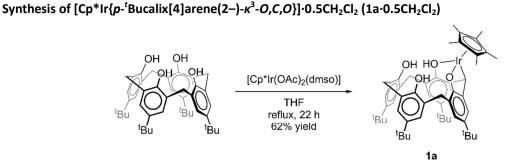
Supporting information for

Ring Slippage and Dissociation of Pentamethylcyclopentadienyl Ligand in an (η^5 -Cp*)Ir Complex with a κ^3 -O,C,O Tridentate Calix[4]arene Ligand under Mild Conditions

Takuya Kuwabara, Ryogen Tezuka, Mikiya Ishikawa, Takuya Yamazaki, Shintaro Kodama, and Youichi Ishii*

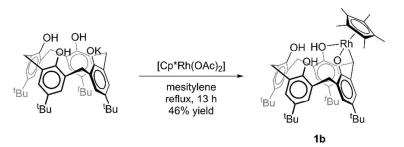
Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551 Japan

Corresponding author's e-mail: yo-ishii@kc.chuo-u.ac.jp

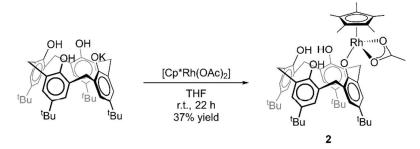

Table of contents

1.	General considerations	S1
2.	Synthesis and analytical data for 1a-b, 2-6	S1-6
3.	Details for X-ray diffraction analysis and crystallographic data of 1a-b , 2 and 4	S7-8
4.	Preliminary X-ray diffraction analysis of 3 and 5	S9
5.	Direct observation of Cp*H in the reaction of 4 and 1 equiv. of XyNC	S10
6.	Reaction of 1a with other donors	S11-16
7.	¹ H and ¹³ C NMR charts for the new compounds	S17-28
8.	References	S29

1. General considerations

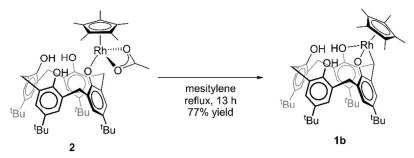

All manipulations were carried out under an argon atmosphere by using standard Schlenk techniques unless otherwise stated. 1,2-Dichloroethane ($C_2H_4Cl_2$) and dichloromethane (CH_2Cl_2) were dried and distilled over P_4O_{10} , degassed, and stored under argon. The other solvents (anhydrous grade) were purchased from Sigma-Aldrich and purged with argon before use. Monopotassium salt of $p^{-t}Bucalix[4]arene,^1$ [$Cp^*Ir(OAc)_2(dmso)$],² and [$Cp^*Rh(OAc)_2$]³ were synthesized according to the literatures. ¹H (500 MHz), ¹³C{¹H} (126 MHz) and ³¹P{¹H} (202 MHz) NMR spectra were recorded on a JEOL ECA-500 spectrometer at 20°C. Chemical shifts are reported in δ and referenced to residual ¹H and ¹³C signals of deuterated solvents as internal standards. IR spectra were recorded on a JASCO FT/IR-4200 spectrometer by using KBr pellets. Elemental analyses were performed on a Perkin Elmer 2400 series II CHN analyzer. X-ray crystallographic analyses were performed on a Rigaku/MSC VariMax/Saturn CCD diffractometer. Amounts of the solvent molecules in the crystals were determined not only by elemental analyses but also by ¹H NMR spectroscopy.

2. Synthesis and analytical data for new compounds

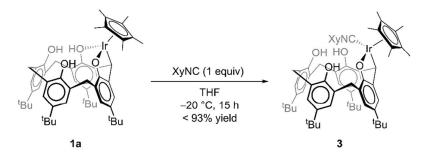

To a THF solution (65 mL) of *p*-^tBucalix[4]arene (1.30 g, 2.00 mmol) was added [Cp*Ir(OAc)(dmso)] (1.04 g, 2.00 mmol), and the mixture was stirred under reflux for 22 h. The solvent was removed under reduced pressure to yield crude [Cp*Ir(*p*-^tBucalix[4]arene(2–)- κ^3 -*O*,*C*,*O*]] (**1a**) as a yellow powder, which was purified by recrystallization from dichloromethane/methanol to give **1a**·0.5CH₂Cl₂ as yellow crystals (1.27 g, 1.25 mmol, 62% yield). Spectral data for **1a**: ¹H NMR (CDCl₃): δ 13.64 (s, 2H, OH), 12.72 (s, 1H, OH), 7.14 (d, ⁴*J*_{H-H} = 2.5 Hz, 2H, ArH), 7.01 (d, ⁴*J*_{H-H} = 2.5 Hz, 4H, ArH), 6.66 (d, ⁴*J*_{H-H} = 2.5 Hz, 2H, ArH), 4.79 (s, 1H, Ir–CH), 4.30 (d, ²*J*_{H-H} = 13.4 Hz, 2H, CH₂), 4.28 (d, ²*J*_{H-H} = 13.8 Hz, 1H, CH₂), 3.42 (d, ²*J*_{H-H} = 13.4 Hz, 2H, CH₂), 3.37 (d, ²*J*_{H-H} = 13.8 Hz, 1H, CH₂), 1.75 (s, 15H, Cp*), 1.21 (s, 18H, ^tBu), 1.19 (s, 18H, ^tBu). ¹³C{¹H} NMR (CDCl₃): δ 157.8, 148.3, 143.7, 143.4, 143.1, 128.9, 128.3, 126.3, 126.1, 125.6, 124.4, 122.8 (Ar), 83.5 (*C*₅Me₅). 50.8 (Ir–C), 34.1 (CH₂), 33.97 (*C*(CH₃)₃), 33.95 (CH₂), 33.8 (*C*(CH₃)₃), 31.9, 31.7 (s, C(CH₃)₃), 9.6 (s, C₅*Me*₅). IR (KBr, cm⁻¹) 3430 (γ_{OH}). Anal. Calcd for C_{54.5}H₇₀IrO₄Cl (**1a**·(CH₂Cl₂)_{0.5}): C, 60.86; H, 4.97. Found: C, 60.52; H, 4.89. Complex **1a** can be synthesized from *p*-^tBucalix[4]arene and [(Cp*Ir)₂(OH₂)](OAc) in 66% isolated yield.

Synthesis of [Cp*Rh{p-^tBucalix[4]arene(2–)-κ³-O,C,O}]·CH₂Cl₂ (1b·CH₂Cl₂)

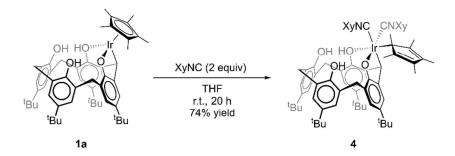
To a mesitylene solution (2.0 mL) of mono potassium salt of p^{-t} Bucalix[4]arene (20.2 mg, 0.0294 mmol) was added [Cp*Rh(OAc)₂] (10.6 mg, 0.0297 mmol) and the mixture was stirred under reflux (166 °C) for 13 h. The solvent was removed under reduced pressure, and the black residue was purified by column chromatography on silica gel (eluent: dichloromethane : hexane = 3 : 1). The first orange band was collected, evaporated to and recrystallized from dichloromethane/methanol to dryness, afford orange crystals of [Cp*Rh(*p*-^tBucalix[4]arene(2–)-κ³-O,C,O]]·CH₂Cl₂ (**1b**·CH₂Cl₂) (13.3 mg, 0.0137 mmol, 46% yield). Similar reaction in refluxing *p*-xylene (138 °C, 22 h) resulting in lower yields (10 % yield). Spectral data for **1b**: ¹H NMR (CDCl₃): δ 13.69 (br s, 2H, OH) 13.03 (br s, 1H, OH), 7.09 (d, ${}^{4}J_{H-H}$ = 2.5 Hz, 2H, ArH), 7.00 (s, 4H, ArH), 6.71 (d, ⁴J_{H-H} = 2.5 Hz, 2H, ArH), 5.12 (s, 1H, Rh–CH), 4.32 (d, ²J_{H-H} = 13.0 Hz, 2H, CH₂), 4.29 (d, ²J_{H-H} = 13.0 Hz, 1H, CH₂), 3.41 (d, ²J_{H-H} = 13.0 Hz, 1H, CH₂), 3.35 (d, ²J_{H-H} = 13.0 Hz, 2H, CH₂), 1.71 (s, 15H, Cp*), 1.22 (s, 18H, ^tBu), 1.19 (s, 18H, ^tBu). ¹³C{¹H}3 NMR (CDCl₃): δ 155.7, 149.0, 142.9, 142.5, 141.5, 129.0, 128.4, 127.3, 126.0, 125.6, 124.4, 123.3 (Ar), 91.9 (d, ¹J_{Rh-C} = 8.4 Hz, C₅Me₅), 62.9 (d, ¹J_{Rh-C} = 25.2 Hz, Rh–C), 34.03 (CH₂), 34.00 (m, CH₂ and C(CH₃)₃), 31.9 (C(CH₃)₃), 31.7 (C(CH₃)₃), 9.3 (C₅Me₅). IR (KBr, cm⁻¹): 3445 (γ_{OH}). Anal. Calcd for C₅₅H₇₁Cl₂O₄Rh (**1b**·CH₂Cl₂): C, 68.10; H, 7.38. Found: C, 68.10; H, 7.43.


Synthesis of [Cp*Rh(OAc){p-^tBucalix[4]arene(–)-κ-O}] (2)

To a THF solution (10 mL) of monopotassium salt of p^{-t} Bucalix[4]arene (46.0 mg, 0.0699 mmol) was added [Cp*Rh(OAc)₂] (20.4 g, 0.0645 mmol) and the mixture was stirred for 22 h at room temperature. The resultant solution dried under reduced yield was pressure to crude up $[Cp*Rh(OAc)\{p^{-t}Bucalix[4]arene(-)-\kappa-O\}]$ (2) which was recrystallized from hexane/ether to give analytically pure **2** as an orange powder (24.7 mg, 0.0261 mmol, 37% yield). Spectral data for **2**: ¹H NMR (C_6D_6): δ 10.33 (br s, 3H, OH), 7.36 (s, 2H, ArH), 7.26 (s, 2H, ArH), 7.01 (s, 2H, ArH), 6.73 (s, 2H, ArH), 5.36 (d, ²J_{H-H} = 12.5 Hz, 2H, CH₂), 4.34 (d, ²J_{H-H} = 13.5 Hz, 2H, CH₂), 3.57 (d, ²J_{H-H} = 12.5 Hz, 2H, CH₂), 3.47 (d, ²J_{H-H} = 13.5 Hz, 2H, CH₂),

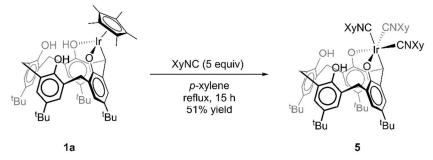

1.45 (s, 18H, ^tBu), 1.38 (br s, 15H, Cp*), 1.12 (br s, 3H, OAc), 0.88 (s, 9H, ^tBu), 0.83 (s, 9H, ^tBu). ¹³C{¹H} NMR (C₆D₆): 188.1 (br, CH₃COO), 151.7, 149.2, 143.7, 143.24, 142.2, 133.7, 131.30, 131.28, 130.6, 126.1, 125.4, 125.2, 124.9 (Ar; 13 distinct signals for 14 different carbons. A signal may be overlapping with the residual C₆D₅H signal.), 90.8 (d, 9.3 Hz, C_5 (CH₃)₃), 34.7, 34.2(C(CH₃)₃), 33.7, 33.6 (CH₂), 33.3 (C(CH₃)₃), 32.1, 31.2, 31.1 (C(CH₃)₃), 22.1 (br s, CH₃COO), 8.7 (C₅Me₅). IR (KBr, cm⁻¹): 3446 (γ _{OH}). Anal. Calcd for C₅₆H₇₃O₆Rh **2**: C, 71.17; H, 7.79. Found: C, 71.15; H, 8.10.

Synthesis of 1b from 2

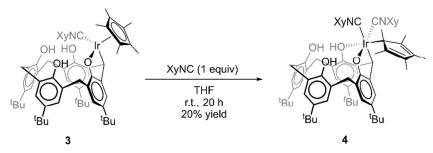

A mesitylene solution (10.0 mL) of **2** (101.7 mg, 0.107 mmol) was refluxed for 13 h. The solvent was removed under reduced pressure, and the black residue was purified by column chromatography on silica gel (eluent: dichloromethane : hexane = 3 : 1). The first orange band was collected, evaporated to dryness, and recrystallized from dichloromethane/methanol to afford orange crystals of **1b**·CH₂Cl₂ (80.0 mg, 0.0824 mmol, 77% yield).

Synthesis of [Cp*Ir{p-^tBucalix[4]arene(2–)-κ²-O,C}(CNXy)] (3)

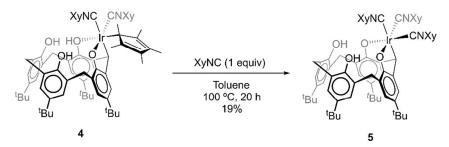
2,6-xylyl isocyanide (4.5 mg, 0.034 mmol) was add to a THF solution (3.0 mL) of $1a \cdot 0.5 CH_2 CI_2$ (22.9 mg, 0.0225 mmol) at -20 °C and the mixture was stirred for 15 h at this temperature. The solvent was removed under reduced pressure to yield a yellow powder, which was purified by recrystallization from dichloromethane/methanol at -20 °C to give [Cp*Ir(*p*-^tBucalix[4]arene(2–)- κ^2 -*O*,*C*)(CNXy)] (3) as yellow crystals (20.7 mg, 0.0200 mmol). However, this compound is not stable in solution at room temperature, and analytically pure samples could not be obtained even by repeated recrystallization at low temperatures. Spectral data for 3: ¹H NMR (CDCI₃): δ 10.48 (br s, 1H, OH), 7.07-6.98 (m, 9H, Xy (3H) + ArH of calixarene (2H) + OH (2H) + impurities), 6.94, 6.90, 6.74, 6.68, 6.65, 6.61 (d, ⁴J_{H-H} = 2.0 Hz, 1H each, ArH of calixarene), 4.76 (d, ²J_{H-H} = 12.5 Hz, 1H, CH₂), 4.62 (s, 1H, Ir–CH), 4.44 (d, ²J_{H-H} = 13.0 Hz, 1H, CH₂), 3.31 (d, ²J_{H-H} = 13.0, 1H, CH₂),


3.16 (d, ${}^{2}J_{H-H}$ = 12.5 Hz, CH₂), 3.08 (d, ${}^{2}J_{H-H}$ = 13.5 Hz, CH₂), 2.79 (d, ${}^{2}J_{H-H}$ = 13.5 Hz, CH₂), 2.10 (s, 6H, Me of XyNC), 1.63 (s, 15H, Cp*), 1.25 (s, 9H, ^tBu), 1.19 (s, 9H, ^tBu), 1.14 (s, 9H, ^tBu), 1.13 (s, 9H, ^tBu). ${}^{13}C{}^{1}H$ NMR data of **3** could not be obtained because of its instability. IR (KBr, cm⁻¹): 3430 (γ_{OH}), 2116 (γ_{CN}).

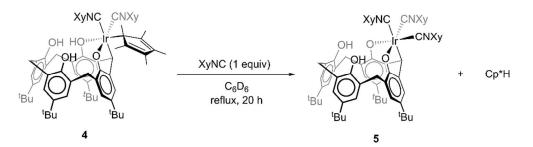
Synthesis of $[(\eta^1-Cp^*)Ir(p-^tBucalix[4]arene(2-)-\kappa^3-O,C,O)(CNXy)_2]\cdot CH_2Cl_2 (4\cdot CH_2Cl_2)$


To a THF solution (20.0 mL) of 1a·0.5CH₂Cl₂ (201.8 g, 0.199 mmol) was added 2,6-xylyl isocyanide (54.9 mg, 0.419 mmol), and the mixture was stirred for 20 h at room temperature. The solvent was removed under reduced pressure to yield crude $[(\eta^1-C_5Me_5)Ir(p^{-t}Bucalix[4]arene(2-)-\kappa^3-O,C,O)(CNXy)_2]$ (4) as a solid, which was further purified by recrystallization from dichloromethane/methanol to give analytically pure $4 \cdot CH_2 CI_2$ as yellow crystals (194.2 mg, 0.149 mmol, 74% yield). Spectral data for **4**: ¹H NMR (CDCl₃): δ 14.82 (s, 1H, OH), 12.86 (s, 1H, OH), 12.50 (s, 1H, OH), 7.30-7.21 (m, 4H, (Xy (3H) + ArH of calixarene (1H)), 7.10-6.98 (m, 7H, Xy (3H) + ArH of calixarene (4H)), 6.87 (d, ${}^{4}J_{H-H}$ = 2.0 Hz, 1H, ArH of calixarene), 6.68 (d, ${}^{4}J_{H-H}$ = 2.0 Hz, 1H, ArH of calixarene), 6.58 (d, ⁴J_{H-H} = 2.0 Hz, 1H, ArH of calixarene), 4.37 (d, ²J_{H-H} = 13.0 Hz, 1H, CH₂), 4.32 (s, 1H, Ir–CH), 4.23 (d, ²J_{H-H} = 13.5 Hz, 1H, CH₂), 4.16 (d, ²J_{H-H} = 13.5 Hz, 1H, CH₂), 3.42 (d, ²J_{H-H} = 13.5 Hz, 1H, CH₂), 3.35 (d, ²J_{H-H} = 13.5 Hz, 1H, CH₂), 3.29 (d, ²J_{H-H} = 13.5 Hz, 1H, CH₂), 2.76 (s, 6H, Me of XyNC), 2.16 (s, 6H, Me of XyNC), 2.13 (s, 3H, η¹-Cp*), 1.96 (s, 3H, η¹-Cp*), 1.52 (s, 3H, η¹-Cp*), 1.37 (s, 3H, η¹-Cp*), 1.22 (s, 9H, ^tBu), 1.21 (s, 9H, ^tBu), 1.203 (s, 9H, ^tBu), 1.199 (s, 9H, ^tBu), 0.98 (s, 3H, η¹-Cp*). ¹³C{¹H} NMR (CDCl₃) δ 160.7, 152.2, 149.2, 147.4, 145.2, 144.9, 144.5, 144.1, 143.1, 142.8, 142.0, 139.9, 135.8, 135.0, 130.9, 129.5, 129.4, 129.1, 128.93, 128.89, 128.7, 128.5, 128.3, 128.0, 127.9, 127.8, 127.5, 127.4, 127.2, 126.1, 126.0, 125.9, 125.8, 125.2, 124.3, 123.0, 122.9 (Ar + NC + C(sp²) of η^{1} -Cp*; 37 distinct signals for 38 different carbons), 51.2 (Ir–CH), 34.13, 34.09, 34.0, 33.95, 33.9, 33.8, 33.7, 33.5 (CH₂ and C(CH₃)₃), 32.1, 31.8 (C(CH₃)₃), 31.75 (CH₃ of η^1 -Cp*), 31.72, 31.6 (C(CH₃)₃), 19.6, 18.7 (CH₃ of Xy), 13.8, 13.6, 11.0, 10.9 (CH₃ of η^{1} -Cp*). IR (KBr, cm⁻¹): 3450 (γ_{OH}), 2145, 2100 (Y_{CN}). Anal. Calcd for C₇₃H₈₉Cl₂IrN₂O₄ (4·CH₂Cl₂): C, 66.34; H, 6.79; N, 2.12. Found: C, 66.22; H, 6.68; N, 2.14.

Synthesis of [Ir(p-^tBucalix[4]arene(3–)-κ³-O,C,O)(CNXy)₃]·0.5CH₂Cl₂ (5·0.7CH₂Cl₂)


To a p-xylene solution (22.0 mL) of 1a·0.5CH₂Cl₂ (100.5 mg, 0.989 mmol) was added 2,6-xylyl isocyanide (67.3 mg, 0.514 mmol), and the mixture was stirred under reflux for 15 h. The solvent was removed under reduced pressure, and the residue was washed with methanol to yield $[Ir(p^{-t}Bucalix[4]arene(3-)-\kappa^{3}-O,C,O)(CNXy)_{3}] \cdot 0.7CH_{2}Cl_{2}$ (5 $\cdot 0.7CH_{2}Cl_{2}$) as a white powder (66.1 mg, 0.0511) mmol, 51% yield). Analytically pure sample was obtained by recrystallization from dichloromethane. Spectral data for 5·0.7CH₂Cl₂: ¹H NMR (C₆D₆): δ 11.15 (s, 2H, OH), 7.39 (d, ⁴J_{H-H} = 2.5 Hz, 2H, ArH of calixarene), 7.37 (d, ${}^{4}J_{H-H}$ = 2.0 Hz, 2H, ArH of calixarene), 7.16 (d, ${}^{4}J_{H-H}$ = 2.5 Hz, 2H, ArH of calixarene), 6.99 (d, ${}^{4}J_{H-H}$ = 2.0 Hz, 2H, ArH of calixarene), 6.83 (t, ${}^{3}J_{H-H} = 7.5$ Hz, 1H, Xy), 6.70 (d, ${}^{3}J_{H-H} = 7.5$ Hz, 2H, Xy), 6.67 (t, ${}^{3}J_{H-H} = 7.5$ Hz, 2H, Xy), 6.54 (d, ${}^{3}J_{H-H} = 7.5$ Hz, 4H, Xy), 5.72 (d, ${}^{2}J_{H-H} = 11.5$ Hz, 1H, CH₂), 5.32 (s, 1H, Ir–CH), 5.18 (d, ${}^{2}J_{H-H} = 12.5$ Hz, 2H, CH₂), 3.62 (d, ${}^{2}J_{H-H}$ = 12.5 Hz, 2H, CH₂), 3.59 (d, ${}^{2}J_{H-H}$ = 11.5 Hz, 1H, CH₂), 2.69 (s, 6H, Me of Xy), 1.86 (s, 12H, Me of Xy), 1.33 (s, 18H, ^tBu), 1.27 (s, 18H, ^tBu). ¹³C{¹H} NMR (C₆D₆): δ 164.6, 151.2, 141.0, 139.2, 138.6, 137.0, 135.6, 134.8, 132.3, 130.1, 129.9, 129.1, 128.3, 128.1, 128.0, 127.2, 125.3, 124.4, 123.8, 122.6, 121.0 (Ar + NC; 21 distinct signals for 22 different carbons), 47.0 (Ir–CH), 34.3, 33.9, 33.8 (CH₂ and $C(CH_3)_3$, two $C(CH_3)_3$ signals are overlapping), 32.1, 31.8 (C(CH_3)₃), 19.4, 18.1 (Me of Xy). IR (KBr, cm⁻¹): 3426(γ_{OH}), 2205, 2155 (γ_{CN}). Anal. Calcd for $C_{71.7}H_{81.4}IrN_{3}O_{4}CI_{1.4}$ (5.0.7CH₂Cl₂): C, 66.70; H, 6.35; N, 3.25. Found C, 66.95; H, 6.80; N, 3.19.

Synthesis of 4 from 3


To a THF solution (2.0 mL) of **3** (10.3 mg, 9.3 μ mol) was added 2,6-xylyl isocyanide (1.1 mg, 8.3 μ mol), and the mixture was stirred for 20 h at room temperature. The solvent was removed under reduced pressure to yield crude **4**, which was purified by recrystallization from dichloromethane/methanol to give **4**·CH₂Cl₂ (2.5 mg, 1.9 μ mol, 20% yield).

Synthesis of 5 from 4

To a toluene solution (10.0 mL) of $4 \cdot CH_2 CI_2$ (100.4 mg, 0.0760 mmol) was added 2,6-xylyl isocyanide (13.7 mg, 0.104 mmol), and the mixture was stirred for 20 h at 100 °C. The solvent was removed under reduced pressure, and the residue was washed with methanol to yield $5 \cdot 0.7 CH_2 CI_2$ as a white powder (18.3 mg, 0.0142 mmol, 19% yield).

Reaction of 4 and 1 equiv. of xylyl isocyanide in a J. Young NMR tube

In a J. Young NMR tube, a mixture of $4 \cdot CH_2Cl_2$ (9.9 mg, 7.5 µmol) and XyNC (1.1 mg, 8.4 µmol) dissolved in C_6D_6 (0.5 mL) was heated at 100 °C for 20 h. ¹H NMR of the reaction mixture revealed relatively clean formation of **5** and generation of Cp* as shown in Figure S3.

3. Details for X-ray diffraction analysis and crystallographic data of 1a-b, 2 and 4

1a: Since one of the solvent molecules contained in the unit cell could not be modeled correctly, the contribution from disordered solvent molecules were removed by the program SQUEEZE⁴ (PLATON⁵).

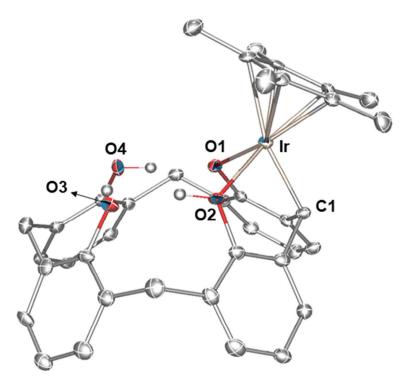


Figure S1. ORTEP drawing of **1a** with 50% probability. All hydrogen atoms except for the OH groups, ^tBu groups and a CH_2Cl_2 inside the cavity were omitted for clarity. Selected bond lengths [Å]: Ir–C(1): 2.106(4), Ir–O(1): 2.103(3), Ir–O(2): 2.171(3).

1b: Two independent molecules (molecule A and B) with similar structural characteristics were found in the unit cell. One of the ^tBu groups in molecule B is disordered over two positions in the ratio of 0.6 : 0.4.

2: one of the diethyl ether molecules encapsulated in the cavity of calix[4]arene is disordered over two positions in the ratio of 0.76 : 0.24. One of the ^tBu groups is disordered over two positions in the ratio of 0.7 : 0.3. The minor part was refined isotropically and the ^tBu group was refined without hydrogen atoms.

4: One of the ^tBu groups is disordered over two positions in the ratio of 0.56 : 0.44. Two THF molecules (inside and outside the cavity) are disordered over two positions in the ratio of 0.56 : 0.44.

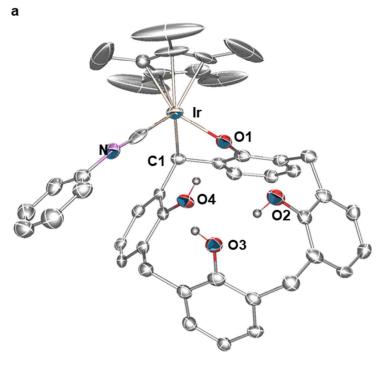

	1a	1b	2	4
CCDC	1824327	1824328	1824329	1824330
formula	$C_{55}H_{71}O_4Cl_2Ir$	$C_{56}H_{73}O_4Cl_4Rh$	$C_{64}H_{84}O_8Rh$	$C_{80}H_{86}IrN_2O_6$
fw	1059.21	1054.85	1084.22	1363.4
crystal dimension	0.21 × 0.19 × 0.17	0.24 × 0.20 × 0.17	0.23 × 0.22 × 0.19	0.19 × 0.07 × 0.05
crystal system	monoclinic	triclinic	monoclinic	triclinic
space group	P21/c	<i>P</i> -1	P21/c	<i>P</i> -1
<i>a,</i> Å	17.8177(18)	13.1501(15)	13.185(2)	12.3197(18)
<i>b,</i> Å	12.7252(11)	16.8753(18)	17.320(3)	16.414(3)
<i>c,</i> Å	25.120(3)	25.342(3)	28.330(4)	17.365(3)
a, deg	90	79.270(5)	90	89.767(4)
b, deg	102.6659(14)	87.480(5)	95.905(2)	87.594(5)
g, deg	90	75.877(3)	90	87.488(4)
<i>V</i> , Å ³	5557.0(9)	5358.3(10)	6435.4(17)	3505.1(10)
Ζ	4	4	4	2
$r_{\rm calcd}$, g cm ⁻³	1.266	1.308	1.119	1.292
F(000)	2176	2216	2308	1398
m, cm^{-1}	25.38	5.61	3.13	19.57
transmission				
factors range	0.883 – 1	0.9231 – 1	0.8741 – 1	0.6706 – 0.9169
index range	-23 ≤ h ≤ 23	-17 ≤ h ≤ 17	-16 ≤ h ≤ 14	-15 ≤ h ≤ 12
	-16 ≤ k ≤ 14	-21 ≤ k ≤ 20	-21 ≤ k ≤ 21	-21 ≤ k ≤ 15
	-32 ≤ l ≤ 32	-26 ≤ l ≤ 32	-29 ≤ l ≤ 34	-22 ≤ ≤ 22
no. reflections total	44753	44281	45881	29078
unique (R _{int})	12592 (0.0504)	23584 (0.0449)	12515 (0.0555)	15456 (0.0554)
/ > 2σ(I)	11076	16643	10746	13495
no. parameters	582	1248	733	900
$R1 (I > 2\sigma(I))^{a}$	0.0439	0.0614	0.073	0.06
wR2 (all data) ^b	0.0869	0.1778	0.2073	0.1189
GOF ^c	1.096	1.052	1.095	1.061
max diff peak / hole, e Å⁻³	1.305/-1.257	1.115/-1.002	1.832/-0.974	1.519/-2.066

Table S1. Crystarographical data for **1a-b**, **2** and **4**.

^a $R1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$. ^b $wR2 = [\Sigma \{w(F_o^2 - F_c^2)^2\}/\Sigma w(F_o^2)^2]^{1/2}$, $w = 1/[\mathbb{P}^2 F_o^2 + (aP)^2 + bP]$ (a and b are constants suggested by the refinement program; $P = [max(F_o^2, 0) + 2F_c^2]/3$). ^cGOF = $[\Sigma w(F_o^2 - F_c^2)^2/(N_{obs} - C_c^2)^2/(N_{obs} - C_c^2)^2/(N_{ob$

 N_{params})]^{1/2}.

4. Preliminary X-ray diffraction analysis of 3 and 5

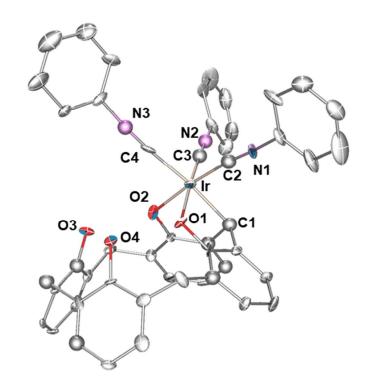
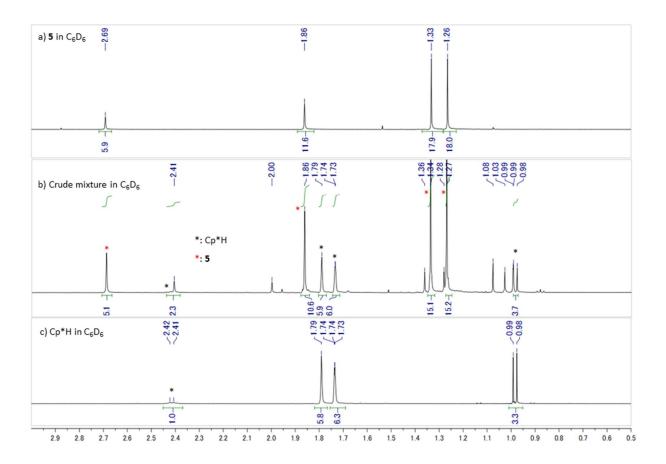
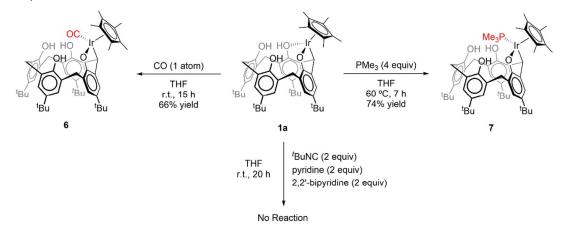
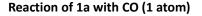
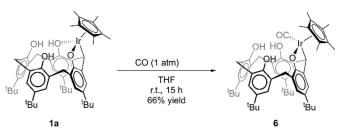


Figure S2. Preliminary molecular structures of **4** (a; top) and **5** (b; bottom) with thermal ellipsoid plot at 50% probability.

5. Direct observation of Cp*H in the reaction of 4 and 1 equiv. of XyNC


Figure S3. Partial ¹H NMR spectra (0.5-3 ppm) of complex **5** in C_6D_6 (a), the crude mixture after refluxing for 20 h (b) and Cp*H in C_6D_6 (c). The black * and red * in (b) indicate the signals derived from Cp*H and **5**, respectively.


6. Reactions of 1a with other donors

Reactions of **1a** with other donors such as CO, PMe₃, ^tBuNC, pyridine and 2,2'-bipyridine were investigated under similar conditions to that for the XyNC cases (Scheme S1). In the reactions with CO and PMe₃, only mono-CO adduct **6** and mono-PMe₃ adduct **7** were obtained in 66 and 74% yields, respectively, but no further product accompanied by ring slippage was observed. Details for these experiments and spectroscopic data are shown below. In contrast, In the case of ^tBuNC, pyridine and 2,2'-bipyridine, no reaction took place judging from the ¹H NMR spectra of crude reaction mixtures. The reason of the different reactivities of **1a** toward XyNC and other donors is still unclear.

Scheme S1. Reactions of 1a with various donors.

A THF solution (3.0 mL) of $1a \cdot 0.5$ CH₂Cl₂ (29.9 mg, 29.4 µmol) was stirred for 15 h under a CO atmosphere. The solvent was removed under reduced pressure and the residual solvent was recrystallized from dichloromethane/methanol to give [Cp*Ir{*p*-^tBucalix[4]arene(2–)- κ^2 -*O*,*C*}(CO)] (6) as yellow crystals (20.3 mg, 16.4 µmol, 56%). ¹H NMR (CDCl₃) δ 9.63 (br, 2H, OH), 7.07 (d, ⁴*J*_{H-H} = 2.0 Hz, 1H, ArH), 7.06 (s, OH), 7.03 (d, ⁴*J*_{H-H} = 2.0 Hz, 1H, ArH), 6.98 (d, ⁴*J*_{H-H} = 2.0 Hz, 1H, ArH), 6.95 (d, ⁴*J*_{H-H} = 2.0 Hz, 1H, ArH), 6.90 (m, 2H, ArH), 6.68 (d, ⁴*J*_{H-H} = 2.0 Hz, 1H, ArH), 6.61 (d, ⁴*J*_{H-H} = 2.0 Hz, 1H, ArH), 4.68 (s, 1H, Ir–CH), 4.64 (d, ²*J*_{H-H} = 12.4 Hz, 1H, CH₂), 4.36 (d, ²*J*_{H-H} = 13.8 Hz, 1H, CH₂), 4.01 (d, ²*J*_{H-H} = 13.8 Hz, 1H, CH₂), 3.52 (d, ²*J*_{H-H} = 14.3 Hz, 1H, CH₂), 3.17 (d, ²*J*_{H-H} = 12.4 Hz, 1H, CH₂), 1.69 (s, 15H, Cp*), 1.28 (s, 9H, ^tBu), 1.23 (s, 9H, ^tBu), 1.18 (s, 9H, ^tBu), 1.12 (s, 9H, ^tBu).

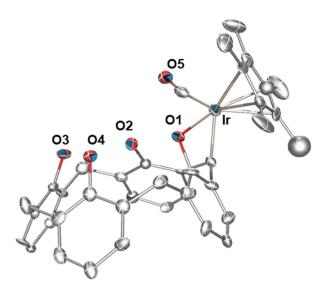


Figure S4. Preliminary molecular structure of $[Cp*Ir\{p-^{t}Bucalix[4]arene(2-)-\kappa^{2}-O,C\}(CO)]$ (6). All the hydrogen atoms and the ^tBu groups were omitted for clarity.

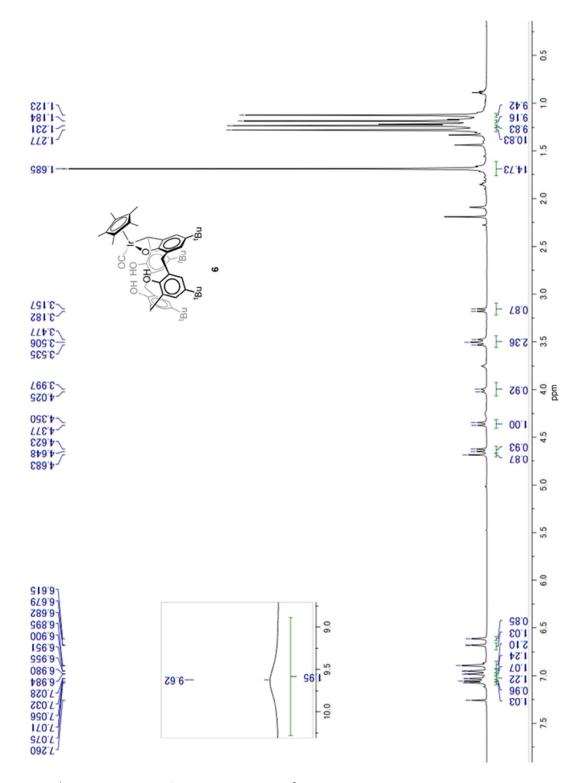
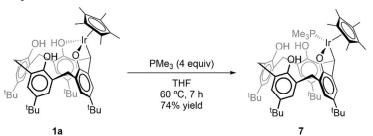



Figure S5. ¹H NMR of [Cp*Ir{ p^{-t} Bucalix[4]arene(2–)- κ^2 -O,C}(CO)] (6) recorded in CDCl₃.

Reaction of 1a with PMe₃

In this reaction, in situ generated **1a** was used. A THF solution (3 mL) of p-^tBucalix[4]arene (30.0 mg, 0.0313 mmol) and $[(Cp^*Ir)_2(OH)_3](OAc)$ (25.0 mg, 0.0214 mmol) was heated at 60 °C for 6 h. After removing the solvent under reduced pressure, the resulting yellow solid was washed by MeOH and dried well under vacuum to give **1a** as a yellow solid. To a THF solution (3 mL) of thus obtained **1a** PMe₃ (1. 0 M in THF, 80 μ L, 0.080 mmol) was added and the mixture was heated at 60 °C for 7 h to give yellow suspension. After removing the insoluble material by filtration through Celite, the solution was dried up. Recrystallization of the resulting solid by CH₂Cl₂/MeOH afforded mono-PMe₃ adduct **7** as yellow needle crystals (24.3 mg, 0.0231 mmol, 74% yield). Spectral data for **7**: ¹H NMR (CDCl₃): δ 7.91, 7.43 (s, 1H each, OH), 7.07 (d, ⁴J_{H-H} = 2.5 Hz, 1H, ArH), 7.05 (d, ⁴J_{H-H} = 2.0 Hz, 1H, ArH), 6.99 (d, ⁴J_{H-H} = 2.0 Hz, 1H, ArH), 6.98 (s, 1H, ArH), 6.97 (s, 1H, ArH), 6.83 (s, 2H, ArH), 6.75 (d, ⁴J_{H-H} = 2.0 Hz, 1H, ArH), 5.91 (s, 1H, OH), 5.69 (s, 1H, Ir–CH), 4.25 (d, ²J_{H-H} = 13.5 Hz, 1H, CH₂), 3.84 (d, ${}^{2}J_{H-H}$ = 13.9 Hz, 2H, CH₂), 3.75 (d, ${}^{2}J_{H-H}$ = 13.5 Hz, 1H, CH₂), 3.36 (d, ${}^{2}J_{H-H}$ = 13.5 Hz, 1H, CH₂), 3.25 (d, ²*J*_{H-H} = 13.9 Hz, 1H, CH₂), 1.57 (s, 15H, Cp*), 1.29, 1.24, 1.23, 1.19 (s, 9H each, ^tBu), -0.11 (d, ²*J*_{P-H} = 10.2 Hz, 9H, PMe₃). ¹³C{¹H} NMR (CDCl₃): δ 172.9, 150.6, 148.0, 147.0, 143.9, 141.8, 141.3, 139.45, 139.40, 136.0, 135.5, 131.5, 129.6, 129.0, 128.4, 128.0, 127.5, 127.0, 125.4, 125.3, 124.8, 124.3, 121.5 (s, Ar), 90.4 (d, ²J_{P-C} = 3.4 Hz, C₅Me₅), 39.0, 34.1, 33.9, 33.7, 32.9, 32.3, 32.1, 31.9, 31.8 (s, CH₂ and ^tBu; 9 distinct signals for 11 different carbons), 27.2 (d, ²J_{P-C} = 4.9 Hz, Ir–CH), 13.1 (d, ¹J_{P-C} = 35.2 Hz, PMe₃), 9.1 (s, C₅Me₅). ³¹P{¹H} NMR (CDCl₃): δ –34.5 (s). Anal. Calcd for C_{57.5}H₇₉O₄IrPCl (**7**·0.5CH₂Cl₂): C, 63.19; H, 7.29. Found C, 63.16; H, 7.22.

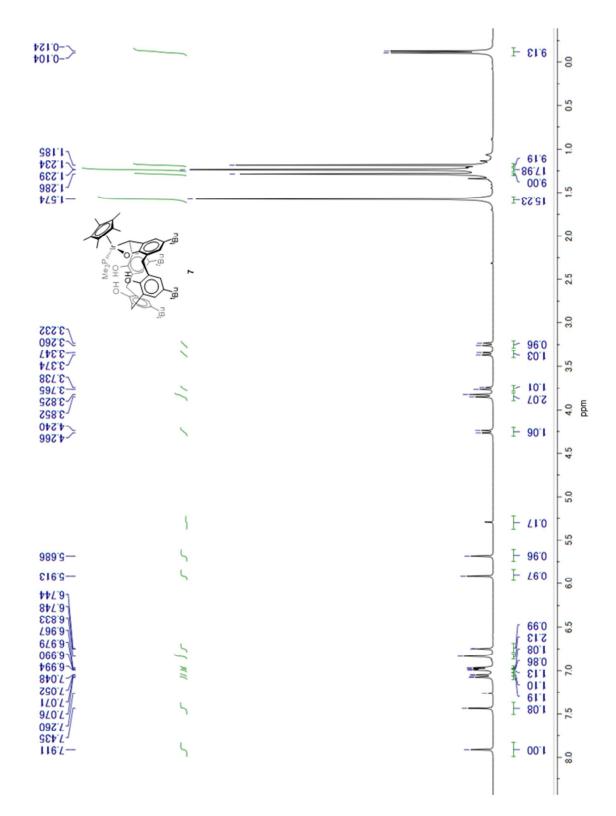


Figure S6. ¹H NMR of $[Cp*Ir\{p^{-t}Bucalix[4]arene(2-)-\kappa^2-O,C\}(PMe_3)]$ (7) recorded in CDCl₃.

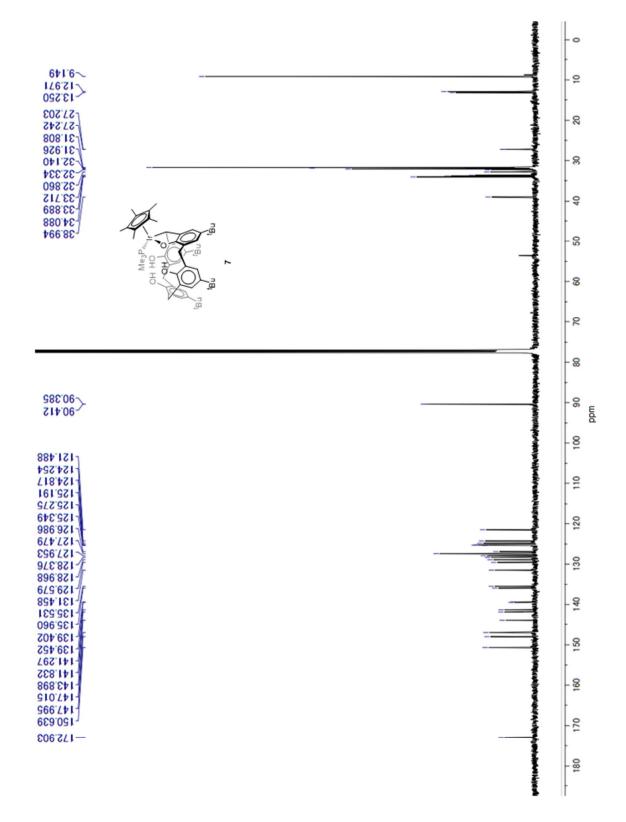


Figure S7. ¹³C NMR of $[Cp*Ir\{p-^{t}Bucalix[4]arene(2-)-\kappa^{2}-O,C\}(PMe_{3})]$ (7) recorded in CDCl₃.

7. ¹H and ¹³C NMR charts for the new compounds

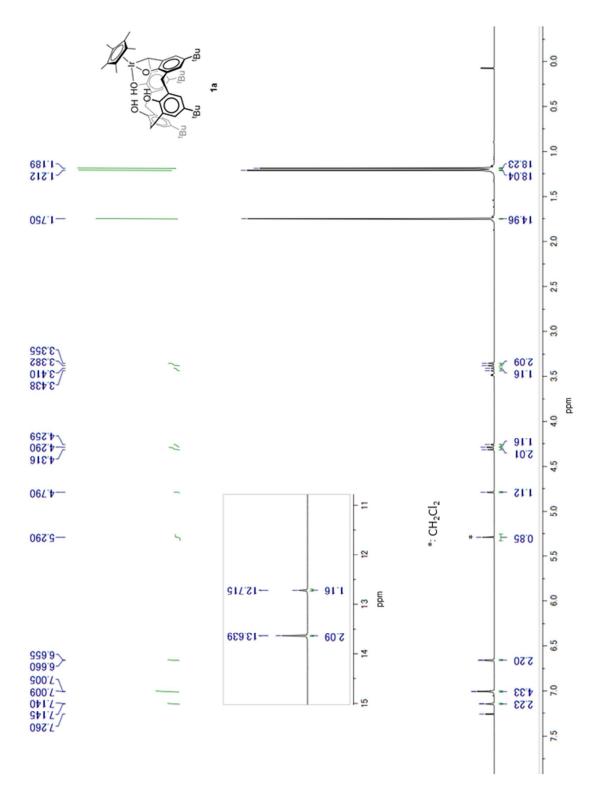


Figure S8. ¹H NMR spectrum of **1a** recorded in CDCl₃.

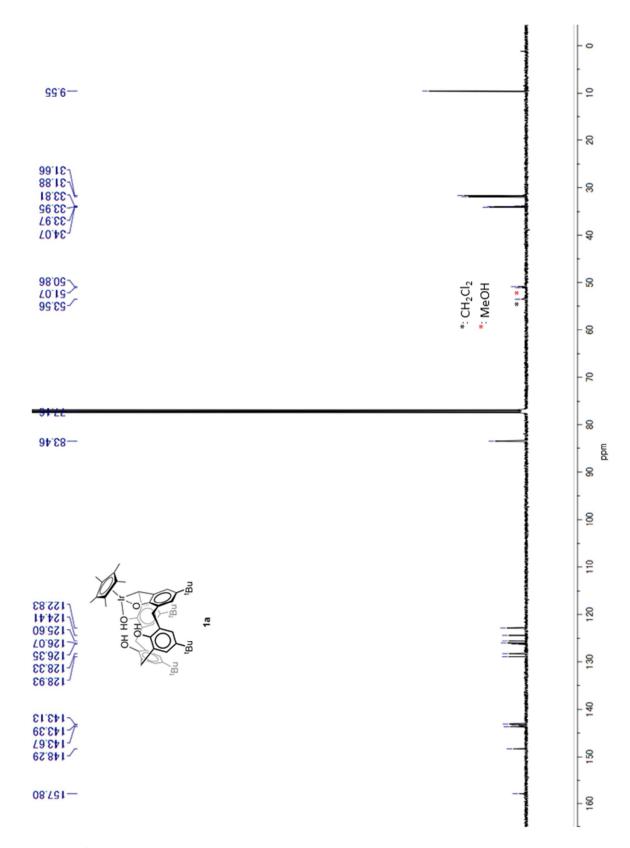


Figure S9. ¹³C NMR spectrum of **1a** recorded in CDCl₃.

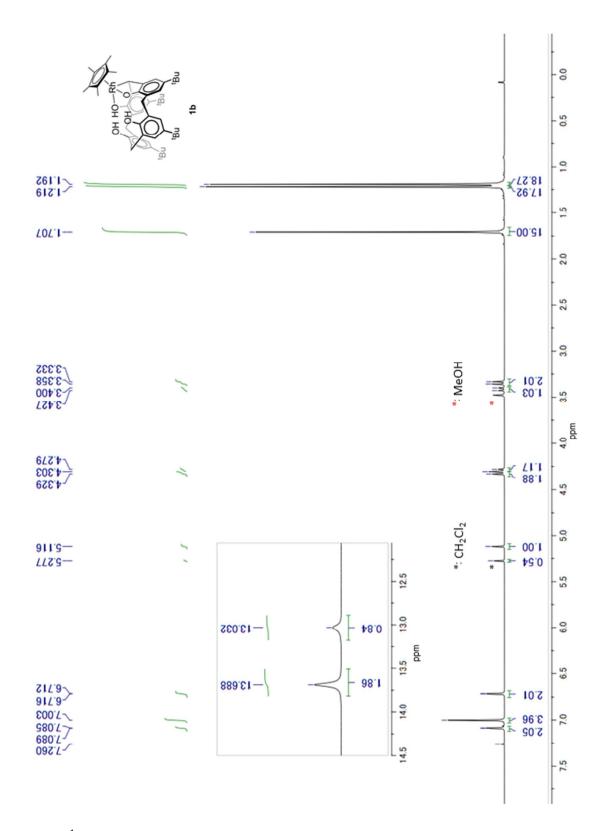


Figure S10. ¹H NMR spectrum of **1b** recorded in CDCl₃.

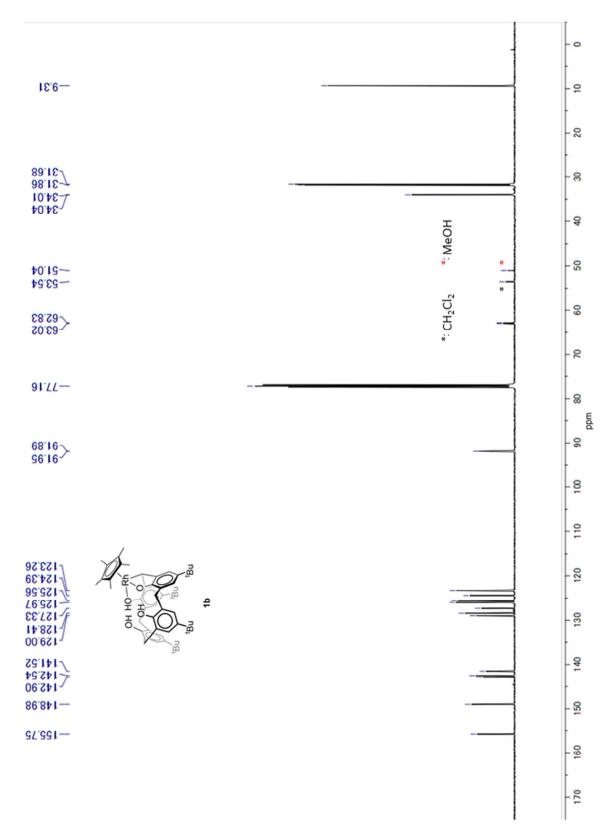


Figure S11. ¹³C NMR spectrum of **1b** recorded in CDCl₃.

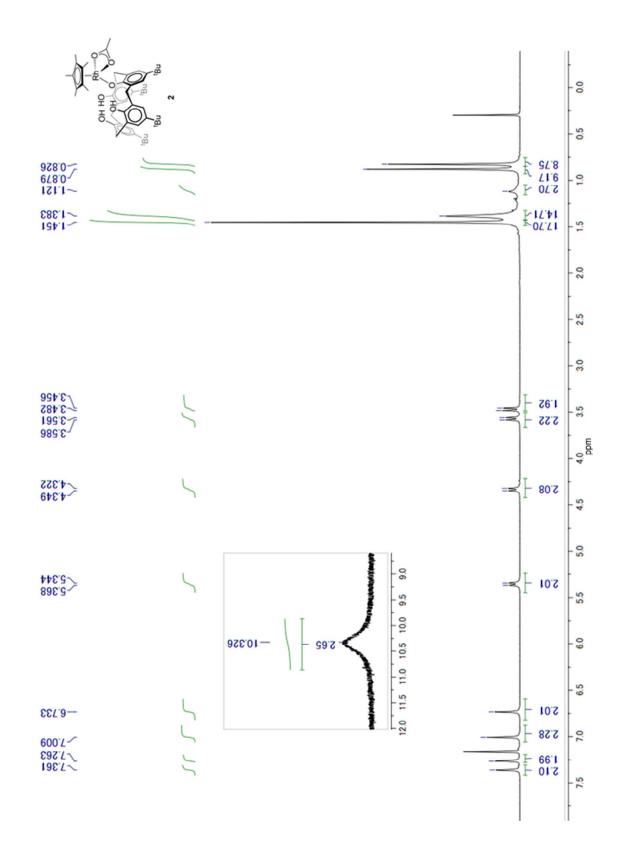


Figure S12. ¹H NMR spectrum of **2** recorded in C_6D_6 .

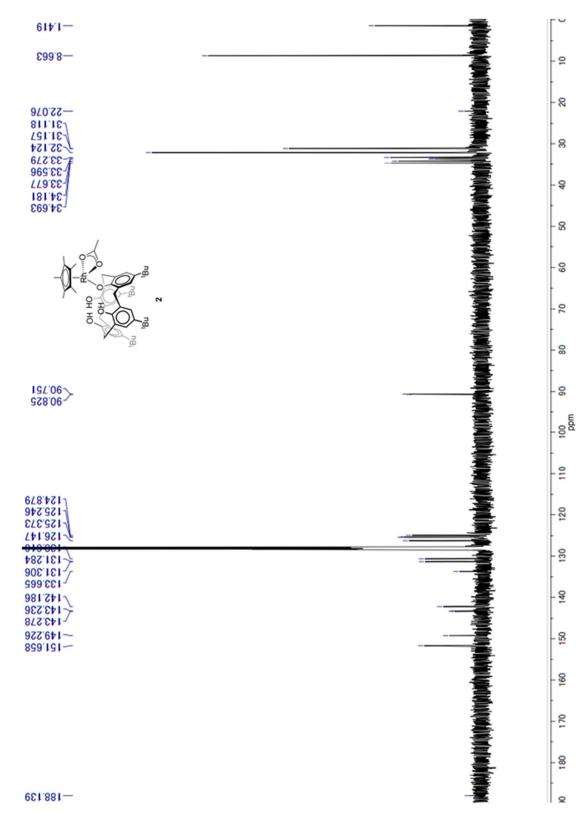


Figure S13. ¹³C NMR spectrum of **2** recorded in C₆D₆.

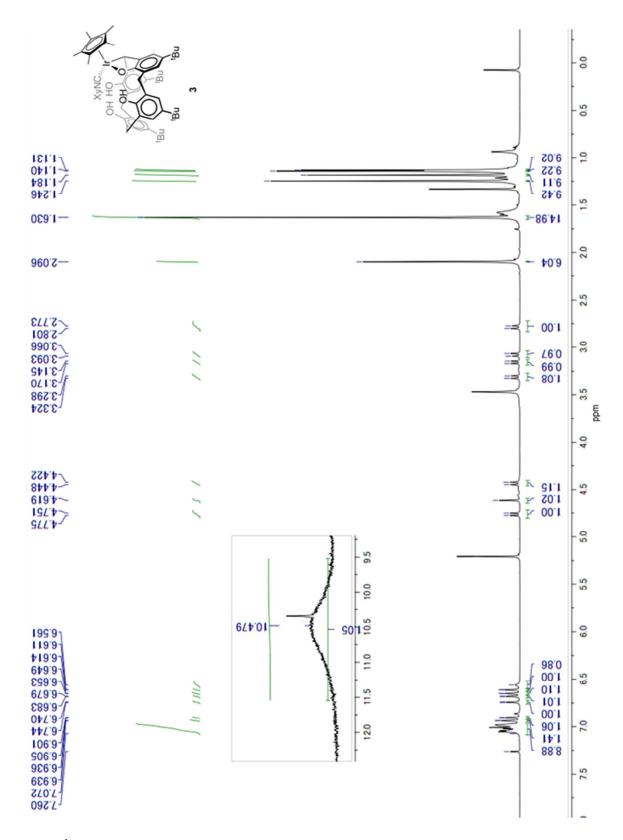


Figure S14. ¹H spectrum of **3** recorded in CDCl₃.

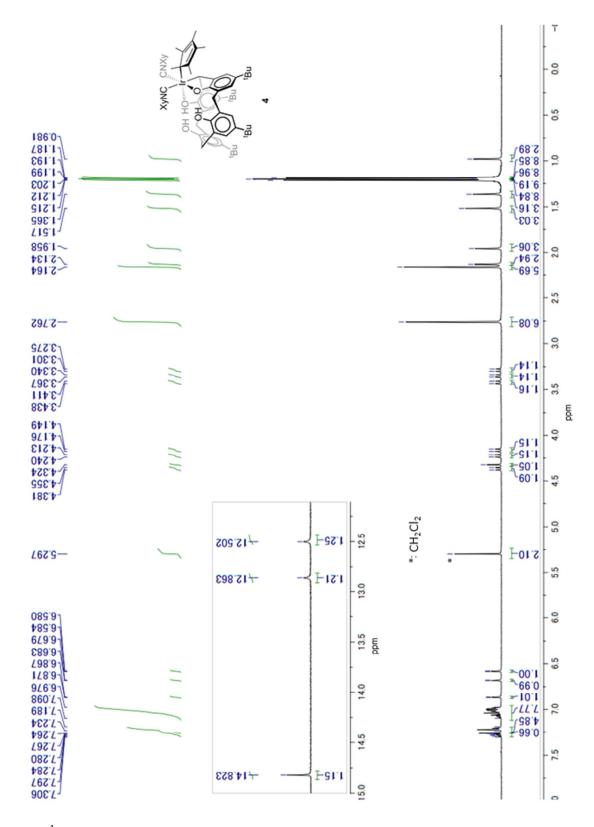


Figure S15. ¹H spectrum of **4**·CH₂Cl₂ recorded in CDCl₃.

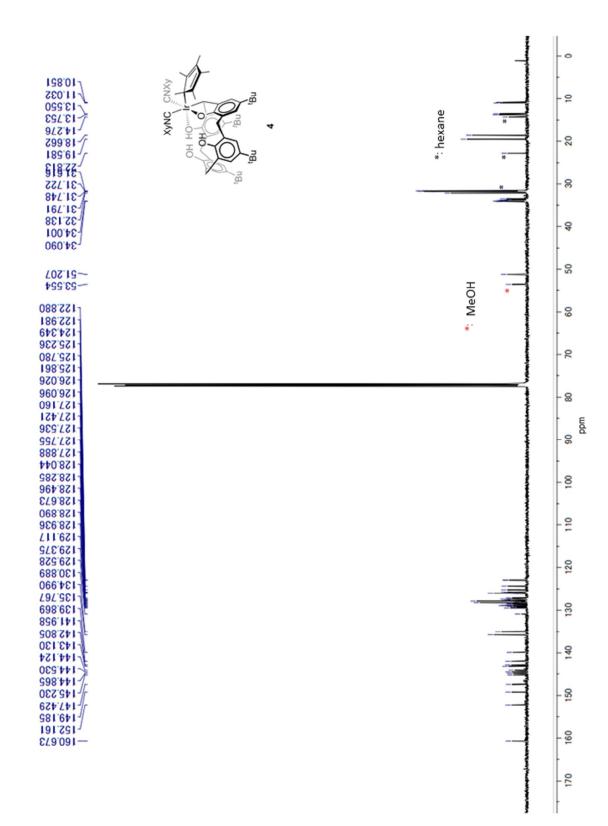


Figure S16. ¹³C NMR spectrum of **4** recorded in CDCl₃.

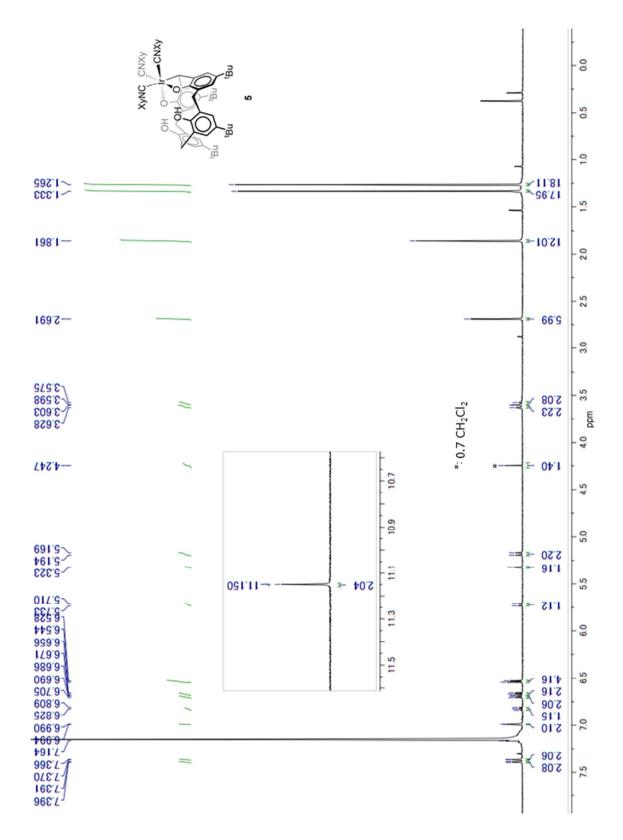


Figure S17. ¹H NMR spectrum of **5** recorded in C₆D₆.

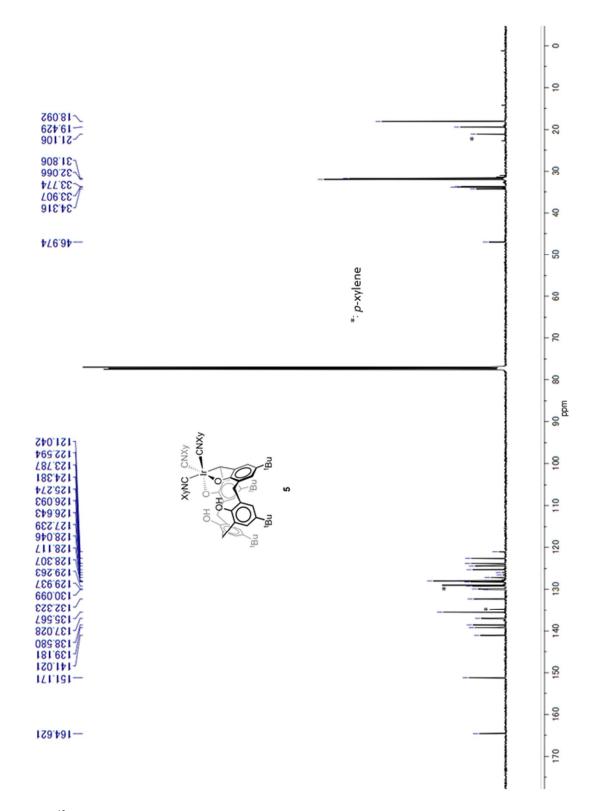


Figure S18. ¹³C NMR spectrum of **5** recorded in CDCl₃.

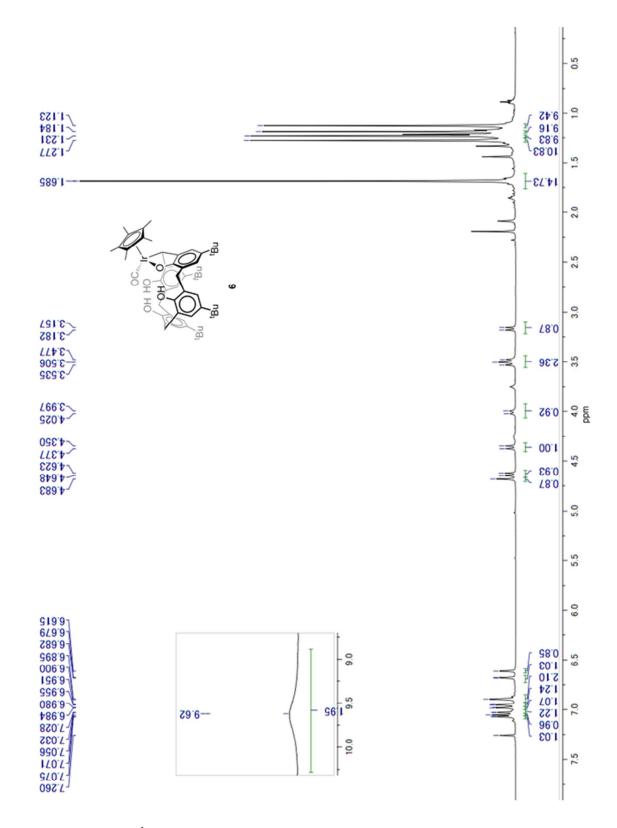


Figure S19. Preliminary ¹H NMR spectrum of **6** recorded in CDCl₃.

8. References

- (1) Hanna, T. A.; Liu, L.; Angeles-Boza, A. M.; Kou, X.; Gutsche, C. D.; Ejsmont, K.; Watson, W. H.; Zakharov, L. N.; Incarvito,
- C. D.; Rheingold, A. L. J. Am. Chem. Soc. 2003, 125, 6228-6238.
- (2) Frasco, D. A.; Lilly, C. P.; Boyle, P. D.; Ison, E. A. ACS Catal. 2013, 3, 2421-2429.
- (3) Boyer, P. M.; Roy, C. P.; Bielski, J. M.; Merola, J. S. Inorg. Chim. Acta 1996, 245, 7-15.
- (4) Sluis, P. v. d.; Spek, A. L. Acta Crystallogr., Sect. A, **1990**, 46, 194-201.
- (5) Spek, A. L. Acta Crystallogr. 2009, D65, 148–155.