Neutral Bis(imino)-1,4-dihydropyridinate and Cationic Bis(imino)pyridine σ-Alkylzinc(II) Complexes as Hydride Exchange Systems: Classic Organometallic Chemistry Meets Ligand-Centered, Biomimetic Reactivity.

John J. Sandoval, Eleuterio Álvarez, Pilar Palma, Antonio Rodríguez-Delgado* and Juan Cámpora*.

Instituto de Investigaciones Químicas, CSIC – Universidad de Sevilla. c/ Américo Vespucio, 49, 41092, Sevilla, Spain.

SUPPORTING INFORMATION (ESI): Full experimental details and characterization data for protonated ligands and ionic complexes **3-10**

PROTONATED LIGANDS:

Synthesis of [H(4-Bn-^{iP}BIP)]^{*}[**BAr**^F₄]⁻. A solution of [H(OEt₂)₂][BAr^F₄] (974 mg; 0.96 mmol) in 10 mL of Et₂O was added to an equal volume of a cooled solution of 4-Bn-^{iP}BIP containing 522 mg (0.91 mmol) in the same solvent, stirred at - 60°C. The stirring was maintained for 30 min and then for 1 h at the room temperature. Then, the volatiles were removed under reduced pressure. The orange, oily residue solidified when it was stirred with three portions of hexane (3 x 10 mL). The product was dried under vacuum, resulting in an orange powder, which was recrystallized from a 2:1 mixture of diethylether/hexane at the freezer temperature (-20 °C), affording the title product as a microcrystalline orange solid. Yield: 1.08 g, 82 %. ¹H NMR (CD₂Cl₂, 25 °C, 400 MHz): δ 1.15 (d, 12H, ³J_{HH} = 6.8 Hz, CHMe*M*e), 1.20 (d, 12H, ³J_{HH} = 6.8 Hz, CH*M*eMe), 2.48 (s, 6H, *Me*-CN), 2.62 (sept, 4H, ³J_{HH} = 6.8 Hz, C*H*Me₂), 4.41 (s, 2H, CH₂Ph), 7.10-7.40 (m, 5H, CH₂Ph), 7.32 (d, 4H, ³J_{HH} = 7.1 Hz, *m*-CH_{N-Ar}), 7.42 (t, 2H, ³J_{HH} = 7.1 Hz, *p*-CH_{N-Ar}), 7.61 (s, 4H, *p*-CH_{Ar}BAr^F₄), 8.39 (s, 2H, 3-CH_{Py}). ¹¹B{¹H} NMR (128 MHz, 25 °C, CD₂Cl₂): δ - 6.60. ¹⁹F{¹H} NMR (376 MHz, 25 °C, CD₂Cl₂): δ - 62.8.

Synthesis of [H^{Mes}BIP]⁺[BAr^F₄]⁻. The synthesis of this salt was carried out following the procedure described above, starting from: 6.06 g (6.0 mmol) of [H(OEt₂)₂][BAr^F₄] and 2.16 g (5.45 mmol) of ^{Mes}BIP. An orange microcrystalline solid was isolated after recrystallization from a 2:1 mixture of diethylether/hexane. Yield: 6.37 g, 92%. ¹H NMR (CD₂Cl₂, 25 °C, 400 MHz): δ 2.13 (s, 12H, *o-Me*_{N-Ar}), 2.38 (s, 6H, *p-Me*_{N-Ar}), 2.57 (s, 6H, *Me*-CN), 7.09 (s, 4H, *m*-CH_{N-Ar}), 7.59 (s, 4H, *p*-CH_{Ar} BAr^F₄), 7.76 (s, 8H, *o*-CH_{Ar} BAr^F₄), 8.37 (t, 1H, ³J_{HH} = 7.9 Hz, 4-CH_{Py}), 8.68 (d, 2H, ³J_{HH} = 7.9 Hz, 3-CH_{Py}). ¹³C {¹H}-NMR (CD₂Cl₂, 25 °C, 100 MHz): δ 16.6 (*Me*-CN), 17.7 (*o-Me*_{N-Ar}), 20.7 (*p-Me*_{N-Ar}), 117.5 (s, *p*-CH_{Ar} BAr^F₄), 124.6 (q, ¹J_{CF} = 272 Hz, CF₃ BAr^F₄), 128.6 (*p*-C_{N-Ar}), 128.9 (q, ²J_{CF} = 31 Hz, C-CF₃ BAr^F₄), 129.4 (3-CH_{Py}), 129.8 (*m*-CH_{N-Ar}), 134.8 (s, *o*-CH_{Ar} BAr^F₄), 138.2 (*o*-C_{N-Ar}), 140.8 (4-CH_{Py}), 140.9 (*i*-C_{N-Ar}), 149.6 (2-C_{Py}), 161.8 (q, ¹J_{CB} = 50 Hz, *i*-C_{Ar} BAr^F₄), 172.2 (Me-CN). ¹¹B{¹H} NMR (128 MHz, 25 °C, CD₂Cl₂): δ - 6.60. ¹⁹F{¹H} NMR (376 MHz, 25 °C, CD₂Cl₂): δ - 62.8.

SYNTHESES OF CATIONIC COMPLEXES 3 - 10

Synthesis of [(4-Bn-^{iPr}**BIP)Zn(CH**₂**SiMe**₃)]⁺[**BAr**^F₄]⁻ (3). A 0.52 M toluene solution of Zn(CH₂SiMe₃)₂ (1mL, 0.52 mmol) was slowly added *via* cannula to a gas-tight centrifuge cone loaded with a solution of 741 mg of [4-Bn-H^{iPr}BIP]⁺[BAr^F₄]⁻ (0.52 mmol) in 10 mL of CH₂Cl₂, magnetically stirred at -60 °C. The mixture was stirred at that temperature for 20 min and then at

the room temperature for 2h. The volatiles were evaporated under reduced pressure. Next, the solid residue was treated as described for $2 \cdot BAr^{F_4}$, leaving 504 mg (0.34 mmol, 65 % yield) of compound **3** as an orange powder. ¹H NMR (CD₂Cl₂, 25 °C, 500 MHz): δ -0.73 (s, 9H, $ZnCH_2SiMe_3$), 0.01 (s, 2H, $ZnCH_2SiMe_3$), 1.10 (d, 12H, ${}^{3}J_{HH}$ = 6.8 Hz, CHMeMe), 1.22 (d, 12H, ${}^{3}J_{HH}$ = 6.8 Hz, CHMeMe), 2.43 (s, 6H, Me-CN), 2.51 (sept, 4H, ${}^{3}J_{HH}$ = 6.8 Hz, CHMe₂), 4.38 (s, 2H, CH₂) Py-Bn), 7.27 - 7.40 (m, 5H, CH_{Ar} Py-Bn), 7.29 (d, 4H, ${}^{3}J_{HH}$ = 7.4 Hz, *m*-CH_{N-Ar}), 7.42 (t, 2H, ${}^{3}J_{HH}$ = 7.3 Hz, p-CH_{N-Ar}), 7.55 (s, 4H, p-CH_{Ar} BAr^F₄), 7.72 (s, 8H, o-CH_{Ar} BAr^F₄), 8.21 (s, 2H, 3-CH_{Py}). ¹³C{¹H}-NMR (CD₂Cl₂, 25 °C, 125 MHz): δ –4.8 (ZnCH₂SiMe₃), 1.5 (ZnCH₂SiMe₃), 18.7 (Me-CN), 23.5 (CHMeMe), 23.9 (CHMeMe), 29.1 (CHMe₂), 42.1 (CH₂ Py-Bn), 117.6 (s, p-CH_{Ar} BAr^F₄), 124.7 $(m-CH_{N-Ar})$, 124.7 (q, ¹ J_{CF} = 272 Hz, CF₃ BAr^F₄), 127.8 (3-CH_{Py}), 127.9 (*m*-CH_{Ar} Py-Bn), 128.2 (*p*-CH_{Ar} Py-Bn), 128.9 (q, ²J_{CF} = 31 Hz, C-CF₃ BAr^F₄), 129.2 (o-CH_{Ar} Py-Bn), 129.7 (p-CH_{N-Ar}), 134.9 (s, o-CH_{Ar} BAr^F₄), 135.9 (*i*-C_{Ar} Py-Bn), 137.7 (o-C_{N-Ar}), 140.8 (*i*-C_{N-Ar}), 148.6 (2-C_{Pv}), 162.1 (c, ${}^{1}J_{CB}$ = 50 Hz, *i*-C_{Ar} BAr^F₄), 163.0 (4-C_{Pv}), 166.9 Me-CN). ¹¹B{¹H} NMR (128 MHz, 25 °C, CD₂Cl₂): δ -6.60. ¹⁹F{¹H} NMR (376 MHz, 25 °C, CD₂Cl₂): δ□-62.8 IR (Nujol, cm⁻¹): 1609, ν (C=N, BIP); 1278, 1125 and 887 v (B-C) for [BAr^F₄]⁻. Anal. Calcd for C₇₆H₇₂BF₂₄N₃SiZn: C, 57.49; H, 4.57; N, 2.65. Found: C, 57.14; H, 4.40; N, 2.46 %.

Synthesis of [(4-Bn-^{iPr}BIP)Zn(CH₂CMe₂Ph)]⁺[BAr^F₄]⁻ (4). A 0.5 M solution of $Zn(CH_2CMe_2Ph)_2$ (0.8 mL, 0.40 mmol) was slowly added to a gas-tight centrifuge cone loaded with a solution of 538.0 mg (0.40 mmol) of [4-Bn-H^{iPr}BIP]⁺[BAr^F₄]⁻ in 15 mL Et₂O, magnetically stirred at -60 °C. The mixture was stirred at room temperature for 2 h and taken to dryness under reduced pressure. The residue was processed in the same way described for $2 \cdot \text{BAr}^{F_4}$ and 3, leaving 487 mg (0.32 mmol, 79 % yield) of **4** as a microcrystalline orange solid. ¹H NMR (CD₂Cl₂, 25 °C, 400 MHz): $\delta \Box 0.56$ (s, 6H, ZnCH₂CMe₂Ph), 0,92 (s, 2H, ZnCH₂CMe₂Ph), 1.09 (d, 12H, ³J_{HH} = 6.8 Hz, CHMeMe), 1.18 (d, 12H, ${}^{3}J_{HH}$ = 6.8 Hz, CHMeMe), 2.46 (s, 6H, Me-CN), 2.50 (sept, 4H, ${}^{3}J_{HH}$ = 7.3 Hz, CHMe₂), 4.39 (s, 2H, CH₂ Py-Bn), 6.77 (d, 2H, ${}^{3}J_{HH}$ = 7.1 Hz, o-CH_{Ar}ZnCH₂CMe₂Ph), 6.96 (t, 1H, ${}^{3}J_{HH}$ = 7.2 Hz, *p*-CH_{Ar}ZnCH₂CMe₂Ph), 7.03 (t, 2H, ${}^{3}J_{HH}$ = 7.3 Hz, *m*-CH_{Ar}ZnCH₂CMe₂Ph), 7.25-7.41 (m, 5H, CH_{Ar} Py-Bn), 7.32 (d, 4H, ${}^{3}J_{HH}$ = 7.1 Hz, *m*-CH_{N-Ar}), 7.43 (t, 2H, ${}^{3}J_{HH}$ = 7.1 Hz, *p*-CH_{N-Ar}), 7.55 (s, 4H, p-CH_{Ar} BAr^F₄), 7.72 (s, 8H, o-CH_{Ar} BAr^F₄), 8.21 (s, 2H, 3-CH_{Pv}). ¹³C{¹H}-NMR (CD₂Cl₂, 25 °C, 100 MHz): δ□19.1 (*Me*-CN), 23.1 (CHMe*Me*), 24.2 (CH*Me*Me), 29.3 (*CH*Me₂), 33.2 (ZnCH₂CMe₂Ph), 33.8 (ZnCH₂CMe₂Ph), 37.4 (ZnCH₂CMe₂Ph), 42.0 (CH₂ Py-Bn), 117.5 (s, p-CH_{Ar} BAr^F₄), 124.6 (q, ¹J_{CF} = 272 Hz, CF₃ BAr^F₄), 124.7 (o-CH_{Ar} ZnCH₂CMe₂Ph), 124.7 (m-CH_{N-Ar}), 125.3 (p-CH_{Ar} ZnCH₂CMe₂Ph), 127.6 (m-CH_{Ar} Py-Bn), 127.8 (m-CH_{Ar} ZnCH₂CMe₂Ph), 128.0 (p-CH_{Ar} Py-Bn), 128.1 (3-CH_{Pv}), 128.9 (q, ²J_{CF} = 31 Hz, C-CF₃ BAr^F₄), 129.2 (o-CH_{Ar} Py-Bn), 129.7 (p-CH_{N-Ar}), 134.9 (s, o-CH_{Ar} BAr^F₄), 135.9 (*i*-C_{Ar} Py-Bn), 137.8 (o-C_{N-Ar}), 141.0 (*i*-C_{N-Ar}), 149.1 (2-C_{Pv}), 153.5 (*i*-C_{Ar} ZnCH₂CMe₂*Ph*), 161.8 (q, ¹J_{CB} = 50 Hz, *i*-C_{Ar} BAr^F₄), 166.9 (Me-CN). ¹¹B{¹H} NMR (128 MHz, 25 °C, CD₂Cl₂): δ -6.60. ¹⁹F{¹H} NMR (376 MHz, 25 °C, CD₂Cl₂): δ□-62.8 IR (Nujol, cm⁻¹): 1609, ν

(C=N) in $[Zn(CH_2CMe_2Ph)(4-Bn-{}^{iPr}BIP)]^+$; 1278, 1125 and 886 v (B-C) for $[BAr^F_4]^-$. Anal. Calcd for $C_{82}H_{74}BF_{24}N_3Zn$: C, 60.29; H, 4.57; N, 2.57. Found C, 60.59; H, 4.71; N, 2.16 %.

Synthesis of [(^{iPr}BIP)Zn(Bn)]⁺[BAr^F₄]⁻ (5). 5 mL of a CH₂Cl₂ solution of [H^{iPr}BIP]⁺[BAr^F₄]⁻ (258 mg; 0.20 mmol) were were carefully added to 5 mL of dichloromethane solution of Zn(CH₂Ph)₂ (containing 49.7 mg; 0.20 mmol) that was stirred at -60 °C in a gas-tight centrifuge cone. The reaction mixture was stirred at -60 °C for 20 min and then at the room temperature for 2 h after which time it was taken to dryness under reduced pressure. The work-up was carried out as described for the preceding complexes. Compound 5 was isolated as a microcrystalline orange solid. Yield 248 mg, 86 %. Good quality crystals could not be grown, in spite our efforts. ¹H NMR $(CD_2CI_2, 25 \text{ °C}, 400 \text{ MHz})$: $\delta 1.09 \text{ (d, 12H, }^3J_{HH} = 6.8 \text{ Hz}, CHMeMe)$, 1.09 (d, 12H, $^3J_{HH} = 6.8 \text{ Hz}$, CHMeMe), 1.76 (s, 2H, CH₂ Zn-Bn), 2.48 (sept, 4H, ${}^{3}J_{HH}$ = 6.9 Hz, CHMe₂), 2.50 (s, 6H, Me-CN), 5.59 (m, 2H, o-CH_{Ar} Zn-Bn), 6.58 (m, 2H, m-CH_{Ar} Zn-Bn), 6.59 (m, 1H, p-CH_{Ar} Zn-Bn), 7.39 (d, 4H, ${}^{3}J_{HH}$ = 7.6 Hz, *m*-CH_{N-Ar}), 7.44 (t, 2H, ${}^{3}J_{HH}$ = 7.3 Hz, *p*-CH_{N-Ar}), 7.56 (s, 4H, *p*-CH_{Ar}BAr^F₄), 7.73 (s, 8H, $o-CH_{Ar}BAr_{4}^{F}$), 8.41 (d, 2H, ${}^{3}J_{HH}$ = 7.9 Hz, 3- CH_{Py}), 8.58 (t, 1H, ${}^{3}J_{HH}$ = 7.9 Hz, 4- CH_{Py}). ${}^{13}C{}^{1}H{}^{-1}$ -NMR (CD₂Cl₂, 25 °C, 100 MHz): δ 18.3 (*Me*-CN), 18.6 (CH₂ Zn-Bn), 22.9 (CHMe*Me*), 23.9 (CH*Me*Me), 29.2 (CHMe₂), 117.6 (s, *p*-CH_{Ar} BAr^F₄), 121.3 (*p*-CH_{Ar} Zn-Bn), 124.6 (g, ¹J_{CF} = 272 Hz, CF₃ BAr^F₄), 124.7 (*m*-CH_{N-Ar}), 126.4 (*o*-CH_{Ar} Zn-Bn), 127.7 (3-CH_{Pv}), 127.9 (*m*-CH_{Ar} Zn-Bn), 128.1 $(p-CH_{N-Ar})$, 128.9 (q, ${}^{2}J_{CF}$ = 31 Hz, C-CF₃ BAr^F₄), 134.8 (s, o-CH_{Ar} BAr^F₄), 137.8 (o-C_{N-Ar}), 141.0 (*i*- $C_{\text{N-Ar}}$, 145.4 (*i*- C_{Ar} Zn-Bn), 146.0 (4- CH_{Pv}), 148.7 (2- C_{Pv}), 161.8 (q, ${}^{1}J_{\text{CB}}$ = 50 Hz, *i*- C_{Ar} BAr^F₄), 166.8 (Me-C-N). ¹¹B{¹H} NMR (128 MHz, 25 °C, CD₂Cl₂): δ-6.60. ¹⁹F{¹H} NMR (376 MHz, 25 °C, CD₂Cl₂): δ -62.8 IR (Nujol, cm⁻¹): 1609, 1596, v(C=N) BIP; 1276, 1127 and 888, v(B-C) [BAr^F₄]⁻. Anal. Calcd for C₇₂H₆₂BF₂₄N₃Zn: C, 57.60; H, 4.16; N, 2.80. Found: C, 57.46; H, 4.15; N, 2.63 %.

Synthesis of [(^{iPr}**BIP)Zn(CH₂SiMe₃)]⁺[BAr^F₄]⁻ (6).** A 0.5 M toluene solution of Zn(CH₂SiMe₃)₂ (1mL 0.5 mmol) was slowly added *via* cannula to a small gas-tight centrifuge cone loaded with a solution of 622 mg of [H^{iPr}BIP]⁺[BAr^F₄]⁻ (0.5 mmol) in 10 mL of CH₂Cl₂, magnetically stirred at -60 ^oC. The mixture was stirred at that temperature for 20 min and then at the room temperature for 2h. The volatiles were evaporated under reduced pressure. The residue was washed with hexane 2 x 5 mL, and the washings were removed by centrifugation, and dried under vacuum as described before, leaving complex 6 as a yellow solid. This solid was dissolved in 5 mL of Et₂O and hexane was carefully added until one single drop turns the solution slightly turbid. The mixture was allowed to rest at -20 ^oC for 48 h, after which time yellow prismatic crystals were formed. Crystals for X-ray diffraction studies were selected at this point, before the overlying liquor was filtered out. Then the crystals were washed with a cold (-30 ^oC) mixture of diethylether/hexane (1:10) and dried for 6 hours under vacuum. Yield: 328 mg (0.22 mmol), 48 %. ¹H NMR (CD₂Cl₂, 25 ^oC, 400 MHz): δ ⁻ 0.69 (s, 9H, ZnCH₂Si*M*e₃), 0.62 (s, 2H, ZnCH₂SiMe₃), 1.11 (d, 12H, ³*J*_{HH} = 6.8 Hz, CHMe/e), 1.23 (d, 12H, ³*J*_{HH} = 6.8 Hz, CHMe/e), 2.48 (s, 6H, *M*e-CN), 2.52 (sept, 4H, ³*J*_{HH} = 6.8 Hz, CHMe/e), 1.24

7.31 (m, 6H, *m*, *p*-C*H*_{N-Ar}), 7.56 (s, 4H, *p*-C*H*_{Ar}BAr^F₄), 7.72 (s, 8H, *o*-C*H*_{Ar}BAr^F₄), 8.39 (d, 2H, ³J_{HH} = 7.9 Hz, 3-C*H*_{Py}), 8.57 (t, 1H, ³J_{HH} = 7.9 Hz, 4-C*H*_{Py}). ¹³C{¹H}-NMR (CD₂Cl₂, 25 °C, 100 MHz): $\delta \Box$ -4.8 (ZnCH₂SiMe₃), 1.5 (ZnCH₂SiMe₃), 18.7 (*M*e-CN), 23.5 (CHMeMe), 23.9 (CHMeMe), 29.2 (CHMe₂), 117.6 (s, *p*-CH_{Ar}BAr^F₄), 124.6 (q, ¹J_{CF} = 272 Hz, CF₃ BAr^F₄), 124.7 (*m*-CH_{N-Ar}), 127.8 (3-CH_{Py}), 127.9 (*p*-CH_{N-Ar}), 128.9 (q, ²J_{CF} = 31 Hz, C-CF₃ BAr^F₄), 134.9 (s, *o*-CH_{Ar} BAr^F₄), 137.7 (*o*-C_{N-Ar}), 140.6 (*i*-C_{N-Ar}), 146.3 (4-CH_{Py}), 148.5 (2-C_{Py}), 161.8 (q, ¹J_{CB} = 50 Hz, *i*-C_{Ar} BAr^F₄), 166.8 (Me-CN). ¹¹B{¹H} NMR (128 MHz, 25 °C, CD₂Cl₂): $\delta \Box$ -6.60. ¹⁹F{¹H} NMR (376 MHz, 25 °C, CD₂Cl₂): $\delta \Box$ -62.8 IR (Nujol, cm⁻¹): 1609, 1595, v(C=N) (BIP); 1278, 1122 and 887, v(B-C) [BAr^F₄]⁻. Anal. Calcd for C₆₈H₆₅BF₂₄N₃SiZn: C, 55.02; H, 4.41; N, 2.83. Found: C, 54.94, H, 4.64, N, 3.01 %.

Synthesis of [(^{iPr}BIP)Zn(CH₂CMe₂Ph)]⁺[BAr^F₄]⁻ (7). 0.9 mL of a 0.5 M solution in toluene of Zn(CH₂CMe₂Ph)₂ (0.45 mmol) was slowly added to a gas-tight centrifuge cone containing a stirred solution of $[H^{IP}BIP]^+[BAr^{F}_{4}]^-$ (525 mg; 0.42 mmol) in 20 mL of Et₂O, cooled at -60 °C. After 20 min, then the cooling bath was removed the stirring was continued at the room temperature for 1 h. The mixture was taken to dryness, and the residue was washed thrice with hexane (3 x 5 mL), removing each time the washing liquor by centrifugation. The residue was dried under the line vacuum, leaving 431 mg (0.30 mmol, 72 % yield) of compound 7 as a yellow microcrystalline solid. ¹H NMR (CD₂Cl₂, 25 °C, 400 MHz): δ 0.56 (s, 6H, ZnCH₂CMe₂Ph), 0,94 (s, 2H, ZnCH₂CMe₂Ph), 1.11 (d, 12H, ${}^{3}J_{HH}$ = 6.8 Hz, CHMeMe), 1.19 (d, 12H, ${}^{3}J_{HH}$ = 6.8 Hz, CHMeMe), 2.52 (h, 4H, ${}^{3}J_{HH}$ = 6.8 Hz, CHMe₂), 2.52 (s, 6H, Me-CN), 6.78 (d, 2H, ${}^{3}J_{HH}$ = 7.2 Hz, o-CH_{Ar}ZnCH₂CMe₂Ph), 6.97 (t, 1H, ${}^{3}J_{HH}$ = 7.2 Hz, *p*-CH_{Ar} ZnCH₂CMe₂Ph), 7.03 (t, 2H, ${}^{3}J_{HH}$ = 7.3 Hz, *m*-CH_{Ar} ZnCH₂CMe₂Ph), 7.33 (d, 4H, ${}^{3}J_{HH}$ = 6.9 Hz, *m*-CH_{N-Ar}), 7.39 (t, 2H, ${}^{3}J_{HH}$ = 7.6 Hz, *p*-CH_{N-Ar}), 7.55 (s, 4H, *p*-CH_{Ar}BAr^F₄), 7.72 (s, 8H, o-CH_{Ar} BAr^F₄), 8.42 (d, 2H, ${}^{3}J_{HH}$ = 7.9 Hz, 3-CH_{Pv}), 8.61 (t, 1H, ${}^{3}J_{HH}$ = 7.9 Hz, 4-CH_{Pv}). ¹³C{¹H} NMR (CD₂Cl₂, 25 °C, 100 MHz): δ 19.2 (*Me*-CN), 23.1 (CHMe*Me*), 24.2 (CH*Me*Me), 29.3 (CHMe₂), 33.2 (ZnCH₂CMe₂Ph), 33.8 (ZnCH₂CMe₂Ph), 117.6 (s, *p*-CH_{Ar} BAr^F₄), 124.7 (*m*-CH_{N-Ar}), 124.7 (c, ${}^{1}J_{CF}$ = 272 Hz, CF₃ BAr^F₄), 124.7 (solap. *o*-CH_{Ar} ZnCH₂CMe₂Ph), 125.2 (*p*-CH_{Ar} ZnCH₂CMe₂Ph), 127.7 (*m*-CH_{Ar} ZnCH₂CMe₂Ph), 127.9 (3-CH_{Pv}), 128.0 (*p*-CH_{N-Ar}), 128.9 (q, ²J_{CF} = 31 Hz, C-CF₃ BAr^F₄), 134.9 (s, o-CH_{Ar} BAr^F₄), 137.9 (o-C_{N-Ar}), 140.9 (*i*-C_{N-Ar}), 146.2 (4-CH_{Pv}), 149.1 $(2-C_{Py})$, 153.4 (*i*-C_{Ar} ZnCH₂CMe₂Ph), 161.8 (q, ¹J_{CB} = 50 Hz, *i*-C_{Ar} BAr^F₄), 166.9 (Me-CN). ¹¹B{¹H} NMR (128 MHz, 25 °C, CD₂Cl₂): δ-6.60. ¹⁹F{¹H} NMR (376 MHz, 25 °C, CD₂Cl₂): δ-62.8. IR (Nujol, cm⁻¹): 1609, 1596, v(C=N) (BIP); 1276, 1127 and 888, v(B-C) in [BAr^F₄]⁻. Anal. Calcd for C₇₅H₆₈BF₂₄N₃Zn: C, 58.36; H 4.44; N, 2.72. Found: C, 58.27; H, 4.59; N, 2.80 %.

Synthesis of $[(^{\text{Mes}}\text{BIP})\text{Zn}(\text{Bn})]^{+}[\text{BAr}^{F_4}]^{-}$ (8). 15 mL of a Et₂O solution containing 807.0 mg (0.69 mmol) of $[\text{H}^{\text{Mes}}\text{BIP}]^{+}[\text{BAr}^{F_4}]^{-}$ were stirred in a gas-tight centrifuge cone at – 60 °C while a 1 M solution of $\text{Zn}(\text{CH}_2\text{Ph})_2$ in toluene (0.70 mL, 0.70 mmol) of was added dropwise. The stirring was continued for 20 min at this temperature and then at the room temperature for 2h. Next, it was taken to dryness, the residue was washed thrice with 10 mL of hexane for 30 min and the

washings were removed by centrifugation. The microcrystalline orange solid was dried under vacuum. Yeld, 630 mg, 0.47 mmol, 69 % yield.¹H NMR (CD₂Cl₂, 25 °C, 400 MHz): δ 1.62 (s, 2H, CH₂ Zn-Bn), 1.93 (s, 12H, *o-Me*_{N-Ar}), 2.37 (s, 6H, *p-Me*_{N-Ar}), 2.42 (s, 6H, *Me*-CN), 6.52 (d, 2H, ³J_{HH} = 6.6 Hz, *o*-CH_{Ar} Zn-Bn), 6.68 (m, 3H, *m*-CH_{Ar}, *p*-CH_{Ar} Zn-Bn), 7.03 (s, 4H, *m*-CH_{N-Ar}), 7.56 (s, 4H, *p*-CH_{Ar} BAr^F₄), 7.73 (s, 8H, *o*-CH_{Ar} BAr^F₄), 8.32 (d, 2H, ³J_{HH} = 7.9 Hz, 3-CH_{Py}), 8.51 (t, 1H, ³J_{HH} = 7.9 Hz, 4-CH_{Py}). ¹³C{¹H}-NMR (CD₂Cl₂, 25 °C, 100 MHz): δ 16.8 (*Me*-CN), 18.0 (*o*-*Me*_{N-Ar}), 19.3 (CH₂ Zn-Bn), 20.6 (*p*-*Me*_{N-Ar}), 117.6 (s, *p*-CH_{Ar} BAr^F₄), 121.5 (*p*-CH_{Ar} Zn-Bn), 124.7 (c, ¹J_{CF} = 272 Hz, CF₃ BAr^F₄), 126.0 (*o*-CH_{Ar} Zn-Bn), 127.3 (3-CH_{Py}), 127.4 (*p*-C_{N-Ar}), 127.9 (*m*-CH_{Ar} Zn-Bn), 128.9 (q, ²J_{CF} = 31 Hz, C-CF₃ BAr^F₄), 129.8 (*m*-CH_{N-Ar}), 134.9 (s, *o*-CH_{Ar} BAr^F₄), 137.2 (*o*-C_{N-Ar}), 140.7 (*i*-C_{N-Ar}), 144.8 (*i*-C_{Ar} Zn-Bn), 145.9 (4-CH_{Py}), 148.6 (2-C_{Py}), 161.8 (q, ¹J_{CB} = 50 Hz, *i*-C_{Ar} BAr^F₄), 166.9 (Me-CN). ¹¹B{¹H} NMR (128 MHz, 25 °C, CD₂Cl₂): δ -6.60. ¹⁹F{¹H} NMR (376 MHz, 25 °C, CD₂Cl₂): δ -62.8. IR (Nujol, cm⁻¹): 1593, v(C=N) BIP; 1277, 1128 and 887, v(B-C) for [BAr^F₄]. Anal. Calcd. for C₆₆H₅₀BF₂₄N₃Zn: C, 55.93; H, 3.56; N, 2.96. Found: C, 55.71; H, 3.48; N, 2.42 %.

Synthesis of [(MesBIP)Zn(CH₂SiMe₃)]⁺[BAr^F₄]⁻ (9). 1.0 mL (0.52 mmol) of a 0.52 M solution of Zn(CH₂SiMe₃)₂ in toluene was added to 20 mL Et₂O solution of [H^{Mes}BIP]⁺[BAr^F₄]⁻ (609.0 mg, 0.48 mmol) while stirring at -60 °C. The stirring was continued for 20 min and then at the room temperature for 2h. The solution was evaporated until 1/4 of the initial volume, and 10 mL of hexane were added until the product crystallizes spontaneously. The mother liquor was removed by filtration and the crystals were washed with hexane. After drying under vacuum, 403 mg (0.31 mmol, 64 % yield) of compound 9 were obtained as yellow crystals. ¹H NMR (CD₂Cl₂, 25 °C, 500 MHz): δ -0.87 (s, 2H, ZnCH₂SiMe₃), 0.65 (s, 9H, ZnCH₂SiMe₃), 2.0 (s, 12H, o-Me_{N-Ar}), 2.31 (s, 6H, p-Me_{N-Ar}), 2.42 (s, 6H, Me-CN), 7.01 (s, 4H, m-CH_{N-Ar}), 7.56 (s, 4H, p-CH_{Ar} BAr^F₄), 7.73 (s, 8H, o- $CH_{Ar} BAr_{4}^{F}$), 8.33 (d, 2H, ${}^{3}J_{HH}$ = 7.9 Hz, 3- CH_{Pv}), 8.52 (t, 1H, ${}^{3}J_{HH}$ = 7.9 Hz, 4- CH_{Pv}). ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂, 25 °C, 100 MHz): δ -5.6 (ZnCH₂SiMe₃), 1.8 (ZnCH₂SiMe₃), 16.9 (Me-CN), 18.1 (o-Me_{N-Ar}), 20.5 (*p-Me*_{N-Ar}), 117.6 (s, *p*-CH_{Ar} BAr^F₄), 124.7 (c, ¹J_{CF} = 272 Hz, CF₃ BAr^F₄), 127.1 (3-CH_{Pv}), 127.2 $(p-C_{N-Ar})$, 128.9 (q, ${}^{2}J_{CF}$ = 31 Hz, C-CF₃ BAr^F₄), 129.7 (*m*-CH_{N-Ar}), 134.8 (s, *o*-CH_{Ar} BAr^F₄), 137.1 (*o*- $C_{\text{N-Ar}}$, 140.3 (*i*- $C_{\text{N-Ar}}$), 145.9 (4- CH_{Py}), 148.5 (2- C_{Py}), 161.8 (c, ¹ J_{CB} = 50 Hz, *i*- C_{Ar} BAr^F₄), 166.6 (Me-CN). ¹¹B{¹H} NMR (128 MHz, 25 °C, CD₂Cl₂): δ□-6.60.¹⁹F{¹H} NMR (376 MHz, 25 °C, CD₂Cl₂): δ□-62.8. IR (Nujol, cm⁻¹): 1610, 1594, v(C=N) (BIP); 1277, 1123 and 888, v(B-C) for [BAr^F₄], Anal. Calcd for C₆₃H₅₄BF₂₄N₃SiZn: C, 53.54; H, 3.85; N, 2.97. Found C, 53.10; H, 3.57; N, 2.34 %.

Synthesis of $[(^{\text{Mes}}\text{BIP})\text{Zn}(\text{CH}_2\text{CMe}_2\text{Ph})]^{+}[\text{BAr}^{F_4}]^{-}$ (10). A 15 mL orange solution of 514 mg (0.41 mmol) of $[\text{H}^{\text{iMes}}\text{BIP}]^{+}[\text{BAr}^{F_4}]^{-}$ in Et₂O was loaded into a gas-tight centrifuge cone and stirred at - 60 °C. Next, 1.0 mL of $\text{Zn}(\text{CH}_2\text{CMe}_2\text{Ph})_2$ (0.50 M solution in toluene, 0.50 mmol) was added dropwise, and the stirring was continued for 20 min. The cooling bath was removed and the stirring was continued for 2 h at the room temperature. Volatiles were evaporated under reduced pressure and the residue was washed with hexane (3 x 5 mL), removing the washing liquors by

centrifugation. After filtration and drving, an orange solid (10) was isolated (476 mg, 0.35 mmol, 85 % yield). This solid was recrystallized by dissolving 300 mg of 10 in 5 mL of Et₂O and carefully adding pentane until the solution becomes slightly turbid. After 2 days at -20 °C, orange crystals suitable for x-ray diffraction studies were formed. These were isolated from the mother liquor and washed with a cold (-30 °C) 1/10 mixture of Et₂O and pentane. ¹H NMR (CD₂Cl₂, 25 °C, 400 MHz): δ0.69 (s, 6H, ZnCH₂CMe₂Ph), 0,81 (s, 2H, ZnCH₂CMe₂Ph), 1.95 (s, 12H, o-Me_{N-Ar}), 2.36 (s, 6H, p- Me_{N-Ar}), 2.40 (s, 6H, Me-CN), 6.73 (d, 2H, ${}^{3}J_{HH}$ = 7.7 Hz, o-CH_{Ar} ZnCH₂CMe₂Ph), 7.01 (m, 3H, m-CH_{Ar} p-CH_{Ar} ZnCH₂CMe₂Ph), 7.03 (s, 4H, m-CH_{N-Ar}), 7.55 (s, 4H, p-CH_{Ar}BAr^F₄), 7.72 (s, 8H, o-CH_{Ar} $BAr^{F_{4}}$), 8.32 (d, 2H, ${}^{3}J_{HH}$ = 7.9 Hz, 3-C H_{Py}), 8.51 (t, 1H, ${}^{3}J_{HH}$ = 7.9 Hz, 4-C H_{Py}). ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂, 25 °C, 100 MHz): δ 17.3 (*Me*-CN), 18.2 (*o-Me*_{N-Ar}), 20.6 (*p-Me*_{N-Ar}), 33.2 (ZnCH₂CMe₂Ph), 33.6 (ZnCH₂CMe₂Ph), 37.4 (ZnCH₂CMe₂Ph), 117.6 (s, *p*-CH_{Ar} BAr^F₄), 124.3 (*o*-CH_{Ar} ZnCH₂CMe₂Ph), 124.7 (c, ¹J_{CF} = 272 Hz, CF₃ BAr^F₄), 124.8 (p-CH_{Ar} ZnCH₂CMe₂Ph), 127.4 (m- CH_{Ar} ZnCH₂CMe₂Ph), 127.5 (p-C_{N-Ar}), 127.9 (3-CH_{Pv}), 128.9 (c, ²J_{CF} = 31 Hz, C-CF₃ BAr^F₄), 129.8 $(m-CH_{N-Ar})$, 134.9 (s, $o-CH_{Ar}$ BAr^F₄), 137.1 ($o-C_{N-Ar}$), 140.9 (*i*- C_{N-Ar}), 145.7 (4- CH_{Pv}), 149.0 (2- C_{Pv}), 154.5 (*i*- C_{Ar} ZnCH₂CMe₂*Ph*), 161.8 (c, ¹ J_{CB} = 50 Hz, *i*- C_{Ar} BAr^F₄), 166.6 (Me-CN). ¹⁹F{¹H} NMR (376) MHz, 25 °C, CD₂Cl₂): δ -62.8. IR (Nujol, cm⁻¹): 1610, 1594, v(C=N) in (BIP); 1279, 1118 and 886, v(B-C) for [BAr^F₄]⁻. Anal. Calcd for C₆₉H₅₆BF₂₄N₃Zn: C, 56.79; H, 3.87; N, 2.88. Found: C, 56.85; H, 3.93 N, 2.48 %.