formula weight	5648.16		
Temperature	293(2) K		
Wavelength	1.54178 Å		
Crystal system	Cubic		
Space group	I2 ₁ 3		
Unit cell dimensions	$a = 49.4585(4) \text{ Å}$ $\alpha = 90$)°.	
	$b = 49.4585(4) \text{ Å}$ $\beta = 90$)°.	
	$c = 49.4585(4) \text{ Å}$ $\gamma = 90$)°.	
Volume	120983(3) Å ³		
Z	8		
Density (calculated)	0.620 Mg/m ³	0.620 Mg/m ³	
Absorption coefficient	3.053 mm ⁻¹	3.053 mm ⁻¹	
F(000)	22776	22776	
Crystal size	0.120 x 0.120 x 0.100 mm ³	0.120 x 0.120 x 0.100 mm ³	
Theta range for data collection	3.575 to 61.816°.	3.575 to 61.816°.	
Index ranges	-33<=h<=39, -23<=k<=54, -46<=l<=	-33<=h<=39, -23<=k<=54, -46<=l<=56	
Reflections collected	66753	66753	
Independent reflections	30983 [R(int) = 0.0809]	30983 [R(int) = 0.0809]	
Completeness to theta = 61.816°	99.1 %	99.1 %	
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.78410	1.00000 and 0.78410	
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	
Data / restraints / parameters	30983 / 1993 / 1071	30983 / 1993 / 1071	
Goodness-of-fit on F ²	0.835	0.835	
Final R indices [I>2sigma(I)]	R1 = 0.0628, $wR2 = 0.1640$	R1 = 0.0628, wR2 = 0.1640	
R indices (all data)	R1 = 0.2116, $wR2 = 0.2677$	R1 = 0.2116, wR2 = 0.2677	
Absolute structure parameter	0.065(6)	0.065(6)	
Extinction coefficient	n/a	n/a	
Largest diff. peak and hole	0.212 and -0.141 e.Å ⁻³	0.212 and -0.141 e.Å ⁻³	

Table S1. Crystal data and structure refinement for 3^{R} -Eu.

Figure S40. Ortep-drawing of the asymmetrical unit in the crystal structure of 3^{R} -Eu at 50% probability level.

3. Chiroptical Studies

Figure S41. UV-Vis absorption spectra of $Pd_2(bpy)_2 (1.00 \times 10^{-5} \text{ M in CH}_3\text{CN})$, $\mathbf{1H}^R (1.00 \times 10^{-5} \text{ M in DMSO})$, $\mathbf{2}^R (0.50 \times 10^{-5} \text{ M in CH}_3\text{CN})$, $\mathbf{3}^R$ -Eu (0.167 × 10^{-5} \text{ M in CH}_3\text{CN}), and CH_3OH), and **4**-Eu (0.33 × 10^{-5} \text{ M in CH}_3\text{CN}) at 298K.

Figure S42. The circular dichroism spectra of **1H** (3.00×10^{-5} M in DMSO), **2**•OTf (3.00×10^{-5} M in CH₃CN) and **3**-Eu (1×10^{-5} M in CH₃CN) at room temperature.

Figure S43. The excitation (black lines, $\lambda_{em} = 470$ nm) and emission (blue lines, $\lambda_{ex} = 280$ nm) spectra of $1H^{R}$ (1.00 × 10⁻⁵ M, slits = 5-10) in DMSO at room temperature.

Figure S44. The excitation (black lines, $\lambda_{em} = 440 \text{ nm}$) and emission (blue lines, $\lambda_{ex} = 280 \text{ nm}$) spectra of $2^{R} \cdot \text{NO}_3$ (5.00 × 10⁻⁶ M, slits = 5-10) in CH₃CN at room temperature.

Figure S45. The excitation (black lines, $\lambda_{em} = 440 \text{ nm}$) and emission (blue lines, $\lambda_{ex} = 280 \text{ nm}$) spectra of $2^{R} \cdot \text{OTf}$ (5.00 × 10⁻⁶ M, slits = 5-10) in CH₃CN at room temperature.

Figure S46. The excitation (black lines, $\lambda_{em} = 615$ nm) and emission (red lines, $\lambda_{ex} = 270$ nm) spectra of 4^{R} -Eu (3.33 × 10⁻⁶ M, slits = 2-5) in CH₃CN at room temperature.

Figure S47. The excitation (black lines, $\lambda_{em} = 615$ nm) and emission (red lines, $\lambda_{ex} = 332$ nm) spectra of $\mathbf{3}^{R}$ -Eu (1.67 × 10⁻⁶ M, slits = 2-5) in CH₃CN at room temperature.

Figure S48. The excitation (black lines, $\lambda_{em} = 615$ nm) and emission (red lines, $\lambda_{ex} = 345$ nm) spectra of $\mathbf{3}^{R}$ -Eu (2.0 × 10⁻⁵ M, slits = 2-8) in CH₃OH at room temperature.

Figure S49. The emission spectra of $\mathbf{4}^{R}$ -Eu (dashed lines, 3.33×10^{-6} M) and $\mathbf{3}^{R}$ -Eu (solid lines, 1.67×10^{-6} M) using different excitation wavelengths from 270 to 420 nm (inset is the partial enlarged views) (slits = 2-5 nm, in CH₃CN).

Figure S50. A) UV-vis absorption spectra of titrating $2^{R} \cdot OTf$ with Eu(OTf)₃. B) Absorbance variation with the addition of different amount of Eu(OTf)₃ at 309 nm. C) Luminescence emission spectra of titrating $2^{R} \cdot OTf$ with Eu(OTf)₃. D) Luminescence emission intensity variation with the addition of different amount of Eu(OTf)₃ at 614nm. ([$2^{R} \cdot OTf$] = 3×10^{-5} M in CH₃CN, $\lambda_{ex} = 337$ nm).

Figure S51. The excitation and emission spectra of $\mathbf{4}^{R}$ -Gd (solid, $\lambda_{em} = 500$ nm, $\lambda_{ex} = 370$ nm, 1.67×10^{-6} M, slits = 4-8) and $\mathbf{3}^{R}$ -Gd (solid, $\lambda_{em} = 520$ nm, $\lambda_{ex} = 370$ nm, 1.67×10^{-6} M, slits = 4-8) at 77K.

Figure S52. Circularly polarized luminescence spectra of both enantiomers and total luminescence spectra of **3**-Eu (2×10^{-5} M, $\lambda_{ex} = 350$ nm) in CH₃CN.

Figure S53. Excitated state decay curve(black line) with mono exponential fit (red line) of $\mathbf{3}^{R}$ -Eu (3×10⁻⁵ M in CD₃OD, $\lambda_{ex} = 350$ nm, $\lambda_{em} = 615$ nm).

Figure S54. Excitated state decay curve (black line) with mono exponential fit (red line) of $\mathbf{3}^{R}$ -Eu (3×10⁻⁵ M in CH₃OH, $\lambda_{ex} = 350$ nm, $\lambda_{em} = 615$ nm).

The calculation of number of Coordinated Solvent Molecules^{S1}:

$$q=A(\tau_{\text{methanol}}^{-1} - \tau_{\text{deutero-methanol}}^{-1} - B) = 1.089$$
$$A = 2.1, B = 0$$

Figure S55. NIR luminescence excitation (dashed lines) and emission (solid lines) spectra of 3^{R} -Nd and 3^{R} -Yb (in solid state).

4. Detection of Antibiotics

Figure S56. UV-vis absorption (A) and luminescence emission (B) spectra of titrating $\mathbf{3}^{R}$ -Eu with PCL-Na; luminescence quenching efficiencies I₀/I (C) and I/I₀ (D) of $\mathbf{3}^{R}$ -Eu with the addition of different amount of PCL-Na at 614 nm. ([$\mathbf{3}^{R}$ -Eu] = 0.02 mM in CH₃OH, λ_{ex} = 345 nm).

Figure S57. ¹H NMR spectra of titrating 3^{R} -Eu (0.5 mM) with PCL-Na: 3^{R} -Eu with the addition of A) 0 mM.; B) 0.25 mM; C) 0.5 mM; D) 1.0 mM; E) 1.5 mM PCL-Na F) further adding 0.5 mM Eu(OTf)₃ into E; and G) PCL-Na (400 MHz, CD₃OD, 298 K).

Figure S58. ¹H NMR spectra of A) the precipitation on adding 1.5 mM PCL-Na into the methanol solution of 3^{R} -Eu (0.5 mM) and B) 2^{R} •OTf (400 MHz, CD₃CN, 298 K).

Figure S59. Partial ¹⁹F NMR spectra of A) $\mathbf{3}^{R}$ -Eu (0.5 mM); B) the precipitation on adding 1.5 mM PCL-Na into the methanol solution of $\mathbf{3}^{R}$ -Eu (0.5 mM); C) $\mathbf{2}^{R}$ •OTf (400 MHz, CD₃CN, 298 K).

Figure S60. Partial ¹⁹F NMR spectra of the solution of A) $\mathbf{3}^{R}$ -Eu (0.5 mM); B) adding 1.5 mM PCL-Na into A and C) further adding 0.5 mM Eu(OTf) into B with insets showing the photographs of solution A, B and C (400 MHz, CD₃OD, 298 K).

Figure S62. UV-vis absorption (A) and luminescence emission (B) spectra of titrating $\mathbf{3}^{R}$ -Eu with CZL-Na; luminescence quenching efficiencies I_0/I (C) and I/I_0 (D) of $\mathbf{3}^{R}$ -Eu with the addition of different amount of CZL-Na at 614 nm. ([$\mathbf{3}^{R}$ -Eu] = 0.02 mM in CH₃OH, λ_{ex} = 345 nm).

Figure S63. UV-vis absorption (A) and luminescence emission (B) spectra of titrating $\mathbf{3}^{R}$ -Eu with SDZ; luminescence quenching efficiencies I₀/I (C) and I/I₀ (D) of $\mathbf{3}^{R}$ -Eu with the addition of different amount of SDZ at 614 nm. ([$\mathbf{3}^{R}$ -Eu] = 0.02 mM in CH₃OH, $\lambda_{ex} = 345$ nm).

Figure S64. UV-vis absorption (A) and luminescence emission (B) spectra of titrating $\mathbf{3}^{R}$ -Eu with CAP; luminescence quenching efficiencies I₀/I (C) and I/I₀ (D) of $\mathbf{3}^{R}$ -Eu with the addition of different amount of CAP at 614 nm. ([$\mathbf{3}^{R}$ -Eu] = 0.02 mM in CH₃OH, $\lambda_{ex} = 345$ nm).

Figure S65. UV-vis absorption (A) and luminescence emission (B) spectra of titrating $\mathbf{3}^{R}$ -Eu with DTZ; luminescence quenching efficiencies I₀/I (C) and I/I₀ (D) of $\mathbf{3}^{R}$ -Eu with the addition of different amount of DTZ at 614 nm. ([$\mathbf{3}^{R}$ -Eu] = 0.02 mM in CH₃OH, $\lambda_{ex} = 345$ nm).

Figure S66. UV-vis absorption (A) and luminescence emission (B) spectra of titrating $\mathbf{3}^{R}$ -Eu with RDZ; luminescence quenching efficiencies I₀/I (C) and I/I₀ (D) of $\mathbf{3}^{R}$ -Eu with the addition of different amount of RDZ at 614 nm. ([$\mathbf{3}^{R}$ -Eu] = 0.02 mM in CH₃OH, $\lambda_{ex} = 345$ nm).

Figure S67. UV-vis absorption (A) and luminescence emission (B) spectra of titrating $\mathbf{3}^{R}$ -Eu with MDZ; luminescence quenching efficiencies I₀/I (C) and I/I₀ (D) of $\mathbf{3}^{R}$ -Eu with the addition of different amount of MDZ at 614 nm. ([$\mathbf{3}^{R}$ -Eu] = 0.02 mM in CH₃OH, $\lambda_{ex} = 345$ nm).

Figure S68. UV-vis absorption (A) and luminescence emission (B) spectra of titrating $\mathbf{3}^{R}$ -Eu with NZF; luminescence quenching efficiencies I₀/I (C) and I/I₀ (D) of $\mathbf{3}^{R}$ -Eu with the addition of different amount of NZF at 614 nm. ([$\mathbf{3}^{R}$ -Eu] = 0.02 mM in CH₃OH, $\lambda_{ex} = 345$ nm).

Figure S69. UV-vis absorption (A) and luminescence emission at 614 nm (B) spectra of cage $\mathbf{3}^{R}$ -Eu after addition of AcOK. ($[\mathbf{3}^{R}$ -Eu] = 0.02 mM in CH₃OH, $\lambda_{ex} = 345$ nm).

Figure S70. ESI-TOF-MS of $\mathbf{3}^{R}$ -Eu after addition of 4.0 equiv of different antibiotics. Corresponding signals assignable for $\mathbf{2}^{R}$ (\bullet), $\mathbf{3}^{R}$ -Eu (∇) and $\mathbf{3}^{R}$ -Eu•(CH₃OH)₂ (\blacklozenge) are labeled.

Figure S71. ESI-TOF-MS of $\mathbf{3}^{R}$ -Eu after addition of 4.0 equiv of chloramphenicol (CAP) with insets showing the observed and simulated isotopic patterns corresponding to $[\mathbf{3}^{R}$ -Eu(OTf)₆@CAP]⁶⁺, $[\mathbf{3}^{R}$ -Eu(OTf)₅•(CH₃OH)₂@CAP-2H]⁵⁺, $[\mathbf{3}^{R}$ -Eu(OTf)₇•(CH₃OH)₂-H]⁴⁺.

5. DFT calculation:

	8			
Ν	-11.2009	0.0414	-1.5445	
Ν	-11.7828	1.1239	-0.9746	
С	-10.7768	1.7565	-0.3848	
С	-9.5398	1.0823	-0.5624	
С	-9.8671	-0.0288	-1.3305	
С	-8.2433	1.5645	-0.0336	
0	-8.1143	2.7115	0.3786	
Ν	-7.227	0.6235	-0.0515	
С	-5.8865	0.7612	0.3618	
С	-5.4493	1.8678	1.07	
С	-4.115	1.9326	1.5122	
С	-3.2238	0.9172	1.2543	
С	-3.6174	-0.2201	0.4991	
С	-4.9749	-0.3056	0.034	
С	-5.3655	-1.4389	-0.7288	
С	-4.4763	-2.4551	-0.989	
С	-3.1448	-2.3956	-0.5371	
С	-2.7101	-1.291	0.175	
N	-1.3694	-1.163	0.5968	
С	-0.3501	-2.0958	0.5345	
0	-0.4603	-3.2308	0.1055	
Ν	2.0535	-1.9045	0.385	
С	0.9653	-1.5752	1.0883	
С	1.0183	-0.8485	2.287	
С	2.2631	-0.4413	2.7614	
С	3.398	-0.7544	2.0181	
С	3.243	-1.488	0.8323	
С	4.4399	-1.9009	-0.007	
0	4.5045	-2.9894	-0.5569	
Ν	5.4476	-0.9694	-0.0632	
С	6.6005	-1.1785	-0.9625	
С	7.6085	-2.1832	-0.3735	
С	7.2186	0.1546	-1.3642	
С	7.3102	0.4424	-2.713	

Table S2. Atomic coordinates of the optimized structure of ligand $\mathbf{1H}^{R}$

C	7.8935	1.639	-3.1886
С	8.3811	2.5644	-2.2991
С	8.3079	2.3284	-0.9006
С	7.7245	1.1078	-0.4131
С	7.6782	0.918	0.9994
С	8.1722	1.866	1.8692
С	8.7432	3.0636	1.3813
С	8.8069	3.2838	0.0252
Н	-11.7754	-0.595	-2.0776
Н	-10.9436	2.676	0.1583
Н	-9.2714	-0.8249	-1.7559
Н	-7.5158	-0.3155	-0.2777
Н	-6.1451	2.6638	1.2906
Н	-3.797	2.7967	2.0889
Н	-2.2236	0.9964	1.6687
Н	-6.3622	-1.5079	-1.1533
Н	-4.7922	-3.3145	-1.5735
Н	-2.4496	-3.1928	-0.7565
Н	-1.0783	-0.2309	0.8498
Н	0.113	-0.6416	2.85
Н	2.3476	0.1007	3.6992
Н	4.3863	-0.4655	2.3613
Н	5.2133	-0.0126	0.165
Н	6.1988	-1.6429	-1.8706
Н	8.082	-1.8126	0.5392
Н	8.3961	-2.3814	-1.1084
Н	7.0944	-3.1225	-0.1548
Н	6.9225	-0.2744	-3.4326
Н	7.9465	1.8204	-4.2584
Н	8.8285	3.4912	-2.6502
Н	7.2456	0.0089	1.4005
Н	8.1257	1.6892	2.9405
Н	9.13	3.8033	2.0768
Н	9.2447	4.2002	-0.3639
1			

6. References:

S1. Holz, R. C.; Chang, C. A.; Horrocks ,W. D. Jr. Spectroscopic Characterization of the Europium(III) Complexes of a Series of N,N'-Bis(carboxymethyl) Macrocyclic Ether Bis(1actones). *Inorg. Chem.* **1991**, *30*, 3270-3275.