Supporting Information

Rational Design of Hierarchical Nanotubes through Encapsulating CoSe₂ Nanoparticles into MoSe₂/C Composite Shells with Enhanced Lithium and Sodium Storage Performance

Jingyu Gao,[†] *Yapeng Li*, [†] *Liang Shi*, [§] *Jingjing Li*[§] *and Genqiang Zhang*^{*†}

[†]Key Laboratory of Materials for Energy Conversion, Chinese Academy of Science; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 China;

[§]Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 China

*To whom the correspondence should be referred. Email:gqzhangmse@ustc.edu.cn

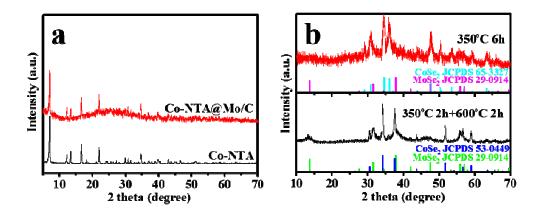


Figure S1. XRD patterns of a) Co-NTA, Co-NTA@Mo/C; b) CoSe₂@MoSe₂/C-350 porous nanowires, CoSe₂⊂MoSe₂/C HNT.

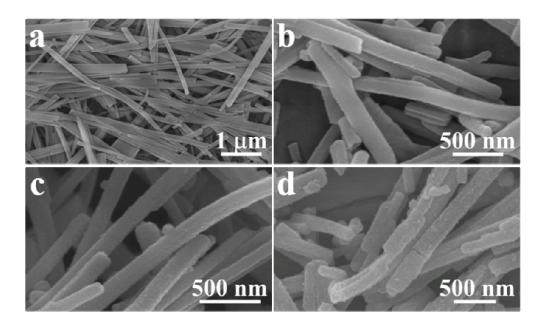


Figure S2. SEM images of a) Co-NTA, b) Co-NTA@Mo/C, c) CoSe₂@MoSe₂/C-350 porous

nanowires and d) CoSe₂⊂MoSe₂/C-600 HNT.

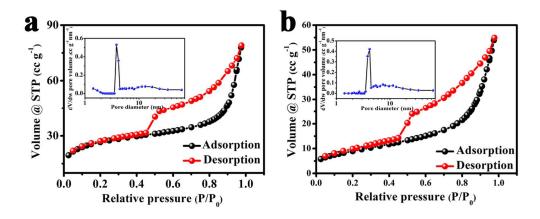


Figure S3. Nitrogen absorption/desorption isotherms and pore size distributions of (a) $CoSe_2 \subset MoSe_2/C$ HNT obtained at 600 °C; b) $CoSe_2@MoSe_2/C$ porous nanowires annealed at 350 °C in argon.

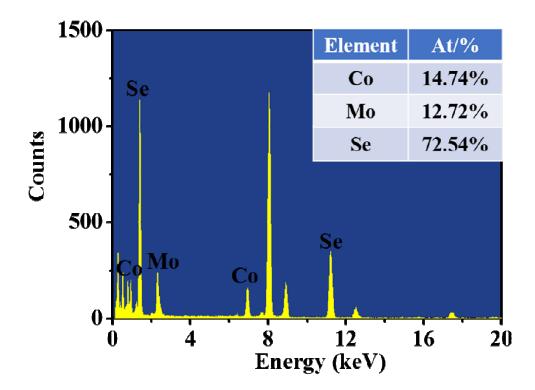


Figure S4. EDS spectrum of CoSe₂⊂MoSe₂/C HNT annealed at 350 °C for 2h and 600 °C for 2h in argon.

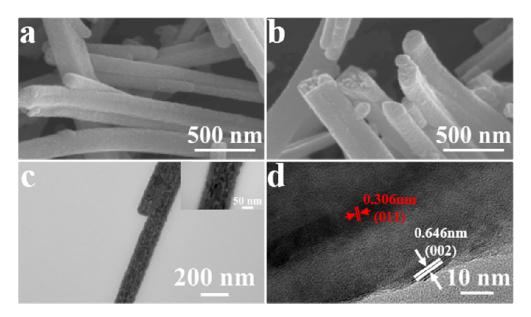


Figure S5. a, b) SEM images, c, d) HRTEM images of CoSe₂@MoSe₂/C-350 annealed at 350

°C in argon for 6h.

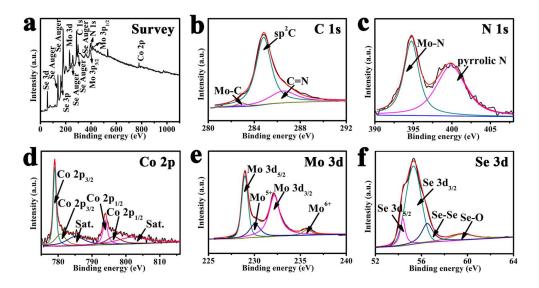
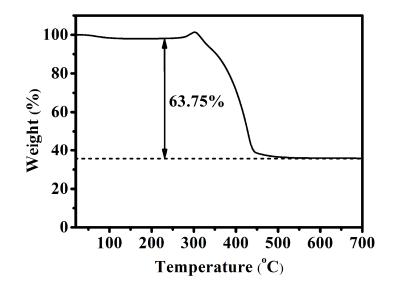



Figure S6. XPS spectra of CoSe₂@MoSe₂/C-350 porous nanowires: a) Survey spectrum, b) C

1s, c) N 1s, d) Co 2p, e) Mo 3d, and f) Se 3d, heated at 350°C for 6h in argon.

Figure S7. Thermogravimetric analysis of $CoSe_2 \subset MoSe_2/C$ HNT in air at the heating rate of 10 °C min⁻¹.

As shown in Figure S7, the total weight loss of the $CoSe_2 \subset MoSe_2/C$ HNT is about 63.75% according to the thermogravimetric analysis (TGA) result, which can be attributed to the combustion of carbon and sublimation of SeO₂ deriving from the conversion process from CoSe₂ and MoSe₂ to Co₃O₄ and MoO₃, respectively. The content of the carbon species can then be calculated to be about 21.54 % in the hybrid nanostructure.

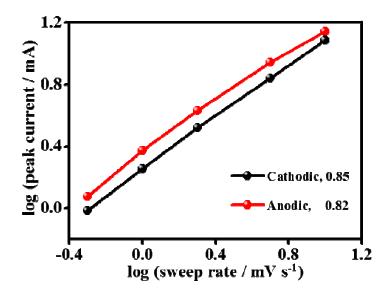


Figure S8. Plots of log (scan rate) versus log (peak current), calculated from CV curves of CoSe₂⊂MoSe₂/C HNT.