Effects of regular networks composed of rigid and flexible segments on the shape memory performance of epoxies

Xiaocun Tan^{\dagger} , Qi Zou † , Yizhou Huang † , Mengyu Ouyang † , Yazhou Tian † , Jue Cheng † .*, Junying Zhang † .*

†Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of

Chemical Technology, Beijing 100029, People's Republic of China

*Corresponding author. Tel.: +86 10 64425439; fax: +86 10 64425439

E-mail address: chengjue@mail.buct.edu.cn (J. Cheng), zhangjy@mail.buct.edu.cn (J.Zhang)

The supporting information has following contents,

The detailed formulations (mass ratio) for the curing reaction were shown in Table S1.

Table S1. Formulations (mass ratio) of DTAGEs/DDM and M-AGE/DDM samples

Sample	EDT-AGE (g)	HDT-AGE (g)	DDT-AGE (g)	DDM (g)
EDT-AGE/DDM	100	-	-	30.4
HDT-AGE/DDM	-	100	-	25.7
DDT-AGE/DDM	-	-	100	22.1
M-AGE /DDM	33.3	33.4	33.3	26.1

The DMA spectra of DTAGE/DDM and M-AGE/DDM samples were shown in Figure S1.

Figure S1. DMA spectra of DTAGE/DDM and M-AGE/DDM samples

The 3D strain-stress-temperature diagrams for DTAGEs/DDM and M-AGE/DDM networks were shown in Figure S2.

Figure S2. 3D strain-stress-temperature diagrams for DTAGEs/DDM and M-AGE/DDM networks