Supporting information for

Ring Slippage and Dissociation of Pentamethylcyclopentadienyl Ligand in an ($\boldsymbol{\eta}^{5}-\mathrm{Cp}{ }^{*}$)Ir Complex with a $\kappa^{3}-O, C, O$ Tridentate Calix[4]arene Ligand under Mild Conditions
 Takuya Kuwabara, Ryogen Tezuka, Mikiya Ishikawa, Takuya Yamazaki, Shintaro Kodama, and Youichi Ishii*
 Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551 Japan
 Corresponding author's e-mail: yo-ishii@kc.chuo-u.ac.jp

Table of contents

1. General considerations S1
2. Synthesis and analytical data for 1a-b, 2-6 S1-6
3. Details for X-ray diffraction analysis and crystallographic data of 1a-b, $\mathbf{2}$ and $\mathbf{4}$ S7-8
4. Preliminary X-ray diffraction analysis of $\mathbf{3}$ and $\mathbf{5}$ S9
5. Direct observation of $\mathrm{Cp} * \mathrm{H}$ in the reaction of 4 and 1 equiv. of XyNC S10
6. Reaction of 1a with other donors S11-16
7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR charts for the new compounds S17-28
8. References S29

1. General considerations

All manipulations were carried out under an argon atmosphere by using standard Schlenk techniques unless otherwise stated. 1,2-Dichloroethane $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}\right)$ and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were dried and distilled over $\mathrm{P}_{4} \mathrm{O}_{10}$, degassed, and stored under argon. The other solvents (anhydrous grade) were purchased from Sigma-Aldrich and purged with argon before use. Monopotassium salt of p - ${ }^{t}$ Bucalix[4]arene, ${ }^{1}$ $\left[\mathrm{Cp} * \operatorname{Ir}(\mathrm{OAc})_{2}(\mathrm{dmso})\right]^{2}$ and $\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{OAc})_{2}\right]^{3}$ were synthesized according to the literatures. ${ }^{1} \mathrm{H}(500 \mathrm{MHz})$, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(126 \mathrm{MHz})$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(202 \mathrm{MHz})$ NMR spectra were recorded on a JEOL ECA-500 spectrometer at $20^{\circ} \mathrm{C}$. Chemical shifts are reported in δ and referenced to residual ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals of deuterated solvents as internal standards. IR spectra were recorded on a JASCO FT/IR-4200 spectrometer by using KBr pellets. Elemental analyses were performed on a Perkin Elmer 2400 series II CHN analyzer. X-ray crystallographic analyses were performed on a Rigaku/MSC VariMax/Saturn CCD diffractometer. Amounts of the solvent molecules in the crystals were determined not only by elemental analyses but also by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

2. Synthesis and analytical data for new compounds

Synthesis of [Cp*Ir\{p- ${ }^{t}$ Bucalix[4]arene(2-)- $\left.\left.\kappa^{3}-0, C, O\right\}\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{a} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

1a
 $2.00 \mathrm{mmol})$, and the mixture was stirred under reflux for 22 h . The solvent was removed under reduced pressure to yield crude [$\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(p\right.$ - $^{\text {t }}$ Bucalix[4]arene $\left.\left.(2-)-\kappa^{3}-O, C, O\right)\right]$ (1a) as a yellow powder, which was purified by recrystallization from dichloromethane/methanol to give $1 \mathrm{a} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as yellow crystals (1.27 g, 1.25 $\mathrm{mmol}, 62 \%$ yield). Spectral data for 1a: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 13.64(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 12.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.14\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=\right.$ $2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.01\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}\right.$), $6.66\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right.$), $4.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ir}-\mathrm{CH}), 4.30(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{H}-\mathrm{H}}=13.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.28\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.42\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.37\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}\right.$ $=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $1.75\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{Cp}{ }^{*}\right), 1.21\left(\mathrm{~s}, 18 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.19\left(\mathrm{~s}, 18 \mathrm{H},{ }^{t} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 157.8$, 148.3, 143.7, 143.4, 143.1, 128.9, 128.3, 126.3, 126.1, 125.6, 124.4, 122.8 (Ar), $83.5\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right.$), 50.8 ($\mathrm{Ir}-\mathrm{C}$), 34.1 $\left(\mathrm{CH}_{2}\right)$, $33.97\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.95\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.9,31.7\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 9.6\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{Me}_{5}\right) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3430$ (он $)$. Anal. Calcd for $\mathrm{C}_{54.5} \mathrm{H}_{70} \mathrm{IrO}_{4} \mathrm{Cl}\left(1 \mathrm{a} \cdot\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{0.5}\right): \mathrm{C}, 60.86 ; \mathrm{H}, 4.97$. Found: C, 60.52; H, 4.89. Complex 1a can be synthesized from p^{-t} Bucalix[4]arene and $\left[\left(\mathrm{Cp}^{*} \mathrm{Ir}\right)_{2}\left(\mathrm{OH}_{2}\right)\right](\mathrm{OAc})$ in 66% isolated yield.

Synthesis of $\left[\mathrm{Cp}{ }^{*} \mathrm{Rh}\left\{p-{ }^{+}{ }^{\text {B }}\right.\right.$ Bucalix $[4]$ arene $\left.\left.(2-)-\kappa^{3}-\mathrm{O}, \mathrm{C}, \mathrm{O}\right\}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathbf{1 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

1b
To a mesitylene solution (2.0 mL) of mono potassium salt of p - ${ }^{\text {t}}{ }^{\text {Bucalix }[4] a r e n e ~(~} 20.2 \mathrm{mg}, 0.0294 \mathrm{mmol}$) was added $\left[\mathrm{Cp}{ }^{*} \mathrm{Rh}(\mathrm{OAc})_{2}\right](10.6 \mathrm{mg}, 0.0297 \mathrm{mmol})$ and the mixture was stirred under reflux $\left(166^{\circ} \mathrm{C}\right)$ for 13 h . The solvent was removed under reduced pressure, and the black residue was purified by column chromatography on silica gel (eluent: dichloromethane : hexane $=3: 1$). The first orange band was collected, evaporated to dryness, and recrystallized from dichloromethane/methanol to afford orange crystals of
 reaction in refluxing p-xylene ($138{ }^{\circ} \mathrm{C}, 22 \mathrm{~h}$) resulting in lower yields (10% yield). Spectral data for $\mathbf{1 b}$: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 13.69$ (br s, 2H, OH) $13.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 7.09\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.00(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH})$, $6.71\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 5.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Rh}-\mathrm{CH}), 4.32\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.29\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.0 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.41\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.35\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.71\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{Cp}^{*}\right), 1.22(\mathrm{~s}, 18 \mathrm{H}$, $\left.{ }^{t} \mathrm{Bu}\right), 1.19\left(\mathrm{~s}, 18 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} 3 \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 155.7,149.0,142.9,142.5,141.5,129.0,128.4,127.3,126.0$, 125.6, 124.4, 123.3 (Ar), 91.9 ($\mathrm{d},{ }^{1} \mathrm{~J}_{\text {Rh-c }}=8.4 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{Me}_{5}$), $62.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{Rh}-\mathrm{C}}=25.2 \mathrm{~Hz}, \mathrm{Rh}-\mathrm{C}\right), 34.03\left(\mathrm{CH}_{2}\right), 34.00(\mathrm{~m}$, CH_{2} and $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $9.3\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$. $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3445 ($\mathrm{YoH}_{\mathrm{H}}$). Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{71} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{Rh}\left(\mathbf{1 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \mathrm{C}, 68.10 ; \mathrm{H}, 7.38$. Found: C, $68.10 ; \mathrm{H}, 7.43$.

Synthesis of [Cp*Rh(OAc)\{p- ${ }^{\text {t }}$ Bucalix[4]arene(-)-к-O\}] (2)

To a THF solution (10 mL) of monopotassium salt of $\left.p-{ }_{-}{ }^{\text {B Bucalix[}} 4\right]$ arene ($46.0 \mathrm{mg}, 0.0699 \mathrm{mmol}$) was added $\left[\mathrm{Cp}^{*} \mathrm{Rh}(\mathrm{OAc})_{2}\right](20.4 \mathrm{~g}, 0.0645 \mathrm{mmol})$ and the mixture was stirred for 22 h at room temperature. The resultant solution was dried up under reduced pressure to yield crude [$C p^{*}$ Rh(OAc) $\left\{p-{ }^{\text {t Bucalix[4]arene(-)-к-O\}] (2) which was recrystallized from hexane/ether to give analytically }}\right.$ pure $\mathbf{2}$ as an orange powder ($24.7 \mathrm{mg}, 0.0261 \mathrm{mmol}, 37 \%$ yield). Spectral data for $\mathbf{2}$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 10.33$ (br s, 3H, OH), $7.36\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}\right.$), $7.26(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.01(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 6.73(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 5.36$ (d, ${ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12.5 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.34\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.57\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.47\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$,
1.45 (s, 18H, ${ }^{t} \mathrm{Bu}$), 1.38 (brs, $15 \mathrm{H}, \mathrm{Cp}{ }^{*}$), $1.12(\mathrm{brs}, 3 \mathrm{H}, \mathrm{OAc}), 0.88\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 0.83\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 188.1$ (br, $\mathrm{CH}_{3} \mathrm{COO}$), 151.7, 149.2, 143.7, 143.24, 142.2, 133.7, 131.30, 131.28, 130.6, 126.1, 125.4, 125.2, 124.9 ($\mathrm{Ar} ; 13$ distinct signals for 14 different carbons. A signal may be overlapping with the residual $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$ signal.), $90.8\left(\mathrm{~d}, 9.3 \mathrm{~Hz}, \mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 34.7, $34.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.7,33.6\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 32.1,31.2,31.1$
 7.79. Found: C, 71.15; H, 8.10.

Synthesis of 1b from 2

 under reduced pressure, and the black residue was purified by column chromatography on silica gel (eluent: dichloromethane : hexane = $3: 1$). The first orange band was collected, evaporated to dryness, and recrystallized from dichloromethane/methanol to afford orange crystals of $\mathbf{1 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(80.0 \mathrm{mg}, 0.0824 \mathrm{mmol}$, 77% yield).

Synthesis of [Cp*Ir\{p- ${ }^{t}$ Bucalix[4]arene(2-)- $\left.\left.\mathbf{k}^{2}-O, C\right\}(C N X y)\right]$ (3)

2,6-xylyl isocyanide ($4.5 \mathrm{mg}, 0.034 \mathrm{mmol}$) was add to a THF solution (3.0 mL) of $1 \mathrm{a} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (22.9 mg , 0.0225 mmol) at $-20^{\circ} \mathrm{C}$ and the mixture was stirred for 15 h at this temperature. The solvent was removed under reduced pressure to yield a yellow powder, which was purified by recrystallization from dichloromethane/methanol at $-20{ }^{\circ} \mathrm{C}$ to give [Cp* $\operatorname{Ir}\left({ }^{-}{ }^{\dagger}\right.$ Bucalix[4]arene(2-)- $\left.\left.\mathrm{K}^{2}-O, C\right)(C N X y)\right]$ (3) as yellow crystals ($20.7 \mathrm{mg}, 0.0200 \mathrm{mmol}$). However, this compound is not stable in solution at room temperature, and analytically pure samples could not be obtained even by repeated recrystallization at low temperatures. Spectral data for 3: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 10.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 7.07-6.98(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Xy}(3 \mathrm{H})+\mathrm{ArH}$ of calixarene (2 H) $+\mathrm{OH}(2 \mathrm{H})+$ impurities $), 6.94,6.90,6.74,6.68,6.65,6.61\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$ each, ArH of calixarene), 4.76 $\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ir}-\mathrm{CH}), 4.44\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.31\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.0,1 \mathrm{H}, \mathrm{CH}_{2}\right)$,
$3.16\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.08\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.79\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.10(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}$ of XyNC), 1.63 ($s, 15 \mathrm{H}, \mathrm{Cp}{ }^{*}$), 1.25 ($\mathrm{s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}$), 1.19 ($\mathrm{s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}$), $1.14\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.13\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}\left\{^{1} \mathrm{H}\right\} \mathrm{NMR}$ data of 3 could not be obtained because of its instability. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3430\left(\gamma_{\mathrm{oH}}\right), 2116\left(\gamma_{\mathrm{cN}}\right)$.

Synthesis of $\left[\left(\eta^{1}-\mathrm{Cp}{ }^{*}\right) \operatorname{Ir}\left(p-{ }^{t}\right.\right.$ Bucalix[4]arene $\left.\left.(2-)-\kappa^{3}-O, C, O\right)(\mathrm{CNXy})_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

To a THF solution (20.0 mL) of $1 \mathrm{a} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(201.8 \mathrm{~g}, 0.199 \mathrm{mmol})$ was added $2,6-\mathrm{xylyl}$ isocyanide (54.9 mg , $0.419 \mathrm{mmol})$, and the mixture was stirred for 20 h at room temperature. The solvent was removed under reduced pressure to yield crude [$\left(\eta^{1}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{lr}\left(p-{ }^{t}\right.$ Bucalix[4]arene $\left.(2-)-\kappa^{3}-O, C, O\right)(\mathrm{CNXy})_{2}$] (4) as a solid, which was further purified by recrystallization from dichloromethane/methanol to give analytically pure $4 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as yellow crystals ($194.2 \mathrm{mg}, 0.149 \mathrm{mmol}, 74 \%$ yield). Spectral data for 4 : ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 14.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, $12.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 12.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.30-7.21(\mathrm{~m}, 4 \mathrm{H},(\mathrm{Xy}(3 \mathrm{H})+\mathrm{ArH}$ of calixarene $(1 \mathrm{H})), 7.10-6.98(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Xy}$ $(3 \mathrm{H})+\mathrm{ArH}$ of calixarene $(4 \mathrm{H})), 6.87\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right.$ of calixarene), $6.68\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right.$ of calixarene), $6.58\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right.$ of calixarene), $4.37\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ir}-\mathrm{CH})$, $4.23\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.16\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.42\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.35(\mathrm{~d}$, ${ }^{2} J_{\mathrm{H}-\mathrm{H}}=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.29\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$), $2.76(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}$ of XyNC$), 2.16(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}$ of XyNC), $2.13\left(\mathrm{~s}, 3 \mathrm{H}, \eta^{1}-\mathrm{Cp}{ }^{*}\right), 1.96\left(\mathrm{~s}, 3 \mathrm{H}, \eta^{1}-\mathrm{Cp}{ }^{*}\right), 1.52\left(\mathrm{~s}, 3 \mathrm{H}, \eta^{1}-\mathrm{C} p^{*}\right), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \eta^{1}-\mathrm{Cp}{ }^{*}\right), 1.22\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.21(\mathrm{~s}, 9 \mathrm{H}$, $\left.{ }^{t} \mathrm{Bu}\right), 1.203\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.199\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 0.98\left(\mathrm{~s}, 3 \mathrm{H}, \eta^{1}-\mathrm{Cp}{ }^{*}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 160.7,152.2,149.2$, $147.4,145.2,144.9,144.5,144.1,143.1,142.8,142.0,139.9,135.8,135.0,130.9,129.5,129.4,129.1,128.93$, 128.89, 128.7, 128.5, 128.3, 128.0, 127.9, 127.8, 127.5, 127.4, 127.2, 126.1, 126.0, 125.9, 125.8, 125.2, 124.3, 123.0, 122.9 ($\mathrm{Ar}+\mathrm{NC}+\mathrm{C}\left(\mathrm{sp}^{2}\right.$) of $\eta^{1}-\mathrm{Cp}^{*} ; 37$ distinct signals for 38 different carbons), 51.2 ($\mathrm{Ir}-\mathrm{CH}$), 34.13, 34.09, 34.0, 33.95, 33.9, 33.8, 33.7, $33.5\left(\mathrm{CH}_{2}\right.$ and $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 32.1, $31.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.75\left(\mathrm{CH}_{3}\right.$ of $\left.\eta^{1}-\mathrm{Cp}{ }^{*}\right)$, 31.72, $31.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.6,18.7\left(\mathrm{CH}_{3}\right.$ of Xy$)$, 13.8, 13.6, 11.0, $10.9\left(\mathrm{CH}_{3}\right.$ of $\left.\eta^{1}-\mathrm{Cp}^{*}\right)$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3450($ Үон $), 2145$, $2100\left(\gamma_{\mathrm{cN}}\right)$. Anal. Calcd for $\mathrm{C}_{73} \mathrm{H}_{89} \mathrm{Cl}_{2} \mathrm{IrN}_{2} \mathrm{O}_{4}\left(4 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \mathrm{C}, 66.34 ; \mathrm{H}, 6.79 ; \mathrm{N}, 2.12$. Found: $\mathrm{C}, 66.22 ; \mathrm{H}, 6.68 ; \mathrm{N}$, 2.14.

Synthesis of $\left[\operatorname{Ir}\left(\mathrm{p}^{-}{ }^{t}\right.\right.$ Bucalix $[4]$ arene $\left.\left.(3-)-\kappa^{3}-\mathrm{O}, \mathrm{C}, \mathrm{O}\right)(\mathrm{CNXy})_{3}\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \cdot 0.7 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

1a

5

To a p-xylene solution (22.0 mL) of $1 \mathrm{a} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(100.5 \mathrm{mg}, 0.989 \mathrm{mmol})$ was added 2,6 -xylyl isocyanide (67.3 $\mathrm{mg}, 0.514 \mathrm{mmol})$, and the mixture was stirred under reflux for 15 h . The solvent was removed under reduced pressure, and the residue was washed with methanol to yield $\left[\operatorname{Ir}\left(p-{ }^{\text {t }}\right.\right.$ Bucalix[4]arene $\left.\left.(3-)-\kappa^{3}-\mathrm{O}, \mathrm{C}, \mathrm{O}\right)(\mathrm{CNXy})_{3}\right] \cdot 0.7 \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \cdot 0.7 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ as a white powder ($66.1 \mathrm{mg}, 0.0511$ $\mathrm{mmol}, 51 \%$ yield). Analytically pure sample was obtained by recrystallization from dichloromethane. Spectral data for $5 \cdot 0.7 \mathrm{CH}_{2} \mathrm{Cl}_{2}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 11.15(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 7.39\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right.$ of calixarene), 7.37 (d, ${ }^{4} J_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 2 \mathrm{H}$, ArH of calixarene), $7.16\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, ArH of calixarene), $6.99\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, ArH of calixarene), $6.83\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Xy}\right), 6.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Xy}\right), 6.67\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Xy}\right)$, $6.54\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Xy}\right), 5.72\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ir}-\mathrm{CH}), 5.18\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, CH_{2}), $3.62\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $3.59\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.69(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}$ of Xy$), 1.86(\mathrm{~s}, 12 \mathrm{H}$, Me of Xy), $1.33\left(\mathrm{~s}, 18 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.27\left(\mathrm{~s}, 18 \mathrm{H},{ }^{t} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}\left\{^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 164.6,151.2,141.0,139.2,138.6,137.0$, $135.6,134.8,132.3,130.1,129.9,129.1,128.3,128.1,128.0,127.2,125.3,124.4,123.8,122.6,121.0(\mathrm{Ar}+$ NC; 21 distinct signals for 22 different carbons), 47.0 ($\mathrm{Ir}-\mathrm{CH}$), 34.3, 33.9, $33.8\left(\mathrm{CH}_{2}\right.$ and $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, two $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ signals are overlapping), 32.1, $31.8\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 19.4,18.1(\mathrm{Me} \text { of } \mathrm{Xy}) \text {. IR }\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) \text { : 3426 }\left(\gamma_{\text {oн }}\right), 2205,2155\left(\gamma_{\mathrm{cN}}\right) .}\right.$ Anal. Calcd for $\mathrm{C}_{71.7} \mathrm{H}_{81.4} \mathrm{IrN}_{3} \mathrm{O}_{4} \mathrm{Cl}_{1.4}\left(5 \cdot 0.7 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \mathrm{C}, 66.70 ; \mathrm{H}, 6.35 ; \mathrm{N}, 3.25$. Found $\mathrm{C}, 66.95 ; \mathrm{H}, 6.80 ; \mathrm{N}, 3.19$.

Synthesis of 4 from 3

To a THF solution (2.0 mL) of $3(10.3 \mathrm{mg}, 9.3 \mu \mathrm{~mol})$ was added $2,6-\mathrm{xylyl}$ isocyanide ($1.1 \mathrm{mg}, 8.3 \mu \mathrm{~mol}$), and the mixture was stirred for 20 h at room temperature. The solvent was removed under reduced pressure to yield crude 4, which was purified by recrystallization from dichloromethane/methanol to give $4 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.5 $\mathrm{mg}, 1.9 \mu \mathrm{~mol}, 20 \%$ yield).

Synthesis of 5 from 4

To a toluene solution (10.0 mL) of $4 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(100.4 \mathrm{mg}, 0.0760 \mathrm{mmol})$ was added $2,6-x y l y l$ isocyanide (13.7 mg , $0.104 \mathrm{mmol})$, and the mixture was stirred for 20 h at $100^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure, and the residue was washed with methanol to yield $5 \cdot 0.7 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a white powder (18.3 mg , 0.0142 mmol, 19\% yield).

Reaction of 4 and 1 equiv. of xylyl isocyanide in a J. Young NMR tube

In a J. Young NMR tube, a mixture of $4 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(9.9 \mathrm{mg}, 7.5 \mu \mathrm{~mol})$ and $\mathrm{XyNC}(1.1 \mathrm{mg}, 8.4 \mu \mathrm{~mol})$ dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ was heated at $100^{\circ} \mathrm{C}$ for $20 \mathrm{~h} .{ }^{1} \mathrm{H} \mathrm{NMR}$ of the reaction mixture revealed relatively clean formation of 5 and generation of Cp * as shown in Figure S3.

3. Details for X-ray diffraction analysis and crystallographic data of 1a-b, 2 and 4

1a: Since one of the solvent molecules contained in the unit cell could not be modeled correctly, the contribution from disordered solvent molecules were removed by the program SQUEEZE ${ }^{4}$ (PLATON ${ }^{5}$).

Figure S1. ORTEP drawing of 1a with 50% probability. All hydrogen atoms except for the OH groups, ${ }^{t} \mathrm{Bu}$ groups and a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ inside the cavity were omitted for clarity. Selected bond lengths [A]: $\operatorname{Ir}-\mathrm{C}(1): 2.106(4)$, Ir$\mathrm{O}(1): 2.103(3), \operatorname{lr}-\mathrm{O}(2): 2.171(3)$.

1b: Two independent molecules (molecule A and B) with similar structural characteristics were found in the unit cell. One of the ${ }^{t} B u$ groups in molecule B is disordered over two positions in the ratio of $0.6: 0.4$.

2: one of the diethyl ether molecules encapsulated in the cavity of calix[4]arene is disordered over two positions in the ratio of $0.76: 0.24$. One of the ${ }^{t} \mathrm{Bu}$ groups is disordered over two positions in the ratio of 0.7 : 0.3. The minor part was refined isotropically and the ${ }^{t} \mathrm{Bu}$ group was refined without hydrogen atoms.

4: One of the ${ }^{t} \mathrm{Bu}$ groups is disordered over two positions in the ratio of $0.56: 0.44$. Two THF molecules (inside and outside the cavity) are disordered over two positions in the ratio of $0.56: 0.44$.

Table S1. Crystarographical data for 1a-b, 2 and 4.

$\left.\left.N_{\text {params }}\right)\right]^{1 / 2}$

4. Preliminary X-ray diffraction analysis of 3 and 5

a

b

Figure S2. Preliminary molecular structures of 4 (a; top) and 5 (b; bottom) with thermal ellipsoid plot at 50\% probability.

5. Direct observation of $C p^{*} H$ in the reaction of 4 and 1 equiv. of XyNC

Figure S3. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($0.5-3 \mathrm{ppm}$) of complex 5 in $\mathrm{C}_{6} \mathrm{D}_{6}(\mathrm{a})$, the crude mixture after refluxing for $20 \mathrm{~h}(\mathrm{~b})$ and $\mathrm{Cp}{ }^{*} \mathrm{H}$ in $\mathrm{C}_{6} \mathrm{D}_{6}(\mathrm{c})$. The black * and red * in (b) indicate the signals derived from $\mathrm{Cp}{ }^{*} \mathrm{H}$ and 5, respectively.

6. Reactions of 1a with other donors

Reactions of 1a with other donors such as $\mathrm{CO}, \mathrm{PMe}_{3},{ }^{t} \mathrm{BuNC}$, pyridine and $2,2^{\prime}$-bipyridine were investigated under similar conditions to that for the XyNC cases (Scheme S1). In the reactions with CO and PMe ${ }_{3}$, only mono-CO adduct 6 and mono- PMe_{3} adduct 7 were obtained in 66 and 74% yields, respectively, but no further product accompanied by ring slippage was observed. Details for these experiments and spectroscopic data are shown below. In contrast, In the case of ${ }^{t}$ BuNC, pyridine and $2,2^{\prime}$-bipyridine, no reaction took place judging from the ${ }^{1} \mathrm{H}$ NMR spectra of crude reaction mixtures. The reason of the different reactivities of 1a toward XyNC and other donors is still unclear.

Scheme S1. Reactions of 1a with various donors.

Reaction of 1a with CO (1 atom)

A THF solution (3.0 mL) of $\mathbf{1 a} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(29.9 \mathrm{mg}, 29.4 \mu \mathrm{~mol})$ was stirred for 15 h under a CO atmosphere. The solvent was removed under reduced pressure and the residual solvent was recrystallized from dichloromethane/methanol to give [Cp* $\operatorname{Ir}\left\{p-{ }^{t}\right.$ Bucalix[4]arene $\left.\left.(2-)-\kappa^{2}-O, C\right\}(C O)\right]$ (6) as yellow crystals (20.3 mg, $16.4 \mu \mathrm{~mol}, 56 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.63(\mathrm{br}, 2 \mathrm{H}, \mathrm{OH}), 7.07\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right.$), $7.06(\mathrm{~s}, \mathrm{OH}), 7.03(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.98\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.95\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, $6.68\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.61\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 4.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ir}-\mathrm{CH}), 4.64\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2}\right), 4.36\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.01\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.52\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.49$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.17\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.69\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{Cp}{ }^{*}\right), 1.28\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.23(\mathrm{~s}, 9 \mathrm{H}$, $\left.{ }^{t} \mathrm{Bu}\right), 1.18\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.12\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right)$.

Figure S4. Preliminary molecular structure of [Cp* $\operatorname{Ir}\left\{p-{ }^{t}\right.$ Bucalix[4]arene(2-)- $\left.\left.\kappa^{2}-O, C\right\}(C O)\right]$ (6). All the hydrogen atoms and the ${ }^{t}$ Bu groups were omitted for clarity.

Figure $\mathrm{S} 5 .{ }^{1} \mathrm{H}$ NMR of $\left[\mathrm{Cp}{ }^{*} \mid \mathrm{Ir}\left\{p-{ }^{\text {t }}\right.\right.$ Bucalix[4]arene(2-)- $\left.\left.\mathrm{K}^{2}-\mathrm{O}, \mathrm{C}\right\}(\mathrm{CO})\right](6)$ recorded in CDCl_{3}.

Reaction of 1a with PMe_{3}

In this reaction, in situ generated 1a was used. A THF solution (3 mL) of $p^{\text {- }}{ }^{t}$ Bucalix[4]arene ($30.0 \mathrm{mg}, 0.0313$ $\mathrm{mmol})$ and $\left[\left(\mathrm{Cp}^{*} \mathrm{Ir}\right)_{2}(\mathrm{OH})_{3}\right](\mathrm{OAc})(25.0 \mathrm{mg}, 0.0214 \mathrm{mmol})$ was heated at $60{ }^{\circ} \mathrm{C}$ for 6 h . After removing the solvent under reduced pressure, the resulting yellow solid was washed by MeOH and dried well under vacuum to give 1a as a yellow solid. To a THF solution (3 mL) of thus obtained $\mathbf{1 a} \mathrm{PMe}_{3}(1.0 \mathrm{M} \mathrm{in} \mathrm{THF}, 80 \mu \mathrm{~L}$, 0.080 mmol) was added and the mixture was heated at $60^{\circ} \mathrm{C}$ for 7 h to give yellow suspension. After removing the insoluble material by filtration through Celite, the solution was dried up. Recrystallization of the resulting solid by $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ afforded mono- PMe_{3} adduct 7 as yellow needle crystals ($24.3 \mathrm{mg}, 0.0231$ $\mathrm{mmol}, 74 \%$ yield). Spectral data for 7: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.91,7.43(\mathrm{~s}, 1 \mathrm{H}$ each, OH$), 7.07\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, ArH), 7.05 ($\mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $6.99\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right.$), $6.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.97(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArH}), 6.83$ $(\mathrm{s}, 2 \mathrm{H}, \mathrm{ArH}), 6.75\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 5.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ir}-\mathrm{CH}), 4.25\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CH_{2}), $3.84\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.75\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.36\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.25$ $\left(d^{2}{ }^{2} J_{H-H}=13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$), $1.57\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{Cp}{ }^{*}\right), 1.29,1.24,1.23,1.19\left(\mathrm{~s}, 9 \mathrm{H}\right.$ each, $\left.{ }^{t} \mathrm{Bu}\right),-0.11\left(\mathrm{~d}^{2}{ }^{2} J_{\mathrm{p}-\mathrm{H}}=10.2 \mathrm{~Hz}\right.$, $\left.9 \mathrm{H}, \mathrm{PMe}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 172.9,150.6,148.0,147.0,143.9,141.8,141.3,139.45,139.40,136.0$, $135.5,131.5,129.6,129.0,128.4,128.0,127.5,127.0,125.4,125.3,124.8,124.3,121.5(\mathrm{~s}, \mathrm{Ar}), 90.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=\right.$ $3.4 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{Me}_{5}$), $39.0,34.1,33.9,33.7,32.9,32.3,32.1,31.9,31.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ and ${ }^{t} \mathrm{Bu} ; 9$ distinct signals for 11 different carbons), $27.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{p}-\mathrm{C}}=4.9 \mathrm{~Hz}, \mathrm{Ir}-\mathrm{CH}\right.$), $13.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=35.2 \mathrm{~Hz}, \mathrm{PMe}_{3}\right), 9.1\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{Me}_{5}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta-34.5$ (s). Anal. Calcd for $\mathrm{C}_{57.5} \mathrm{H}_{79} \mathrm{O}_{4} \operatorname{IrPCl}\left(7 \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \mathrm{C}, 63.19 ; \mathrm{H}, 7.29$. Found $\mathrm{C}, 63.16 ; \mathrm{H}, 7.22$.

Figure S6. ${ }^{1} \mathrm{H}$ NMR of $\left[C p^{*} \operatorname{Ir}\left\{p-{ }^{t}\right.\right.$ Bucalix[4]arene $\left.\left.(2-)-\mathrm{K}^{2}-\mathrm{O}, \mathrm{C}\right\}\left(\mathrm{PMe}_{3}\right)\right](7)$ recorded in CDCl_{3}.

Figure S7. ${ }^{13} \mathrm{C}$ NMR of $\left[\mathrm{Cp}{ }^{*}\right.$ Ir $\left\{p-{ }^{\text {t }}\right.$ Bucalix[4]arene(2-)- $\left.\left.\mathrm{K}^{2}-\mathrm{O}, \mathrm{C}\right\}\left(\mathrm{PMe}_{3}\right)\right](7)$ recorded in CDCl_{3}.

7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR charts for the new compounds

Figure $\mathrm{SB} .{ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum of 1a recorded in CDCl_{3}.

Figure $\mathrm{S} 9 .{ }^{13} \mathrm{C}$ NMR spectrum of 1a recorded in CDCl_{3}.

Figure $\mathrm{S} 10 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 b}$ recorded in CDCl_{3}.

Figure $\mathrm{S} 11 .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 b}$ recorded in CDCl_{3}.

Figure $\mathrm{S} 12 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure $\mathrm{S} 13 .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S14. ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{3}$ recorded in CDCl_{3}.

Figure $\mathrm{S} 15 .{ }^{1} \mathrm{H}$ spectrum of $\mathbf{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ recorded in CDCl_{3}.

Figure $\mathrm{S} 16 .{ }^{13} \mathrm{C}$ NMR spectrum of 4 recorded in CDCl_{3}.

Figure $\mathrm{S} 17 .{ }^{1} \mathrm{H}$ NMR spectrum of 5 recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure $\mathrm{S} 18 .{ }^{13} \mathrm{C}$ NMR spectrum of 5 recorded in CDCl_{3}.

Figure S19. Preliminary ${ }^{1} \mathrm{H}$ NMR spectrum of 6 recorded in CDCl_{3}.

8. References

(1) Hanna, T. A.; Liu, L.; Angeles-Boza, A. M.; Kou, X.; Gutsche, C. D.; Ejsmont, K.; Watson, W. H.; Zakharov, L. N.; Incarvito, C. D.; Rheingold, A. L. J. Am. Chem. Soc. 2003, 125, 6228-6238.
(2) Frasco, D. A.; Lilly, C. P.; Boyle, P. D.; Ison, E. A. ACS Catal. 2013, 3, 2421-2429
(3) Boyer, P. M.; Roy, C. P.; Bielski, J. M.; Merola, J. S. Inorg. Chim. Acta 1996, 245, 7-15.
(4) Sluis, P. v. d.; Spek, A. L. Acta Crystallogr., Sect. A, 1990, 46, 194-201.
(5) Spek, A. L. Acta Crystallogr. 2009, D65, 148-155.

