Supporting Information For

Fluorescence of Cyclopropenium Ion Derivatives

Lee Belding, Matt Guest, Richard Le Sueur and Travis Dudding*

Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada.

Table of Contents

1.0	Quanti	um Yield Calculation	S2
2.0	¹ H and	¹³ C NMR spectra of Derivatives and Intermediates	S3
3.0	UV-vi	s absorption and fluorescence spectral data of 1, 6-16	S21
4.0	Compu	utational methods and results	S23
4	.1 DF7	Calculated Geometries and Thermochemical Data	S23
	4.1.1	Janus (1 _{in}) Excited State	S23
	4.1.2	Janus (1 _{out}) Excited State	S24
	4.1.3	Janus (1 _{in}) Ground State	S26
	4.1.4	Janus (1 _{out}) Ground State	S27
5.0	Quanti	um Theory of Atoms in Molecules (QTAIM) Calculations	S29
5	.1 QTAIM	Bond Critical Point Analysis of 1 _{in} .	S29
5	.2 QTAIM	Bond Critical Point Analysis of 1 _{out} .	S31
6.0	Natura	l Bond Order (NBO) Analysis	S33
7.0	Refere	nces	S33

1.0 Quantum Yield Calculation

The quantum yield (ϕ), was measured relative to that of anthracene in ethanol.¹ Emission spectra for the quantum yield calculation were acquired using 1cm quartz cuvettes in a fluorescence spectrophotometer with a Xenon flash lamp at ambient temperature. Sample and standards were prepared as 1x10⁻⁵ M solutions in 95% ethanol. Entrance and exit slit widths were set to 5 mm, and the excitation wavelength was 334 nm for both the standard and sample, unless otherwise specified. Quantum yields were calculated using Equation S1, according to the 2011 IUPAC technical report on standards for photoluminescence quantum yield measurements in solution.²

$$\phi_f^x = \frac{F^x f_{st} n_x^2}{F^{st} f_x n_{st}^2} \phi_f^{st} \qquad \text{[Equation S1]}$$

Where ϕ_f^x and ϕ_f^{st} are the quantum yields of the sample and the standard, respectively. F^x and F^{st} are the integrated fluorescence intensities of sample and standard spectra. f_x and f_{st} are the absorption factors of the sample and standard at the excitation wavelength (where $f = 1 - 10^{-A}$, and A = absorbance). n_x and n_{st} are the refractive indices of the sample and reference solution, respectively, which were assumed to be the same in this experiment.

Figure S1. ¹H NMR spectrum of **1** in CDCl₃.

Figure S2. ¹³C NMR spectrum of **1** in CDCl₃.

Figure S4. ¹³C NMR spectrum of 6 in CDCl₃.

Figure S6. ¹³C NMR spectrum of 7 in CDCl₃.

Figure S8. ¹³C NMR spectrum of **8** in CDCl₃.

Figure S10. ¹³C NMR spectrum of **9** in CDCl₃.

Figure S12. ¹³C NMR spectrum of **10** in CDCl₃.

Figure S14. ¹³C NMR spectrum of **11** in CDCl₃.

Figure S15. ¹H NMR spectrum of **12** in CO(CD₃)₂.

Figure S16. ¹³C NMR spectrum of **12** in CO(CD₃)₂.

Figure S17. ¹H NMR spectrum of **13** in CDCl₃.

Figure S18. ¹³C NMR spectrum of **13** in CDCl₃.

Figure S20. ¹H NMR spectrum of **15** in CDCl₃.

Figure S21. ¹H NMR spectrum of **16** in CDCl₃.

Figure S23. ¹³C NMR spectrum of **17** in CDCl₃.

Figure S24. ¹H NMR spectrum of **18** in CDCl₃.

Figure S25. ¹³C NMR spectrum of **18** in CDCl₃.

Figure S26. ¹H NMR spectrum of **19** in CDCl₃.

Figure S27. ¹³C NMR spectrum of **19** in CDCl₃.

Figure S28. ¹H NMR spectrum of **20** in CDCl₃.

Figure S30. ¹HNMR spectrum of **21** in CDCl₃.

Figure S31. ¹H NMR spectrum of **22** in CDCl₃.

Figure S32. ¹³C NMR spectrum of **22** in CDCl₃.

Figure S34. ¹³C NMR spectrum of **23** in CDCl₃.

200 190 180 170 160

150

140 130

120 110

100

90 80

70 60 50 40 30

10

ppm

20

Figure S36. ¹³C NMR spectrum of **24** in CDCl₃.

3.0 UV-vis absorption and fluorescence spectral data of 1, 6-16

			Molar	Quantum	
Compound	λ_{max}	λ_{em}	Attenuation	Yield (ø)	Stokes
			Coefficient (ɛ)		Shift
			$(M^{-1} cm^{-1})$		
1	334 nm	472 nm	4.70 x 10 ³	0.37	138 nm
6	335 nm	476 nm	9.10 x 10 ³	0.26	141 nm
7	345 nm	487 nm	1.66 x 10 ⁴	0.18	142 nm
8	318/358 nm	414/448 nm	6.24 x 10 ³	0.33	96 nm
9	333 nm	476 nm	8.60 x 10 ³	0.43	143 nm
10	333 nm	435 nm	5.99 x 10 ³	0.48	102 nm
11	320 nm	448 nm	8.80 x 10 ²	0.11	128 nm
12	325 nm	468 nm	5.00 x 10 ²	0.05	143 nm
13	323 nm	460 nm	1.80 x 10 ²	0.08	137 nm
14	322 nm	468 nm	2.70 x 10 ²	0.11	146 nm
15	322 nm	468 nm	2.00×10^2	0.09	146 nm
16	305 nm	416 nm	9.13 x 10 ³	0.13	111 nm

Table S1. Fluorescence data of cyclopropenium-substituted amino compounds in ethanol.

Figure S37. Normalized UV-vis absorption spectra of 1, 6-16 in EtOH.

Figure S38. Normalized fluorescence emission spectra of 1, 6-16 in EtOH.

4.0 Computational methods and results

- 4.1 DFT Calculated Geometries and Thermochemical Data
 - 4.1.1 Janus (1_{in}) Excited State

Figure S39. Computational model of Janus (1in) excited state.

opt=calcfc freq=noraman td=singlets M062X/6-31+g(d,p)
scrf=(smd,solvent=dichloromethane) geom=connectivity
empiricaldispersion=gd3

Zero-point correction= 0.638315 (Hartree/Particle) Thermal correction to Energy= 0.674425 Thermal correction to Enthalpy= 0.675369 Thermal correction to Gibbs Free Energy= 0.571323 Sum of electronic and zero-point Energies= -1731.501052 Sum of electronic and thermal Energies= -1731.464943 Sum of electronic and thermal Enthalpies= -1731.463999 Sum of electronic and thermal Free Energies= -1731.568044

N 0.90342300 - 0.27637900 - 0.41870300H 1.32250100 - 1.20468800 - 0.05601600N -1.91857800 2.04493700 0.04060500N -2.43357400 - 1.62956900 - 0.59123200C -0.41361900 - 0.02580400 - 0.39413000C -1.49478300 0.82391300 - 0.21625400C -1.69101900 - 0.55433100 - 0.43171300C 1.89492100 0.62358500 - 0.69778400C 3.25105500 0.26323500 - 0.34212000C 3.62838400 - 0.96569500 0.22422200C 4.98105800 - 1.20081600 0.61213500H 5.24944700 - 2.15825600 1.04778800C 5.93882800 - 0.22395500 0.42461500H 6.96653700 - 0.40697900 0.72496800C 5.59278500 1.00733200 - 0.15988100 H 6.34371500 1.77877100 -0.30373000C 4.26081400 1.27212400 -0.56094000C 3.90148900 2.49708800 -1.16657300H 4.67854700 3.24096000 -1.32120400C 2.58292500 2.75848500 -1.62451300H 2.36826900 3.67529700 -2.16438700C 1.59302200 1.83809500 -1.39958500H 0.58468800 1.98582300 -1.77493400C 2.58113300 -2.54926000 1.75394800C 2.81263600 -3.09175200 -0.60218000H 2.43463400 -1.72480000 2.45497300H 3.48971900 -3.10264700 2.02755200H 3.76553300 -2.66751600 -1.60969800N 2.64453200 -2.01704500 0.38666700 H 1.72734800 -3.22906100 1.82924100 H 1.99167800 - 3.80761800 - 0.49178600 C -0.93078200 3.06190500 0.47915100 C -1.21017100 3.50814900 1.91203500 C -0.88141400 4.23243700 -0.49799500 H -1.23093400 2.64431800 2.58262600 H -0.70436500 3.88942900 -1.52182900 C -3.35740000 2.38911700 0.04455200 C -3.97867600 2.10493600 -1.32052600 C -4.08154900 1.73589300 1.22075700 H -3.90847000 1.04783400 -1.59419900 C -1.75394000 -2.92704400 -0.82666200 C -0.92844100 -2.88561300 -2.10962500 C -0.92788300 -3.33317200 0.38910900 H -1.54446500 -2.58247200 -2.96149800 H -1.54829200 -3.38195600 1.28807500 C -3.90641700 -1.59269200 -0.48782600 C -4.38304000 -2.39097200 0.72177300 C -4.55411100 -2.04804400 -1.79236600 H -4.18848300 -1.45675300 -2.63734800 Cl -0.91419300 -0.32461200 2.95508000 H -0.06528800 4.90353200 -0.21347900

H -1.81133300 4.81059800 -0.48001700 H -2.15828100 4.05086300 1.98831100 H -0.41076300 4.18284300 2.23276500 H -3.47303100 2.68983900 -2.09488200 H -5.03656900 2.38198000 -1.31060300 H -3.68723500 2.10946800 2.16939600 H -5.15043900 1.96483600 1.17177900 H -3.95920100 0.64983000 1.22267900 H -5.46775800 -2.28625200 0.81992100 H 0.03446000 2.54952500 0.47282400 H -3.38267600 3.47137800 0.19490700 H -4.15940400 -0.54489400 -0.33111300 H -2.56070800 -3.65134900 -0.95882400 H -3.91174600 -2.02355500 1.63806800 H -4.15623700 -3.45664600 0.61257200 H -5.63753600 -1.91488500 -1.72024700 H -4.36183100 -3.10648200 -1.99426800 H -0.51970200 -3.87995800 -2.31244900 H -0.08670600 -2.18949500 -2.02212000 H -0.12757600 -2.61089900 0.58006600 H -0.47517700 -4.31461100 0.21707900

4.1.2 Janus (1out) Excited State

Figure S40. Computational model of Janus (1_{out}) excited state.

opt=calcfc freq=noraman td=singlets M062X/6-31+g(d,p)
scrf=(smd,solvent=dichloromethane) geom=connectivity
empiricaldispersion=gd3

Zero-point correction= 0.639011 (Hartree/Particle) Thermal correction to Energy= 0.675055 Thermal correction to Enthalpy= 0.675999 Thermal correction to Gibbs Free Energy= 0.572820 Sum of electronic and zero-point Energies= -1731.503664 Sum of electronic and thermal Energies= -1731.467621 Sum of electronic and thermal Enthalpies= -1731.466677 Sum of electronic and thermal Free Energies= -1731.569855

N 0.44574300 1.53662000 -0.82160100 H -0.05027600 2.44306300 -0.92451000 N 0.29758200 -2.09103600 -0.71749400 N -2.77165700 0.03060200 -0.01708200 C -0.28738400 0.44017800 -0.63354400 C -0.36316900 -0.94268700 -0.58340700 C -1.49633800 -0.16235600 -0.33524500 C 1.84753600 1.53472600 -0.64604700 C 2.47580000 0.82608400 0.41403500 C 1.81454100 0.29871600 1.57750900 C 2.47844900 -0.66863600 2.42041200 H 1.93004700 -1.13402100 3.23184300 C 3.82367500 -0.90001100 2.26079100 H 4.33980500 -1.58489600 2.92697000 C 4.54025900 -0.23695100 1.24401000 H 5.60873400 -0.40712700 1.13932800 C 3.90127000 0.61334000 0.30756100 C 4.62852900 1.24229400 -0.72561700 H 5.70167600 1.08317200 -0.77767700 C 3.98803600 2.10629900 -1.64578000 H 4.57458900 2.63937000 -2.38785400 C 2.62001600 2.24866100 -1.61335000 H 2.09466900 2.87362300 -2.33071500 C -0.30130200 -0.05482900 2.79421700 C 0.26037600 2.17450700 1.98091800 H -0.22766200 -1.10607200 2.50593500 H -1.32773000 0.28656100 2.62270100 H -0.70421900 2.35877900 1.49485700 H 1.03212900 2.74779200 1.46985600 N 0.58019600 0.75548100 1.97497200 H -0.08216800 0.04920100 3.86642200 H 0.19453000 2.51510900 3.02434200 C -0.39503600 -3.38673900 -0.56615900 C -1.48843400 -3.57778600 -1.62097200 C -0.87776200 -3.55850800 0.87201600 H -1.05140500 -3.66514400 -2.61880900 H -0.02570500 -3.52731800 1.55871400

C 1.62078900 -2.04855000 -1.39180900 C 2.66462000 -2.84226600 -0.61539300 C 1.51666600 -2.51247000 -2.84301900 H 2.68369200 -2.53880700 0.43481300 C -3.64331100 -1.13808700 0.23500800 C -3.94562900 -1.34583800 1.72071200 C -4.91297700 -1.13529200 -0.61073600 H -3.03218000 -1.28072700 2.32001800 H -4.68169500 -1.01761800 -1.67320300 C -3.23045700 1.44566100 -0.04578100 C -4.10292000 1.81663800 1.14682800 C -3.88068000 1.82176300 -1.37736800 H -3.26063600 1.49137900 -2.21706300 Cl -1.03573600 4.30430900 -1.00374400 H -1.38416200 -4.52108800 0.98792700 H -1.57786100 -2.76924500 1.16220700 H -2.18958800 -2.73885700 -1.64145900 H -2.05413200 -4.49089600 -1.41263200 H 3.65173400 -2.65368600 -1.04876900 H 2.48035700 -3.92040600 -0.67055600 H 2.48294000 -2.37086400 -3.33652300 H 1.26170100 -3.57621200 -2.90187200 H 0.76294500 -1.93587000 -3.38804500 H -4.26318300 2.89892000 1.12562300 H 0.37563300 -4.14047300 -0.74624500 H 1.91346300 -0.99537400 -1.38257500 H -2.31140700 2.03578500 0.02644100 H -3.04475700 -1.98943500 -0.08973500 H -3.61769400 1.56211300 2.09401900 H -5.08333300 1.33324300 1.10842600 H -3.95889700 2.91166000 -1.43004000 H -4.88190200 1.39847700 -1.48599300 H -4.36959900 -2.34644900 1.85582800 H -4.66789200 -0.62116400 2.10272700 H -5.60496300 -0.34455200 -0.30878700 H -5.42212200 -2.09404600 -0.4726000

4.1.3 Janus (1_{in}) Ground State

Figure S41. Computational model of Janus (1_{in}) ground state.

opt=calcfc freq=noraman M062X/6-31+g(d,p)
scrf=(solvent=dichloromethane,smd) geom=connectivity
empiricaldispersion=gd3

Zero-point correction= 0.641818 (Hartree/Particle) Thermal correction to Energy= 0.67762 Thermal correction to Enthalpy= 0.678572 Thermal correction to Gibbs Free Energy= 0.574698 Sum of electronic and zero-point Energies= -1731.627151 Sum of electronic and thermal Energies= -1731.591341 Sum of electronic and thermal Enthalpies= -1731.590396 Sum of electronic and thermal Free Energies= -1731.694271

N 0.94518900 -0.34429400 -0.50976600 H 1.25889500 -1.29980600 -0.29227600 N -1.82842600 2.05276400 0.00155400 N -2.43234400 -1.57835700-0.75756000 C -0.36552100 -0.04742800-0.47329700 C -1.41602500 0.82185700 -0.26447000 C -1.65176900 -0.53021200-0.54656600 C 1.98117500 0.58237000 -0.67887100 C 3.32831600 0.21989800 -0.31706500 C 3.72161600 -1.05393400 0.22961500 C 5.05733100 -1.33263600 0.42723800 H 5.34959100 -2.29807000 0.82676600 C 6.06004800 -0.37680700 0.14823900 H 7.10121300 -0.62918000 0.32532100 C 5.71308200 0.86236000 -0.31960900 H 6.46951900 1.61554700 -0.52206500 C 4.35192000 1.18648500 -0.57265400 C 4.02734200 2.46278000 -1.10774400 H 4.82853500 3.17888300 -1.26561700

C 2.73316400 2.76277200 -1.44629800 H 2.48350700 3.72524100 -1.88351500 C 1.71502500 1.80686100 -1.25849500 H 0.70639600 2.02255000 -1.59589200 C 2.20242800 -1.75375000 1.94363200 C 3.09549500 - 3.41554100 0.44179500 H 1.85313300 -0.72148200 2.02366000 H 2.98287900 -1.92521800 2.70084100 H 3.81357600 - 3.74982300 1.20529500 H 3.52382900 -3.58169400 -0.54932300 N 2.71442100 -2.01323300 0.58942400 H 1.35935400 -2.42182200 2.14354200 H 2.19280900 -4.02520500 0.54386300 C -0.87111200 3.02962800 0.57136400 C -1.27569100 3.43673500 1.98583100 C -0.70344100 4.23776500 -0.34619300 H -1.39498500 2.55130100 2.61735200 H -0.44770900 3.93602400 -1.36644100 C -3.26392300 2.40083700 -0.06396400

C -3.81916700 2.09667200 -1.45383100 C -4.05160000 1.76486500 1.08515800 H -3.76196200 1.03226300 -1.70184000 C -1.79561900 -2.87782900-1.07019300 C -0.95003700 -2.78380400-2.33710200 C -0.99901700 -3.40855100 0.11900900 H -1.53777700 -2.38631000-3.17032900 H -1.62862700 -3.50123200 1.00820500 C -3.89213100 -1.52030200-0.54544700 C -4.30903400 -2.37960000 0.64488700 C -4.64520800 -1.87898000-1.82377300 H -4.32444800 -1.24710900-2.65786200 Cl -1.56157900 -0.41768800 2.96514400 H 0.09732400 4.87886100 0.03612000 H -1.61898300 4.83824500 -0.38622100 H -2.20879800 4.01017600 1.98842200 H -0.49330600 4.07220100 2.41226000 H -3.25933500 2.65065100 -2.21401800

H -4.86940600 2.39719600 -1.50836600 H -3.85567200 2.28784800 2.02497800 H -5.12645200 1.81254600 0.88223800 H -3.76085700 0.72269800 1.24225400 H -5.37998200 -2.25081800 0.83050400 H 0.08101900 2.49651000 0.63749100 H -3.29445000 3.48689800 0.06092400 H -4.10951000 -0.48003100-0.30440600 H -2.62525500 -3.56257900-1.26339700 H -3.75855800 -2.08275800 1.54337600 H -4.12801000 -3.44275400 0.45215500 H -5.71749600 -1.72601200-1.66783700 H -4.49685700 -2.92709900-2.10339600 H -0.58741200 -3.77866800-2.61224200 H -0.07621600 -2.13999600-2.18757100 H -0.16840800 -2.73908200 0.36876700 H -0.58203100 -4.39141700-0.121906

4.1.4 Janus (1_{out}) Ground State

Figure S42. Computational model of Janus (1_{out}) ground state.

opt=calcfc freq=noraman M062X/6-31+g(d,p)
scrf=(solvent=dichloromethane,smd) geom=connectivity
empiricaldispersion=gd3

Zero-point correction= 0.642838 (Hartree/Particle) Thermal correction to Energy= 0.678333 Thermal correction to Enthalpy= 0.679277 Thermal correction to Gibbs Free Energy= 0.576485 Sum of electronic and zero-point Energies= -1731.624828 Sum of electronic and thermal Energies= -1731.589333 Sum of electronic and thermal Enthalpies= -1731.588389 Sum of electronic and thermal Free Energies= -1731.691181

N 0.44574300 1.53662000 -0.82160100 H -0.05027600 2.44306300 -0.92451000 N 0.29758200 -2.09103600 -0.71749400 N -2.77165700 0.03060200 -0.01708200 C-0.28738400 0.44017800 -0.63354400 C -0.36316900 -0.94268700-0.58340700 C -1.49633800-0.16235600 -0.33524500 C 1.84753600 1.53472600 -0.64604700 C 2.47580000 0.82608400 0.41403500 C 1.81454100 0.29871600 1.57750900 C 2.47844900 -0.66863600 2.42041200 H 1.93004700 -1.13402100 3.23184300 C 3.82367500 -0.90001100 2.26079100 H 4.33980500 -1.58489600 2.92697000 C 4.54025900 -0.23695100 1.24401000 H 5.60873400 -0.40712700 1.13932800 C 3.90127000 0.61334000 0.30756100 C 4.62852900 1.24229400 -0.72561700 H 5.70167600 1.08317200 -0.77767700 C 3.98803600 2.10629900 -1.64578000 H 4.57458900 2.63937000 -2.38785400 C 2.62001600 2.24866100 -1.61335000 H 2.09466900 2.87362300 -2.33071500 C -0.30130200 -0.05482900 2.79421700 C 0.26037600 2.17450700 1.98091800 H -0.22766200 -1.10607200 2.50593500 H -1.32773000 0.28656100 2.62270100 H -0.70421900 2.35877900 1.49485700 H 1.03212900 2.74779200 1.46985600 N 0.58019600 0.75548100 1.97497200 H -0.08216800 0.04920100 3.86642200 H 0.19453000 2.51510900 3.02434200 C -0.39503600 -3.38673900-0.56615900 C -1.48843400-3.57778600-1.62097200 C -0.87776200-3.55850800 0.87201600 H -1.05140500-3.66514400 -2.61880900 H -0.02570500-3.52731800 1.55871400

C 1.62078900 -2.04855000 -1.39180900 C 2.66462000 -2.84226600 -0.61539300 C 1.51666600 -2.51247000 -2.84301900 H 2.68369200 -2.53880700 0.43481300 C -3.64331100 -1.13808700 0.23500800 C -3.94562900 -1.34583800 1.72071200 C -4.91297700 -1.13529200-0.61073600 H -3.03218000 -1.28072700 2.32001800 H -4.68169500 -1.01761800-1.67320300 C -3.23045700 1.44566100 -0.04578100 C -4.10292000 1.81663800 1.14682800 C -3.88068000 1.82176300 -1.37736800 H -3.26063600 1.49137900-2.21706300 Cl -1.035736004.30430900 -1.00374400 H -1.38416200 -4.52108800 0.98792700 H -1.57786100-2.76924500 1.16220700 H -2.18958800 -2.73885700-1.64145900 H -2.05413200 -4.49089600-1.41263200 H 3.65173400 -2.65368600 -1.04876900 H 2.48035700 -3.92040600 -0.67055600 H 2.48294000 -2.37086400 -3.33652300 H 1.26170100 -3.57621200 -2.90187200 H 0.76294500 -1.93587000 -3.3880450 H-4.26318300 2.89892000 1.12562300 H 0.37563300 -4.14047300 -0.74624500 H 1.91346300 -0.99537400 -1.38257500 H -2.31140700 2.03578500 0.02644100 H -3.04475700-1.98943500 -0.08973500 H -3.61769400 1.56211300 2.09401900 H -5.08333300 1.33324300 1.10842600 H-3.95889700 2.91166000 -1.43004000 H-4.88190200 1.39847700 -1.48599300 H -4.36959900 -2.34644900 1.85582800 H -4.66789200-0.62116400 2.10272700 H -5.60496300-0.34455200-0.30878700 H -5.42212200-2.09404600-0.47260000

5.0 Quantum Theory of Atoms in Molecules (QTAIM) Calculations

Figure S43. QTAIM Analysis of 1_{in}^{GS} .

	Property function to analyse	e RHO, electr	ron density	
x: 3.32565	5146698685 у: Г	-2.88575037108679	z: -0.0025473	2798924972
Density value:				
8.08904819992784e-016	-4.54671694558742e-016	6.12619541649037e-016	Rho, Charge Density:	0.042136648082246
, Hessian:			L, Laplacian of Rho:	-0.0259952451445456
0.10465532749722	-0.101423806274017	0.0970889106376182	KEG, Lagrangian Kinetic Energy:	0.029091656745481
-0.101423806274017	0.00335043650712319	-0.0583295058619868	KEK, Hamiltonian Kinetic Energy:	0.0030964116009362
0.0970889106376182	-0.0583295058619868	-0.00402478342616081	VIR, Virial Field Function:	0.032188068346417
Eigenvalues of Hessian:				
-0.061247834264343	-0.0584694978528425	0.223698312695368		
Figenvectors of Hessian:				
-0.609581718777869	-0.215959483066949	0.762739555684165		
-0.291408940286465	-0.833759815711832	-0.468962044546563		
0.737218392101649	-0.508139814792768	0.445312217404186		

Figure S44. Bond critical point (BCP) information for N11 – H29 in 1_{in}GS.

Figure S45. QTAIM Analysis of 1_{in}^{S1} .

	Property function to analy	se: RHO, elect	tron density	
ж 3.27532	2662779877 y:	-2.73940057472378	z: 0.15656	3308769163
Density value:				
0.0723634978214055				
Gradient:				
-2.64486884813103e-016	1.2172879891581e-016	-1.54883974650891e-016	Rho, Charge Density:	0.0723634978214055
Hessian:	,		L, Laplacian of Rho:	-0.0267769140533421
0.186700340854436	-0.221772129759546	0.119153895410737	KEG, Lagrangian Kinetic Energy:	0.04445680848088
-0.221772129759546	0.0150129874183594	-0.0816102931580208	KEK, Hamiltonian Kinetic Energy:	0.017679894427538
0.119153895410737	-0.0816102931580208	-0.0946056720594277	VIR, Virial Field Function:	0.062136702908418
Eigenvalues of Hessian:				
-0.138333820023336	-0.136949410261548	0.382390886498252		
Eigenvectors of Hessian:				
0.250764304624179	0.560138953855462	0.789532529982179		
-0.146590069590516	0.828159085299657	-0.540984178080175		
-0.956884849406552	0.0199218927148946	0.289783545369395		

Figure S46. Bond critical point (BCP) information for N11 - H29 in 1_{in}^{S1} .

5.2 QTAIM Bond Critical Point Analysis of $\mathbf{1}_{out}$.

Figure S47. QTAIM analysis of 1_{out}^{GS} .

	Property function to analys	e: RHO, electr	ron density	
x: 0.46650	0617396035 y:	-5.62985191548845	z: -1.871	77575445943
Density value:				
0.0327988263257947				
Gradient:				
3.76602230354491e-017	-9.98402764186768e-017	5.51354788842607e-017	Rho, Charge Density:	0.0327988263257947
Hessian:	, di		L, Laplacian of Rho:	-0.016223501795845
-0.0145283925341065	-0.062506079009154	-0.00628703310863867	KEG, Lagrangian Kinetic Energy:	0.0189580225059016
-0.062506079009154	0.116692942943778	0.0160198477249172	KEK, Hamiltonian Kinetic Energy:	0.00273452071005669
-0.00628703310863867	0.0160198477249172	-0.0372705432262916	VIR, Virial Field Function:	0.0216925432159583
Eigenvalues of Hessian:				
-0.0395563398355356	-0.038890449290894	0.14334079630981		
Eigenvectors of Hessian:				
-0.908486026429131	-0.194806696162954	-0.369734351816386		
-0.381031570657606	0.0227024339477214	0.924283258344025		
0.171662698176415	-0.980578885466602	0.0948523454210247		

Figure S48. Bond critical point (BCP) information for Cl30 – H29 in 1_{out} ^{GS}.

Figure S49. QTAIM analysis of 1_{out} ^{S1}.

	Property function to analyse	e: RHO, electr	ron density	
к. 0.68376	7474217639 y:	5.70840447539066	z: -1.781	35296616259
Density value:				
0.0323813725967869				
Gradient:				
3.70511878175275e-016	-4.88799122669387e-016	-1.32544959665994e-016	Rho, Charge Density:	0.032381372596786
, Hessian:	,		L, Laplacian of Rho: 🗍	-0.01615788328596
0.000871699468157326	-0.0746039887008635	0.00355282344962048	KEG, Lagrangian Kinetic Energy:	0.018783771128775
-0.0746039887008635	0.101623830249461	-0.00693928118559293	KEK, Hamiltonian Kinetic Energy:	0.00262588784281483
0.00355282344962048	-0.00693928118559293	-0.0378639965737739	VIR, Virial Field Function:	0.021409658971590
Eigenvalues of Hessian:				
-0.0387954784473386	-0.0381787771757639	0.141605788766947		
Eigenvectors of Hessian:				
0.861885446211133	0.193386374608107	0.468780532579339		
0.467610667708268	0.0545744443972609	-0.882248204001662		
0.196198218786165	-0.979603664823005	0.0433926123951204		

Figure S50. Bond critical point (BCP) information for C130 - H29 in 1_{out}^{S1} .

6.0 Natural Bond Order (NBO) Analysis

Geometry	Donor NBO	Acceptor NBO	kcal mol ⁻¹
l_{in} (GS)	N ₁₁ (LP)	$C_{7}-C_{8}$ (BD*)	6.50
$1_{in}(S1)$	N ₁₁ (LP)	C_7-C_8 (BD*)	7.62
l _{out} (GS)	N ₁₁ (LP)	C_7-C_8 (BD*)	18.87
1 _{out} (S1)	N ₁₁ (LP)	C ₇ -C ₈ (BD*)	38.90

Table S2. NBO analysis of the N_{11} lone-pair to the naphthalene ring (C₈).

7.0 References

¹ Dawson, W. R.; Windsor, M. W. Fluorescence yields of aromatic compounds. J. Chem. Phys. **1968**, 72, 3251-3260.

² Brouwer, A. M. Standards for photoluminescence quantum yield measurements in solution. *Pure Appl. Chem.* **2011**, *83*, 2213-2228.