Supporting Information for

Pharmacological and Electrophysiological Characterization of Novel NMDA Receptor Antagonists

Rosana Leiva,' Matthew B. Phillips," Andreea L. Turcu, Esther Gratacòs-Batlle, Lara León-

García, Francesc X. Sureda, David Soto, Jon W. Johnson, Santiago Vázquez

INDEX
General methods S2
Synthesis and characterization data of hemiester $\mathbf{1 3}$ S2
Synthesis and characterization data of ester $\mathbf{1 4}$ S3
Synthesis and characterization data of acid $\mathbf{1 5}$ S4
Synthesis and characterization data of amide 16 S5

[^0]
Chemical Synthesis. General Methods.

Melting points were determined in open capillary tubes with a MFB 595010M Gallenkamp. 400 $\mathrm{MHz}{ }^{1} \mathrm{H} / 100.6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra, and $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian Mercury 400, and Varian Inova 500 spectrometers, respectively. The chemical shifts are reported in ppm (δ scale) relative to internal tetramethylsilane, and coupling constants are reported in Hertz (Hz). Assignments given for the NMR spectra of the new compounds have been carried out on the basis of DEPT, COSY ${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ (standard procedures), and COSY ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}(\mathrm{gHSQC}$ and gHMBC sequences) experiments. IR spectra were run on Perkin-Elmer Spectrum RX I spectrophotometer. Absorption values are expressed as wave-numbers $\left(\mathrm{cm}^{-1}\right)$; only significant absorption bands are given. Column chromatography was performed either on silica gel $60 \AA$ (35-70 mesh) or on aluminium oxide, neutral, $60 \AA$ (50-200 $\mu \mathrm{m}$, Brockmann I). Thin-layer chromatography was performed with aluminum-backed sheets with silica gel $60 \mathrm{~F}_{254}$ (Merck, ref 1.05554), and spots were visualized with UV light, iodine or 1% aqueous solution of KMnO_{4}. The analytical samples of all of the new compounds which were subjected to pharmacological evaluation possessed purity $\geq 95 \%$ as evidenced by their elemental analyses.

6-(Methoxycarbonyl)-3,4,8,9-tetramethyltetracyclo[4.4.0.0 $0^{3,9} .0^{4,8}$ decane-1-carboxylic acid (13). A suspension of anhydride $\mathbf{1 2}^{1}(1.575 \mathrm{~g}, 6.05 \mathrm{mmol})$ in methanol $(50 \mathrm{~mL})$ was heated to reflux for 24 h . The reaction mixture was allowed to cool down to room temperature and the methanol was removed under reduced pressure to afford hemiester $\mathbf{1 3}$ as a yellowish solid (1.714 g,

[^1]quantitative yield). The analytical sample was obtained by crystallization from hot ethyl acetate, mp 168-169 ${ }^{\circ} \mathrm{C}$. IR (ATR) v: 708, 721, 729, 767, 806, 871, 922, 990, 1036, 1062, 1103, 1116, $1173,1196,1217,1269,1289,1369,1416,1431,1449,1700,1736,2583,2718,2925,2950 \mathrm{~cm}^{-}$ ${ }^{1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.965\left[\mathrm{~s}, 6 \mathrm{H}, 3(9)-\mathrm{CH}_{3}\right.$ or $\left.4(8)-\mathrm{CH}_{3}\right], 0.969\left[\mathrm{~s}, 6 \mathrm{H}, 4(8)-\mathrm{CH}_{3}\right.$ or $3(9)-\mathrm{CH}_{3}$], 1.12-1.18 [c. s., $4 \mathrm{H}, 2(10)-\mathrm{H}_{\mathrm{a}}$ and 5(7)- H_{a}], 2.09-2.17 [c. s., $4 \mathrm{H}, 2(10)-\mathrm{H}_{\mathrm{b}}$ and 5(7)$\left.\mathrm{H}_{\mathrm{b}}\right], 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 15.31\left[\mathrm{CH}_{3}, \mathrm{C} 3(9)-\mathrm{CH}_{3}\right.$ or $\mathrm{C} 4(8)-$ $\left.\mathrm{CH}_{3}\right], 15.32\left[\mathrm{CH}_{3}, \mathrm{C} 4(8)-\mathrm{CH}_{3}\right.$ or $\left.\mathrm{C} 3(9)-\mathrm{CH}_{3}\right], 42.0(\mathrm{C}, \mathrm{C} 6), 42.1\left[\mathrm{CH}_{2}, \mathrm{C} 5(7)\right.$ and $\left.\mathrm{C} 2(10)\right], 45.2$ [C, $\mathrm{C} 3(9)$ or $\mathrm{C} 4(8)], 45.3[\mathrm{C}, \mathrm{C} 4(8)$ or $\mathrm{C} 3(9)], 51.5\left(\mathrm{CH}_{3}, \mathrm{OCH}_{3}\right), 52.21(\mathrm{C}, \mathrm{C} 1$ or C 6$), 52.27(\mathrm{C}$, C6 or $\mathrm{C} 1, \mathrm{C}), 175.3\left(\mathrm{C}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 181.4\left(\mathrm{C}, \mathrm{CO}_{2} \mathrm{H}\right)$. HRMS-ESI $+\mathrm{m} / \mathrm{z}[M+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 293.1747$, found: 293.1759 .

Methyl 3,4,8,9-tetramethyltetracyclo[4.4.0.0 $0^{3,9} .0^{4,8}$]decane-1-carboxylate (14). In a three-neck round-bottom flask equipped with a thermometer, magnetic stirring and argon atmosphere, a solution of hemiester $\mathbf{1 3}(1.134 \mathrm{~g}, 4.1 \mathrm{mmol})$ and 2,2'-dithiobis(pyridine)-1, ${ }^{\prime}$ '-dioxide (1.325 g , 5.25 mmol) in anhydrous THF (40 mL) was prepared. The round-bottom flask was wrapped with aluminium foil and the reaction was cooled to $0{ }^{\circ} \mathrm{C}$ with an ice bath. n-tributylphosphine (1.4 $\mathrm{mL}, 5.74 \mathrm{mmol}$) was added and the reaction was stirred at room temperature for 2 h . Then, t butylthiol ($2.3 \mathrm{~mL}, 20.5 \mathrm{mmol}$) was added, the aluminium foil removed and the reaction was irradiated with two 100 W bulbs for $2 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(35 \mathrm{~mL})$ was added to the resulting solution and the organic layer was washed with a saturated NaHCO_{3} solution ($3 \times 20 \mathrm{~mL}$), aqueous 5 N HCl solution ($3 \times 20 \mathrm{~mL}$), water $(2 \times 20 \mathrm{~mL})$ and brine $(2 \times 20 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to obtain a mixture of ester and n-tributylphosphine (1.012 g). Column chromatography (Hexane/Ethyl acetate mixture) gave the ester 14 as a white solid ($507 \mathrm{mg}, 50 \%$ yield), $\mathrm{mp} 145-146^{\circ} \mathrm{C}$. IR (ATR) v: 758, 782, 796,

810, 1033, 1099, 1199, 1260, 1305, 1426, 1446, 1720, 2867, 2924, $2947 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.73\left[\mathrm{dd}, J=11.6 \mathrm{~Hz}, J^{\prime}=2.4 \mathrm{~Hz}, 2 \mathrm{H}, 5(7)-\mathrm{H}_{\mathrm{a}}\right], 0.95\left[\mathrm{~s}, 12 \mathrm{H}, 3(9)-\mathrm{CH}_{3}\right.$ and $\left.4(8)-\mathrm{CH}_{3}\right], 1.00\left[\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}, 2(10)-\mathrm{H}_{\mathrm{a}}\right], 1.79\left(\mathrm{dd}, 11.6 \mathrm{~Hz}, J^{\prime}=1.6 \mathrm{~Hz}, 2 \mathrm{H}, 5(7)-\mathrm{H}_{\mathrm{b}}\right), 1.90$ $\left[\mathrm{d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}, 2(10)-\mathrm{H}_{\mathrm{b}}\right], 2.66(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 15.5\left[\mathrm{CH}_{3}, \mathrm{C} 3(9)-\mathrm{CH}_{3}\right.$ and $\left.\mathrm{C} 4(8)-\mathrm{CH}_{3}\right], 36.6(\mathrm{CH}, \mathrm{C} 6), 38.1\left[\mathrm{CH}_{2}, \mathrm{C} 5(7)\right], 41.6\left[\mathrm{CH}_{2}\right.$, $\mathrm{C} 2(10)], 44.9$ [C, $\mathrm{C} 3(9)$ or $\mathrm{C} 4(8)], 45.5[\mathrm{C}, \mathrm{C} 4(8)$ or $\mathrm{C} 3(9)], 48.2(\mathrm{C}, \mathrm{C} 1), 51.6\left(\mathrm{CH}_{3}, \mathrm{OCH}_{3}\right)$, $177.7(\mathrm{C}, \mathrm{CO})$. HRMS-ESI $+\mathrm{m} / \mathrm{z}[M+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}+\mathrm{H}\right]^{+}: 249.1849$, found: 249.1855.

3,4,8,9-Tetramethyltetracyclo[4.4.0.0 ${ }^{3,9} .0^{4,8}$] decane-1-carboxylic acid (15). A mixture of 14 (485 $\mathrm{mg}, 1.95 \mathrm{mmol})$ in a 40% methanol solution of $\mathrm{KOH}(10 \mathrm{~mL})$ was heated to reflux for 2 h . Water $(10 \mathrm{~mL})$ was added and the reaction was refluxed for 3 h . The reaction mixture was allowed to cool down to room temperature and the methanol was removed in vacuo. Water (20 mL) was added to the residue and the solution acidified with concentrated HCl until $\mathrm{pH}=1$. The aqueous layer was extracted with DCM (3 x 20 mL) and the combined organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give $\mathbf{1 5}$ as a white solid (462 mg, quantitative yield), mp $160{ }^{\circ} \mathrm{C}$ (sublimation). IR (ATR) v: 675, 746, 796, 880, 900, $933,955,988,1105,1155,1216,1282,1309,1370,1383,1408,1458,1479,1580,1678,2860$, 2916, $2951 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.75\left[\mathrm{dd}, J=11.2 \mathrm{~Hz}, J^{\prime}=2.6 \mathrm{~Hz}, 2 \mathrm{H}, 5(7)-\right.$ $\left.\mathrm{H}_{\mathrm{a}}\right], 0.95\left[\mathrm{~s}, 6 \mathrm{H}, 3(9)-\mathrm{CH}_{3}\right.$ or $\left.4(8)-\mathrm{CH}_{3}\right], 0.96\left[\mathrm{~s}, 6 \mathrm{H}, 4(8)-\mathrm{CH}_{3}\right.$ or $\left.3(9)-\mathrm{CH}_{3}\right], 1.06[\mathrm{~d}, J=11.2$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 2(10)-\mathrm{H}_{\mathrm{a}}\right], 1.80\left[\mathrm{dd}, J=11.2 \mathrm{~Hz}, J^{\prime}=1.6 \mathrm{~Hz}, 2 \mathrm{H}, 5(7)-\mathrm{H}_{\mathrm{b}}\right], 1.94[\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}$, 2(10)- $\left.\mathrm{H}_{\mathrm{b}}\right], 2.73(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 15.5\left[\mathrm{CH}_{3}, \mathrm{C} 3(9)-\mathrm{CH}_{3}\right.$ and $\left.\mathrm{C} 4(8)-\mathrm{CH}_{3}\right], 36.4(\mathrm{CH}, \mathrm{C} 6), 38.1\left[\mathrm{CH}_{2}, \mathrm{C} 5(7)\right], 41.7\left[\mathrm{CH}_{2}, \mathrm{C} 2(10)\right], 44.9[\mathrm{C}, \mathrm{C} 3(9)$ or $\mathrm{C} 4(8)]$, 45.7 [C, C4(8) or C3(9)], 48.2 (C, C1), $183.8(\mathrm{C}, \mathrm{CO})$. HRMS-ESI $+\mathrm{m} / \mathrm{z}[M+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}+\mathrm{H}\right]^{+}: 235.1693$, found: 235.1698.

3,4,8,9-Tetramethyltetracyclo[4.4.0.0 $0^{3,9} .0^{4,8}$] decane-1-carboxamide (16). In a round-bottom flask equipped with a condenser, magnetic stirring and a CaCl_{2} tube, a solution of $\mathbf{1 5}(175 \mathrm{mg}, 0.75$ $\mathrm{mmol})$ in $\mathrm{SOCl}_{2}(3 \mathrm{~mL}, 41.07 \mathrm{mmol})$ was heated to reflux for 2 h . Then, the excess of SOCl_{2} was removed in vacuo and the residue was dissolved in toluene to azeotropically remove the remaining $\mathrm{SOCl}_{2}(3 \times 5 \mathrm{~mL})$. The oil was dissolved in $\mathrm{DCM}(3 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$ and aq. 50% $\mathrm{NH}_{4} \mathrm{OH}$ solution (6 mL) was added dropwise. The reaction was stirred vigorously at room temperature for 24 h . The resulting suspension was extracted with DCM ($4 \times 10 \mathrm{~mL}$). The combined organics were washed with brine ($2 \times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure yielding a yellowish solid (163 mg). Column chromatography (Hexane/Ethyl acetate mixture) gave the amide 16 as a white solid (109 mg , 63% yield), mp 152-153 ${ }^{\circ} \mathrm{C}$. IR (ATR) v: 677, 708, 816, 900, 1001, 1024, 1082, 1107, 1122, $1226,1292,1330,1370,1383,1398,1451,1476,1608,1676,2860,2919,2946,3397 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.77\left[\mathrm{dd}, J=11.6 \mathrm{~Hz}, J^{\prime}=2.4 \mathrm{~Hz}, 2 \mathrm{H}, 5(7)-\mathrm{H}_{\mathrm{a}}\right], 0.91(\mathrm{~d}, \mathrm{~J}=10.8$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 2(10)-\mathrm{H}_{\mathrm{a}}\right], 0.95\left[\mathrm{~s}, 12 \mathrm{H}, 3(9)-\mathrm{CH}_{3}\right.$ and $\left.4(8)-\mathrm{CH}_{3}\right], 1.82\left[\mathrm{dd}, J=11.6 \mathrm{~Hz}, J^{\prime}=1.6 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.5(7)-\mathrm{H}_{\mathrm{b}}\right], 1.92\left[\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}, 2(10)-\mathrm{H}_{\mathrm{b}}\right], 2.57(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 15.5\left[\mathrm{CH}_{3}, \mathrm{C} 3(9)-\underline{\mathrm{CH}}_{3}\right.$ or $\left.\mathrm{C} 4(8)-\mathrm{CH}_{3}\right], 15.6\left[\mathrm{CH}_{3}, \mathrm{C} 4(8)-\mathrm{CH}_{3}\right.$ or $\left.\mathrm{C} 3(9)-\mathrm{CH}_{3}\right], 37.6(\mathrm{CH}, \mathrm{C} 6)$, $38.3\left[\mathrm{CH}_{2}, \mathrm{C} 5(7)\right], 41.6\left[\mathrm{CH}_{2}, \mathrm{C} 2(10)\right], 44.9[\mathrm{C}, \mathrm{C} 3(9)$ or $\mathrm{C} 4(8)], 45.6[\mathrm{C}, \mathrm{C} 3(9)$ or $\mathrm{C} 4(8)], 49.1$ (C, C1), $180.1(\mathrm{C}, \mathrm{CO})$. HRMS-ESI $+\mathrm{m} / \mathrm{z}[M+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}+\mathrm{H}\right]^{+}: 234.1852$, found: 234.1849.

[^0]: ${ }^{11}$ These authors contributed equally to this work.

[^1]: ${ }^{1}$ Avila, W. B., Silva, R. A. (1970) 3,4,8,9-Tetramethyltetracyclo[4.4.0.0 $0^{3,9} .0^{4,8}$]decane-1,6dioic anhydride. J. Chem. Soc. D, 94-95.

