Development of a PSA Cycle for Producing High Purity CO₂ from Dilute Feed Streams. Part I: Feasibility Study

Hanife Erden, Armin D. Ebner and James A. Ritter

Department of Chemical Engineering

Swearingen Engineering Center

University of South Carolina

Columbia, SC 29208

Supplemental Information

March 2018

^{*} Address all correspondence to <u>ritter@cec.sc.edu</u>

Condition	Step I, F	Step II, Idle	Step III, HR	Step IV, EqD	Step V, CoD
$t = 0^b$	$y_i = y_{i,LPP,f}$	$y_i = y_{i,F,f}$	$y_i = y_{i,Idle,f}$	$y_i = y_{i,HR,f}$	$y_i = y_{i,E,f}$
	$\mathbf{v} = \mathbf{v}_{\text{LPP,f}}$	$\mathbf{v} = \mathbf{v}_{F,f}$	$\mathbf{v} = \mathbf{v}_{\text{Idle,f}}$	$v = v_{HR,f}$	$\mathbf{v} = \mathbf{v}_{\mathrm{E,f}}$
	$q_i = q_{i,LPP,f}$	$q_i \ = q_{i,F,f}$	$q_i = q_{i,Idle,f}$	$q_i = q_{i,HR,f}$	$q_i \ = q_{i,E,f}$
	$T = T_{LPP,f}$	$T = T_{F,f}$	$T = T_{Idle,f}$	$T = T_{HR,f}$	$T = T_{E,f}$
	$P = P_{LPP,f}$	$P = P_{F,f}$	$P = P_{Idle,f}$	$P = P_{HR,f}$	$P = P_{E,f}$
$z/L = 0^{c}$	$y_i = y_{i,F}$	СМВ	$y_i = y_{i,LR,z/L=0}$	СМВ	СМВ
	$F = F_F$	$VE(P_{-}=P_{,}^{*}c_{v}=0)$	$F = - F_{LR,z/L=0}$	$VE(P_{-}=P_{,c_{v}}^{*}=0)$	$VE(P_{-}=P_{,c_{v}}^{*}=0)$
	LDFE	LDFE	LDFE	LDFE	LDFE
	$T = T_F$	EB	$T = T_F$	EB	EB
	MB	MB	MB	MB	MB
$z/L = 1^{c}$	СМВ	CMB	СМВ	СМВ	CMB
	OMB	OMB	OMB	OMB	OMB
	LDFE	LDFE	LDFE	LDFE	LDFE
	EB	EB	EB	EB	EB
	VE $(P_{+}=P_{H_{v}}c_{v}>0)$	VE $(P_{+}=P^{*}, c_{v}=0)$	VE $(P_{+}=P_{H_{v}}c_{v}>0)$	VE $(P_+ = P_{E^*}, c_v > 0)$	$VE(P_{+} = P_{L_{x}}c_{y} > 0)$

Table S1. Initial and boundary conditions for the first five steps of the 3-bed 9-step PSA cycle schedule; the cycle step sequence is F-Idle-HR-EqD-CoD-CnD-LR-EqU-LPP.

^a CMB: component mass balance, eq 2; OMB: overall mass balance, eq 1; LDFE: linear driving force equation, eq 5; EB: energy balance, eq 11; MB: momentum balance, eq 13; VE: valve equation, eq 14; F: molar flow rate; P_o: pressure outside the valve; P_L: low pressure; P_H: high pressure; P_{EqU}: pressure of equalization up step; P^{*}: any pressure, as it is irrelevant when $c_v=0$, $y_{i,F}$: concentration of species i in the feed, F_F: molar flow rate of the feed, T_F: temperature of the feed.

^b The subscript f denotes the end of the cycle step.

^c The molar flow rate F is assumed positive when gas is flowing towards z/L = 1 and negative when it is flowing oppositely.

Condition	Step VI, CnD	Step VII, LR	Step VIII, EqU	Step IX, LPP
$t = 0^{b}$	$y_i = y_{i,CoD,f}$	$y_i = y_{i,CnD,f}$	$y_i = y_{i,LR,f}$	$y_i = y_{i,E^*,f}$
	$v = v_{CoD,f}$	$\mathbf{v} = \mathbf{v}_{CnD,f}$	$\mathbf{v} = \mathbf{v}_{LR,f}$	$\mathbf{v} = \mathbf{v}_{\mathrm{E}^*,\mathrm{f}}$
	$q_i = q_{i,CoD,f}$	$q_i = q_{i,CnD,f}$	$q_i = q_{i,LR,f}$	$q_i \ = q_{i, \ E^*, f}$
	$T = T_{CoD,f}$	$T = T_{CnD,f}$	$T = T_{LR,f}$	$T = T_{E^*,f}$
	$P = P_{CoD,f}$	$P = P_{CnD,f}$	$P = P_{LR,f}$	$P = P_{E^*,f}$
$z/L = 0^{c}$	CMB	CMB	CMB	СМВ
	OMB	OMB	$VE(P_{+} = P_{,c_{v}}^{*} = 0)$	$VE(P_{+} = P_{,c_{v}}^{*} = 0)$
	LDFE	LDFE	LDFE	LDFE
	EB	EB	EB	EB
	$VE (P_{+} = P_{L_{v}} c_{v} > 0)$	$VE (P_{+}=P_{H_{,}}c_{v} > 0)$	MB	MB
$z/L = 1^{c}$	CMB	$y_i = y_{i,F,z/L=1}$	$y_i = y_{i,E,z/L=1}$	$y_i = y_{i,F,z/L=1}$
	$VE(P_{-}=P_{,v}^{*}c_{v}=0)$	$F = -LRR*F_{F,z/L=1}$	$F = -F_{E,z/L=1}$	VE (P_ = P_{F,z/L=1,} c_v > 0)
	LDFE	LDFE	LDFE	LDFE
	EB	$T = T_{F,z/L=1}$	$T = T_{E,z/L=1}$	$T = T_{F,z/L=1}$
	MB	MB	MB	MB

Table S2. Initial and boundary conditions for the last four steps of the 3-bed 9-step PSA cycle schedule; the cycle step sequence is F-Idle-HR-EqD-CoD-CnD-LR-EqU-LPP.

^a CMB: component mass balance, eq 2; OMB: overall mass balance, eq 1; LDFE: linear driving force equation, eq 5; EB: energy balance, eq 11; MB: momentum balance, eq 13; VE: valve equation, eq 14; F: molar flow rate; Po: Pressure outside the valve; PL: low pressure; PH: high pressure; P^* : any pressure, as it is irrelevant when $c_v=0$. ^b The subscript f denotes the end of the cycle step.

^c The molar flow rate F is assumed positive when gas is flowing towards z/L = 1 and negative when it is flowing oppositely.