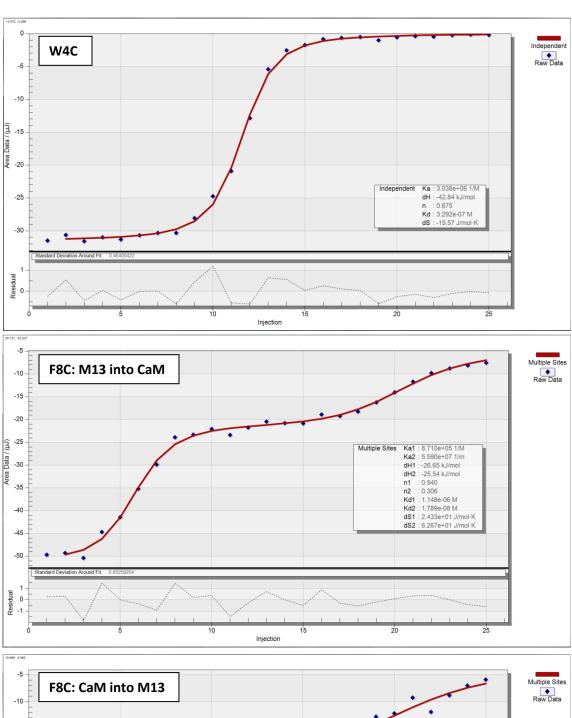
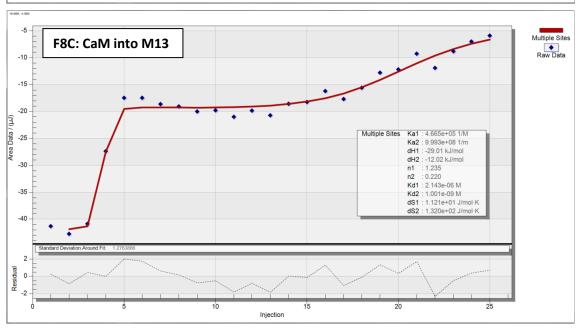
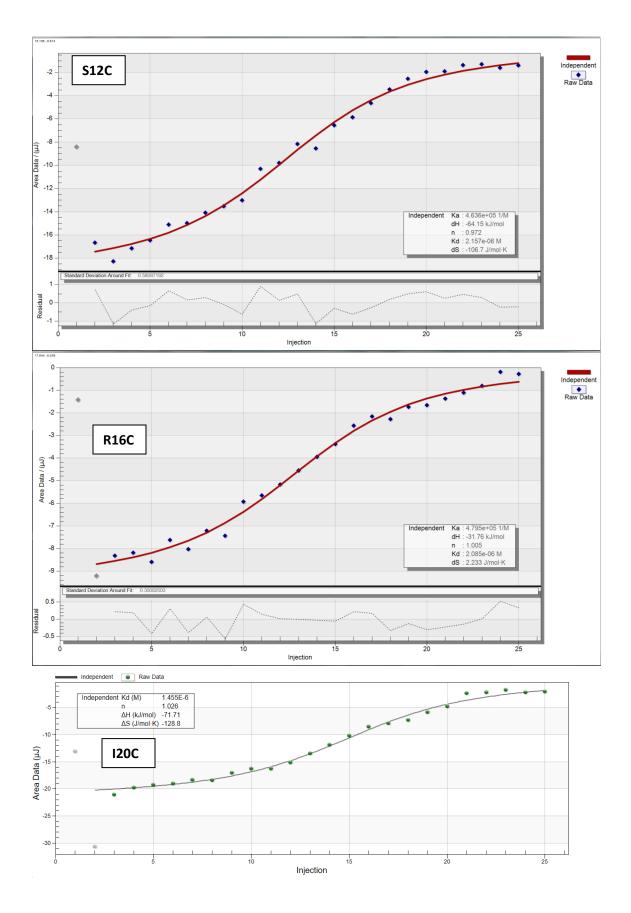
Cyanylated cysteine reports site-specific changes at protein-protein interfaces without perturbation

Shannon R. Dalton¹, Alice R. Vienneau¹, Shana R. Burstein¹, Rosalind J. Xu¹, Sara Linse², and Casey H. Londergan¹,*

¹Department of Chemistry, Haverford College, 370 Lancaster Ave, Haverford, PA 19041-1392 USA and ²Department of Chemistry and Biochemistry, Lund University, Kemicentrum, Box 118, 221 00 LUND, Sweden


Supporting Information


1. Isothermal Titration Calorimetry


The following data were acquired for seven M13 peptides (see table 1 in the main manuscript for sequences, and "WT" is the unmodified M13 sequence) titrated with recombinant wild-type calmodulin. The data points shown below are peak areas determined following baseline correction of the raw titration data. The fits are all to either a single "independent" sigmoidal model for binding, or in some cases, to a "two-sites" double-sigmoidal model for binding for titrations where a second process was suggested by the data.

The signal:noise ratio for S23C* was not high enough to distinguish clearly between a one- and a two-sites fit. A two-sites fit is clearly implicated for F8C*, and this is discussed in the main manuscript; this led to our also performing the "backwards" titration experiment with an independent sample of F8C* which led to very similar fitting parameters.

Figure S1 follows: integrated areas for ITC titrations of calmodulin into peptide solutions, with fits to independent (single-sigmoid) binding models. Full parameters calculated from these fits are then presented in Table S1.

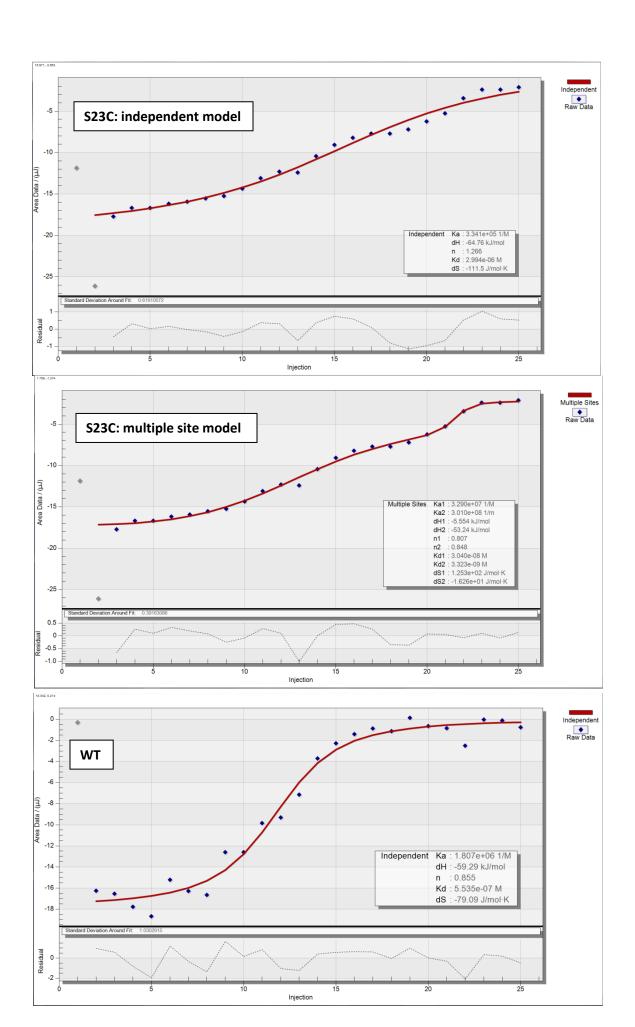


Table S1: binding parameters calculated from fits to the ITC titration curves.

variant	n	K_D	∆G	ΔH	ΔS (J/mol	$\Delta\Delta G$	$\Delta\Delta H$	$\Delta\Delta S$
			(kJ/mol)	(kJ/mol)	K)	(kJ/mol)	(kJ/mol)	(J/mol K)
W4C*	0.9	3E-07	-37	-43	-20.	-1	16	59
F8C*	0.9	1E-06	-34	-27	24	2	33	100
S12C*	0.9	2E-06	-32	-65	-110	3	-5	-28
R16C*	1.0	2E-06	-32	-32	2.2	3	28	81
I20C*	1.1	1E-06	-33	-72	-130	2	-13	-51
S23C*	1.0	3E-06	-32	-65	-110	4	-5	-32
wt	0.9	5E-07	-36	-60.	-79			

2. Infrared spectroscopy

Table S2: the calculated lineshape parameters for each of the six C*-containing variants of M13, in buffer solution and with calmodulin. The standard deviation and FWHM were calculated as described in the experimental methods section.

Peptide	Buffer mode / cm ⁻	CaM mode / cm ⁻¹	Buffer mean / cm ⁻¹	CaM mean / cm ⁻¹	Buffer FWHM / cm ⁻¹	CaM FWHM / cm ⁻¹
W4C*	2164.6	2156.0	2163.2	2157.2	11.1	14.3
F8C*	2163.5	2157.7	2163.0	2155.6	12.2	13.3
S12C*	2163.5	2156.7	2162.8	2157.7	15.3	14.5
R16C*	2163.1	2161.2	2161.1	2159.8	14.8	19.2
I20C*	2163.5	2160.6	2161.6	2160.8	17.4	15.9
S23C*	2164.4	2163.5	2162.6	2161.6	14.6	15.3

3. Supplementary data from molecular dynamics

Angular distributions for orientation of probe side chains in MD simulations:

Average Angle: CA_CB_SD_CE_&_MSCN, Chain B

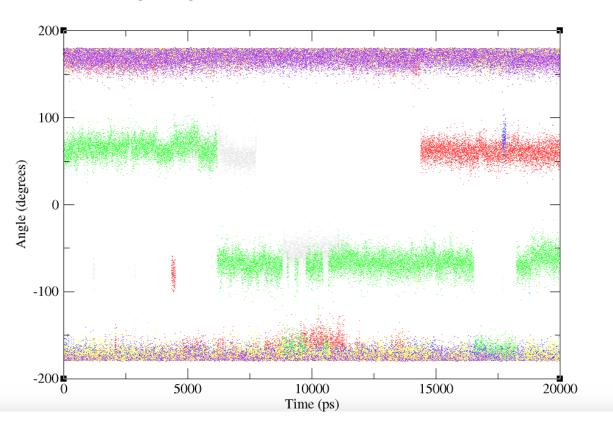


Figure S2. Dihedral angles (measured through $C\alpha$ -C β -S-C for the cyanylated cysteine residue) throughout a 20 ns MD trajectory for labels at the six selected sites along the M13 peptide. (colors: yellow: W4C*; violet: F8C*; grey: S12C*; red: R16C*; green: I20C*; blue: S23C*) While the majority prefer a trans (180 degrees) configuration, a few sites in the middle region of M13 (S12C*, R16C*, I20C*) tend towards substantial sampling of gauche (60 or -60 degrees) configurations due to local steric restrictions. The dihedral angles, however, do not seem to correlate with either mean frequencies or linewidths. Fast (sub-ns) fluctuations of the SCN group orientation were in general *not* observed.

Distributions of solvent accessible surface area for each probe site:

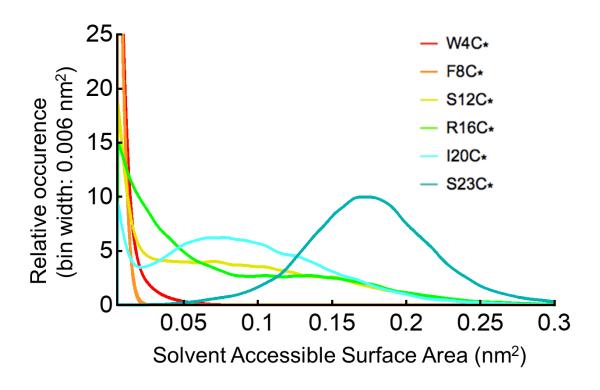


Figure S3. Histogram distributions for solvent accessible surface area for the SCN nitrogen atom calculated from the 20 ns MD trajectories, represented as lines.