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Fig. S1. Transmission coefficient obtained from DFT Hamiltonian for three types of porphyrin connect to graphene

electrodes via triple bonds
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Fig. S2. Transmission coefficient obtained from DFT Hamiltonian for three types of porphyrin connected to gold

electrodes via thiol-anchor
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Fig. S3. Transmission coefficient obtained from DFT Hamiltonian for three types of porphyrin between graphene

electrodes without specific anchor.
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Fig. S4. Transmission coefficient for three types of porphyrin calculated using simple tight binding model
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Fig. S5. (a-c) are the schematic of non-fused porphyrin monomer, dimer and trimer molecular structures. (d-e) are the

transmission curves for the non-fused porphyrin calculated using simple tight binding model. Triple bond between two
or three Monomer (p) integrals are chosen to be -0.9 and -0.65 in d and e, respectively.
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Fig. S6. Comparison between the HOMO and LUMO orbitals for (6a) fused oligo porphyrin and (6b) Non-Fused
Porphyrin.
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Fig. S7. Transmission coefficient for fused oligo porphyrins with different length upto 6 porphyrin units calculated
using simple tight binding model. The red bonds are chosen to be @« = —0.65 .

A simple model based on coupling the frontier orbitals of a chain of monomers

Here we note that the qualitative features of the figure 2 can be reproduced by a simple tight binding model
of independent transport through the HOMOs and LUMOs. Let T(E,n,—y., &) be the transmission
coefficient for a chain of # monomer LUMOs, with energies &; and coupled by nearest neighbour matrix
elements —y; . Similarly let T(E,n, +yy, &4) be the transmission coefficient of an independent chain of
monomer HOMOs, with energies € and coupled by nearest neighbour matrix elements +y;. Note that from
fig 4b, since the splitting of the LUMO resonances is greater than that of the HOMO resonances, y; > yy.

Then if we assume no interference between the HOMO and LUMO, the total transmission coefficient is



T(E,n) =T(E,n,—y,,€)+ T(E,n, +yy, eg). Without loss of generality, we choose &y = —¢;, which
fixes the energy origin. As shown in figure S9, with an appropriate choice of parameters, this simple model

captures the qualitative features of figure 2 and the tight-binding results of figure 4a.

Figure S8. A tight binding (Hiickel) model of 1, 2 or 3 site scattering region (depicted in red), coupled to one-
dimensional leads. The scattering region represents either a chain of coupled monomer LUMOs or a chain of coupled
monomer LUMOs. After calculating their separate transmission coefficients, they are simply added to give the total

transmission coefficient.
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Fig. S9. Sum of transmission coefficient T(E,n) = T(E,n,—y., &) + T(E,n, +yy, €y) through independent HOMO
and LUMO levels for a monomer n=1, dimer n=2 and trimer n=3. For the monomer, &, = 0.935; for the dimer,
g = 1.0, y, = 0.75,yy = 0.55 and for the trimer, £, = 0.75, y;, = 0.5,y = 0.35. In these plots, the coupling between
the molecule and the one-dimensional leads is « = —0.1 and the leads are represented by a chain of sites with site

energies €, = 0 and nearest neighbour couplings y = —1.
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Fig. S10. Transmission coefficient obtained from DFT Hamiltonian for three types of porphyrin connected to gold

electrodes through a direct Au-C bond.
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Fig. S11. Transmission coefficient obtained from DFT Hamiltonian for three types of porphyrin connected to gold

electrodes with two anchors, thiol- and direct Au-C bond. (a) monomer, (b) dimer and (c) trimer



