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1. Materials and Methods 

 

InSe Crystal Growth: 

Bridgman method was used to grow bulk InSe crystals.
1 

Purity of the In and Se sources (Sigma-

Aldrich
®

) used was 99.999%, leading to single-crystalline and pristine InSe. A quartz ampule was 

utilized for the synthesis of crystals. An admixture of In and Se compounds was placed at one end 

of the ampule, and then the ampule was evacuated to about 10
-4

 Pa, after sealing the other end of 

the ampule. Homogenization of the mixture was conducted in a horizontal furnace at 600 °C for 

48 hours. The as-grown crystals were easily-exfoliable, and showed good crystal quality.  

 

SEM (Figure 1c):  

A TESCAN VEGA3
®

 scanning electron microscope (SEM) was used to obtain the micrograph of 

the sample as shown in Fig. 1c.  

 

AFM (Figure 1d): 

An Agilent 5500
®

 atomic force microscope (AFM) was used to obtain the thickness profile of the 

sample as shown in Fig. 1d.     
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Figure S1: An optical micrograph of the sample used for the magnetoconductance study. 
 

 

 

2. Device Geometry and Hall Measurement 

 

van der Pauw geometry was utilized in fabricating InSe devices for this study.
2
 Figure S2 

illustrates how the longitudinal and transverse magneto-resistances ��� and ��� were extracted. 

Since it is possible to have some mixing between ��� and ���, especially with the van der Pauw 

geometry, all the magneto-transport measurements were symmetrized for ���  and anti-

symmetrized for  ���. To remove the mixing of antisymmetric Rxy in the measured Rxx, ��� was 

symmetrized using: 
 

��� �
������ � ����	��
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and similarly, ��� was anti-symmetrized using: 

��� �
��
������
����

�
 .  

Figure S3 depicts the effect of symmetrization on magneto-resistance results. As shown in Fig.S3, 

the raw Rxx(B) data (red line) contained some anti-symmetric component due to the mixing of Rxy 

signal. After the symmetrization, Rxx(B) becomes symmetric (green line). The low magnetic field 

Rxx(B) is due to the weak antilocalization effect as discussed in the main manuscript while the 

behavior of Rxx(B) at high fields (B > ~1T) appears to be similar to the negative parabolic 

magneto-resistance caused by electron-electron interaction effect in 2D systems
3
. ���  and ��� 

values were converted to corresponding resistivity values for a two-dimensional flake measured 

in the van der Pauw geometry: ��� = Rxx π/ln(2) and ��� = Rxy . Then these ��� and ��� values 



3 

 

were used to extract the corresponding conductivity values by inverting the magneto-resistivity 

tensor using the following equations. 

��� �
���

���
� � ���

�

 

 

��� �
���

���
� � ���

�

 

 

 

 

Figure S2: Schematic of the longitudinal and transverse (Hall) magnetoresistance measurements. 
 

 

 

 

 
Figure S3: ��� vs. � at 2.2 K (when �� = 48 V) before (red line) and after (green line) 

symmetrization to remove the mixing of anti-symmetric Rxy. 
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Once the possibility of mixing is accounted for using symmetrization and anti-symmetrization, 

this geometry can be adequately used to perform a more accurate Hall measurement. 

 

The Hall voltage (��� was calculated using: 

 

�� �
����

�
 

where �� is the Hall coefficient, � is the corresponding current, � is the magnetic field and � is 

the thickness of the sample. Then the corresponding mobility (µ) and carrier density (n) values 

were extracted using the following two equations.  

� �
1

���
 

� �
��

�
 

where � is the resistivity.  

Reliability of the Hall measurement from this approach can be tested by calculating the carrier 

density using the gate capacitance, and then comparing that with the carrier density extracted 

from the Hall measurement. The gate capacitance generated by the Si3N4 layer is, 

���� ! �
"��� !"#$

%
 

where, "��� ! is the dielectric constant of Si3N4 (= 7.5), A is the cross-sectional area of the sample, 

and % is the thickness of the Si3N4 layer. This leads to ���� ! � 44.25 nF cm
-2

. Then the carrier 

density corresponding to this gate capacitance at different gate voltages can be calculated using, 

� � 	���� !�� 

This is assuming the quantum capacitance is much smaller than ���� !. The carrier density values 

extracted this way are plotted with the corresponding carrier density values from the Hall 

measurement in Figure S4. It can be seen that there is a good consistency between the Hall 

density and the estimated  carrier density using gate capacitance.  
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Figure S4: The measured carrier density extracted from the Hall effect and the calculated carrier 

density using the geometrical gate capacitance at various gate voltages at 2.2 K. 

 

  

 

3. Energy Band Diagram Calculations 

 

To get the energy band diagrams, Schrödinger and Poisson’s equations were solved self-

consistently. Poisson’s equation was solved using an equation solver 
4
 (which is freely available) 

in compliance with the boundary conditions of the system. Schrödinger equation was solved using 

a python code written by us. To maintain the self-consistency, those two resources were used in 

tandem for the calculation. Material properties of InSe, Si3N4 and Si utilized in the energy band 

diagram calculations are given in the Supplementary Table S1. As for the anisotropic properties, 

they were included after the requisite averaging. 

 

Poisson’s equation can be used to describe the electrostatics of the FET structure: 

"'�
�(�)� � 	��)� 

where, (�)� is the electrostatic potential, and " is the dielectric constant of the material. Then the 

charge density (��)�) of the structure can be decomposed into: 
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��)� � *#+,�)� 	 ��)� 	 -.�)� � -/�)�] 

where, ,�)�  and ��)�  are the hole and electron densities, respectively. -.�)�  and -/�)�  are 

ionized acceptor and donor concentrations, respectively. 

  

Material Bandgap (eV) Dielectric Constant 
Electron Effective 

Mass (me) 
Electron Affinity (eV) 

InSe 1.28 10.9 0.14 4.55 

Si3N4 5.0 7.5 0.45 1.8 

Si 1.12 11.9 1.1 4.05 
 

Supplementary Table S1: Material properties of InSe, Si3N4 and Si utilized in the energy band 

diagram calculations.  

 

Figure S5: The energy band diagram of InSe at Vg=0 V. 
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Figure S6: The conduction band edge variation in Figure S5 plotted in an expanded scale. 

 

 

 

 
Figure S7: The energy band diagram of InSe at �� = 23 V. 
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Figure S8: The energy band diagram of InSe at �� = 48 V. 
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