Supporting Information

Identification of active sites over Fe₂O₃-based architecture:

The promotion effect of H₂SO₄ erosion synthetic protocol

Jie Zhang,^{‡a} Zhiwei Huang,^{*‡a} Yueyao Du,^aFrancisco Sánchez-Ochoa,^b Xiaomin Wu^a and Guohua Jing^{*a}

^a Department of Environmental Science & Engineering, Huaqiao University, Xiamen 361021, P. R. China.

^b Instituto de Física, Universidad Nacional Autónoma de México - Apartado Postal 20-364, Cd. de México C. P. 01000, México.

Corresponding Author

* zwhuang1988@163.com; zhoujing@hqu.edu.cn

Catalytic performance evaluation

The performance of catalysts for the NH₃-SCR of NO was carried out in a fixed bed glass reactor with inner diameter of 6 mm under steady state reaction conditions. The composition of gas mixture was: 600 ppm NO, 600 ppm NH₃, 3 vol% O₂, 300 ppm SO₂ (when used), 10 vol% H₂O (when used) and N₂ as the balance. The flow rate of the feeding gases was 600 mL min⁻¹. The catalysts (0.5 g) were pressed into blocks, crushed and sieved with 40–60 meshes before used. The concentrations of NO were continually monitored by a testo 340 flue gas analyzer. N₂ selectivity and outlet N₂O concentration were measured by Thermo Scientific Antaris IGS analyzer. To calculate the NO conversion ratio, we use the next formula:

NO Conversion (%) = $\frac{[NOx]in - [NOx]out}{[NOx]in} \times 100 \%$

Additional Figures and Data

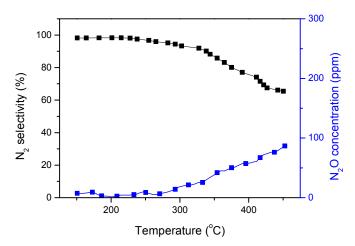


Figure S1. N_2 selectivity and outlet N_2O concentration versus temperature data over parent Fe_2O_3 . Reactant feed contains 600 ppm of NO, 600 ppm of NH₃, 3 vol% O₂, balanced with N₂.

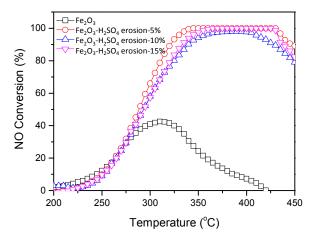


Figure S2. NO conversion versus temperature data over parent Fe_2O_3 and Fe_2O_3 - H_2SO_4 erosion samples. Reactant feed contains 600 ppm of NO, 600 ppm of NH₃, 3 vol% O_2 , balanced with N_2 .

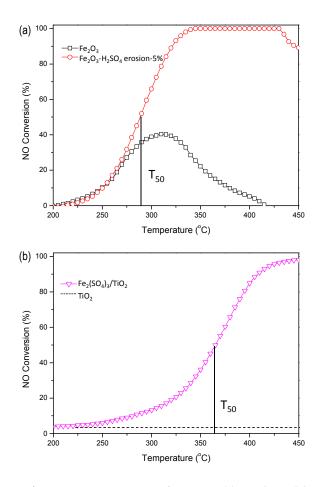


Figure S3. NO conversion versus temperature data over (a) Fe_2O_3 -H₂SO₄ erosion-5%, Fe_2O_3 samples and (b) $Fe_2(SO_4)_3/TiO_2$, TiO₂ samples. Reactant feed contains 600 ppm of NO, 600 ppm of NH₃, 3 vol% O₂, balanced with N₂. T₅₀ (temperature of 50% conversion) of Fe_2O_3 -H₂SO₄erosion-5% sample is much lower than that of $Fe_2(SO_4)_3/TiO_2$, despite that these two catalyst has identical $Fe_2(SO_4)_3$ loading amount.

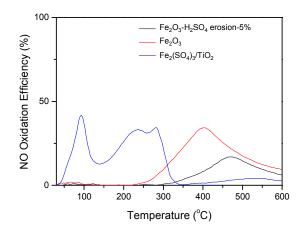


Figure S4. The NO probe molecule temperature-programmed oxidation (TPO) of as-prepared Fe_2O_3 -H₂SO₄ erosion sample, Fe_2O_3 and $Fe_2(SO_4)_3/TiO_2$. Reactant feed contains 600 ppm of NO, 3 vol% of O₂, balanced with N₂.

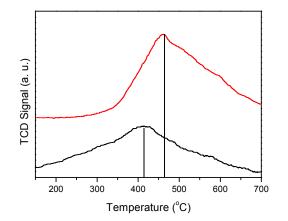


Figure S5. The NH₃ temperature-programmed desorption (TPD) of Fe_2O_3 (black) and $Fe_2O_3-H_2SO_4$ erosion-5% sample (red).