Supporting Information

In Situ Raman Probing of Chlorphenol Degradation on Different Facets of K₃B₆O₁₀Br Single Crystal

Xiaoyun Fan^{a,b*}, Xiu Yue^b, Hanzhong Jia^b

^a School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China;

^b Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, and Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China E-mail: xyfan@jun.edu.cn;

High-performance Liquid Chromatography (HPLC) method for detecting 2,4-DCP.

The concentration of each chlorophenol was measured using HPLC (Ultimate 3000; Dionex) with an Supelco PAH column(4.6×250 mm). A mixture of acetonitrile, water and Acetic Acid (60/39.75/0.25 (V/V/V)) was used as an effluent and the flow rate was 1.0 mL/min. The size of sample loop was 20 mL. The wavelength of the detector was set at 282 nm.

Figure S1. Coulor change of the 2,4-DCP solution treated by KBB single crystal with (211) facet exposed.

Figure S2. Fundamental building unit of KBB. View of the structure of KBB along the <211> direction.

Figure S3. Fundamental building unit of KBB. View of the structure of KBB along the <110> direction.

Figure S4. Fundamental building unit of KBB. View of the structure of KBB along the, <101> direction.