Synthesis and Evaluation of Fluoroalkyl Phosphonyl Analogs of 2-CMethylerythritol Phosphate as Substrates and Inhibitors of IspD from Human Pathogens

David Bartee, Michael J. Wheadon, and Caren L. Freel Meyers*
Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
* Please address correspondence to C. Freel Meyers (Tel 410-502-4807; FAX: 410-955-3023; email: cmeyers@jhmi.edu)

Table of Contents

Figure S1: Regioselectivity of the acid-catalyzed ring-opening of epoxide 14............... S2
Figure S2: Full ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOE spectrum for 21a.. S3
Figure S3: Full ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOE spectrum for 21b.. S5 - S8
Figure S11 - S17: LC-MS Analysis of Analog Turnover by IspD.............................. S9 - S15
Figure S18: Michaelis-Menten Analysis of Analogs as Substrates for E. coli IspD......... S16
Figure S19: Inhibition of IspD orthologs by Analogs.. S17
Figure S20: IC ${ }_{50}$ Curves for 5b against E. coli IspD and P. falciparum IspD................. S18
Figure S21 - S26: LC-HRMS demonstrating purity of 1-5a,b................................... S19 - S24
Figure S27: Michaelis-Menten Analysis of Analogs as Substrates for P. falciparum IspD S25
Figure S28: Overlay of ${ }^{1} \mathrm{H}$ spectra for diastereomers of phosphonolactone 20a............. S26
Figure S29: Overlay of ${ }^{1} \mathrm{H}$ spectra for diastereomers of phosphonolactone 20b............ S27
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds 7 - 21a,b .. S28-S S79
a)

b)

Figure S1. Regioselectivity of the acid-catalyzed ring-opening of epoxide 14. Epoxide 14 was treated with $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution (5 M in $\mathrm{H}_{2} \mathrm{O}, \sim 98 \%{ }^{18} \mathrm{O}$ atom). a) The total ${ }^{18} \mathrm{O}$ incorporation was determined by LC-MS/MS to be 34%. The diminished incorporation is likely due to ${ }^{16} \mathrm{O} /{ }^{18} \mathrm{O}$ exchange between the $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ and the $\mathrm{H}_{2} \mathrm{~S}^{16} \mathrm{O}_{4}$. b) The regioselectivity of ${ }^{18} \mathrm{O}$ was determined by ${ }^{13} \mathrm{C}$ NMR. The ${ }^{18} \mathrm{O}$ induces an upfield $\Delta \delta$ of 30 ppb revealing $33 \%{ }^{18} \mathrm{O}$ incorporation at C_{2} and no discernible incorporation at either C_{1} or C_{3}. The regioselectivity was determined to be 97% (94% ee) by taking the ratio of the ${ }^{18} \mathrm{O}$ incorporation at C_{2} and the total ${ }^{18} \mathrm{O}$ incorporation into 15.

21a

Figure S2. Full spectrum of the ${ }^{\mathbf{1}} \mathbf{H}-{ }^{\mathbf{1}} \mathbf{H}$ NOE NMR experiment with 21a. The full ${ }^{1} \mathrm{H}$ NMR spectrum of 21a can be found on page S76.

Figure S3. Full spectrum of the $\mathbf{1}^{\mathbf{1}} \mathbf{H}-\mathbf{}^{\mathbf{H}} \mathbf{H}$ NOE NMR experiment with $\mathbf{2 1 b}$. The full ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 1 b}$ can be found on page S 78 .

Figure S4. HPLC analysis of MEP turnover by E. coli IspD

Figure S5. HPLC analysis of 1 turnover by E. coli IspD

Figure S6. HPLC analysis of 2 turnover by E. coli IspD

Figure S7. HPLC analysis of 3 turnover by E. coli IspD

CTP

Figure S8. HPLC analysis of 4 turnover by E. coli IspD

Figure S9. HPLC analysis of 5a turnover by E. coli IspD

Figure S10. HPLC analysis of 5b turnover by E. coli IspD

Figure S11. LC-MS analysis of MEP turnover. Chromatograms display the total ion count (TIC) for scans containing an ion with an m / z of 520 corresponding to CDPME. The mass spectrum is the scan at the center of the peak in the 30 min sample.

Figure S12. LC-MS analysis of $\mathbf{1}$ turnover. Chromatograms display the total ion count (TIC) for scans containing an ion with an m / z of 518 corresponding to the $\mathbf{C D P}-1$ product. The mass spectrum is the scan at the center of the peak in the 30 min sample.

Figure S13. LC-MS analysis of 2 turnover. Chromatograms display the total ion count (TIC) for scans containing an ion with an m / z of 516 corresponding to the CDP- 2 product. The mass spectrum is the scan at the center of the peak in the 30 min sample.

Figure S14. LC-MS analysis of $\mathbf{1}$ turnover. Chromatograms display the total ion count (TIC) for scans
containing an ion with an m / z of 534 corresponding to the CDP-3 product. The mass spectrum is the scan at the center of the peak in the 30 min sample.

Figure S15. LC-MS analysis of 4 turnover. Chromatograms display the total ion count (TIC) for scans containing an ion with an m / z of 554 corresponding to the CDP-4 product. The mass spectrum is the scan at 1.21 min (indicated by the red line) in the 30 min sample.

Figure S16. LC-MS analysis of 5a turnover. Chromatograms display the total ion count (TIC) for scans containing an ion with an m / z of 536 corresponding to the CDP-5a product. The mass spectrum is the scan at the center of the peak in the 30 min sample.

Figure S17. LC-MS analysis of 5a turnover. Chromatograms display the total ion count (TIC) for scans containing an ion with an m / z of 536 corresponding to the CDP-5b product. The mass spectrum is the scan at the center of the peak in the 30 min sample.

Figure S18. Michaelis-Menten plots for MEP and analogs 1 - 5a,b with E. coli IspD.

Figure S19. Evaluation of inhibitory activity of analogs 1 - 5a,b against a) E. coli, b) P. falciparum, and c) M. tuberculosis IspD. The white (-) MEP bars indicate control experiments were MEP was excluded from the reaction mixture in order to determine if the observed rates were being significantly influenced by analog turnover. In the P. falciparum experiments testing analogs $\mathbf{1 , 5 a}$ and $\mathbf{5 b}$, analog turnover appeared to be nonnegligible prompting the evaluation of these analogs as substrates (see below, figure S27).

Figure S20. IC50 plots for analog 5b against a) E. coli IspD and b) P. falciparum IspD.

1
Exact Mass: 213.0533

Figure S21. LC-HRMS analysis of analog 1 demonstrating $\mathbf{> 9 5 \%}$ purity.

2
Exact Mass: 211.0377

Figure S22. LC-HRMS analysis of analog 2 demonstrating $>\mathbf{9 5 \%}$ purity.

Exact Mass: 229.0283

Figure S23. LC-HRMS analysis of analog $\mathbf{3}$ demonstrating $>\mathbf{9 5 \%}$ purity.

Exact Mass: 249.0345

Figure S24. LC-HRMS analysis of analog 4 demonstrating $>95 \%$ purity.

5a
Exact Mass: 231.0439

Figure S25. LC-HRMS analysis of analog 5a demonstrating $\mathbf{> 9 5 \%}$ purity. The mass observed at 211.0379 corresponds to the fluoride elimination product, vinyl phosphonate $\mathbf{2}$. This product appears to be an artifact of the ionization process as there are no observable peaks corresponding to $\mathbf{2}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum (below).

5b
Exact Mass: 231.0439

Figure S26. LC-HRMS analysis of analog 5b demonstrating $\mathbf{> 9 5 \%}$ purity. The mass observed at 211.0379 corresponds to the fluoride elimination product, vinyl phosphonate 2. This product appears to be an artifact of the ionization process as there are no observable peaks corresponding to $\mathbf{2}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum (below).

Figure S27. Michaelis-Menten plots for MEP and analogs 1 and 5a,b with P. falciparum IspD. The relatively high K_{m} values determined by these experiments demonstrate that the non-negligible (-) MEP control rates observed in Figure S19 are very unlikely to be masking potent inhibition.

Figure S28. Overlay of ${ }^{1} \mathrm{H}$ spectra for diastereomers of phosphonolactone 20a. The top and bottom spectra are assigned to be the R - and S-configurations at the phosphonate, respectively.

Figure S29. Overlay of ${ }^{1} \mathrm{H}$ spectra for diastereomers of phosphonolactone 20b. The top and bottom spectra are assigned to be the R - and S-configurations at the phosphonate, respectively.

10a

10a

9a

9a

2

2

8b

10b

10b

3

3

14

14

Mosher's Acid Derivative of 14

15

4

16a

16a

5b

5b

19b

19b

20a- R_{P}

$20 \mathrm{a}-\boldsymbol{R}_{\mathrm{P}}$

$20 a-S_{P}$

$20 \mathrm{a}-S_{P}$

20b- R_{P}

$20 \mathrm{~b}-R_{\mathrm{P}}$

$20 b-S_{P}$

21a

21a

21b

21b

