Characterization of polymers

Table S1. Number-Average Molecular Weight (M_{n}) and Molecular Weight Distribution (M_{w}/M_{n}) of the Block Copolymers

Polymers	$M_{ m v} imes 10^{-4}$	$M_{ m w}({ m SLS}) imes 10^{-4}$	$M_{\rm n}({ m NMR}) \times 10^{-4}$	$M_{\rm n}({\rm GPC}) \times 10^{-4}$	$M_{\rm w}/M_{ m n}$
PAMPS275	4.30	5.70			1.18
PMPC20-b-PAMPS198			4.72	2.29	1.25
PAMPS48-b-PEG227-b-PAMPS48			3.26	2.32	1.42
PEG47-b-PAMPS108			2.71	2.30	1.17
PEG47-b-PAMPS27			0.90	0.67	1.15

Table S2. ¹H NMR data

Polymer	Chemical shifts
PAMPS275	¹ H NMR (500 MHz, D ₂ O): δ ppm, 3.14-
	3.61 (m, 2H), 1.89-2.29 (m, 1H), 1.14-2.28
	(m, 8H)
PMPC20-b-PAMPS198	¹ H NMR (500 MHz, D_2O): δ ppm, 4.32 (m,
	40H), 4.23 (m, 40H), 4.10 (m, 40H), 3.69
	(m, 40H), 3.08-3.52 (m+s, 576H), 1.89-2.29
	(m, 198H), 1.14-2.28 (m, 1624H), 0.28-1.14
	(m, 60H)
PAMPS48-b-PEG227-b-PAMPS48	¹ H NMR (500 MHz, D ₂ O): δ ppm, 3.72 (m,
	908H), 3.14-3.61 (m, 192H), 1.89-2.29 (m,
	96H), 1.14-2.28 (m, 576H)
PEG47-b-PAMPS108	¹ H NMR (500 MHz, D ₂ O): δ ppm, 3.72 (m,
	188H), 3.14-3.61 (m, 216H), 1.89-2.29 (m,
	108H), 1.14-2.28 (m, 864H)
PEG47-b-PAMPS27	¹ H NMR (500 MHz, D ₂ O): δ ppm, 3.72 (m,
	188H), 3.14-3.61 (m, 54H), 1.89-2.29 (m,
	27H), 1.14-2.28 (m, 216H)

.

.

.

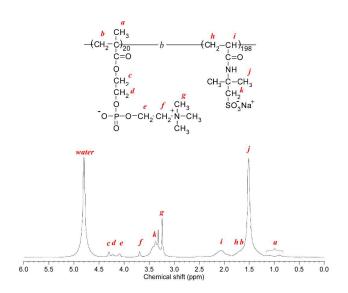


Figure S1. ¹H NMR spectrum for PMPC20-b-PAMPS198 in D₂O at 20°C.

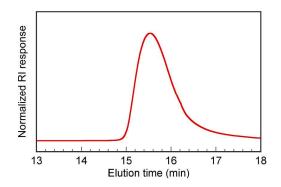


Figure S2. GPC elution curve for PMPC20-b-PAMPS198 using phosphate buffer (50 mM, pH 9) containing 10 vol % acetonitrile as eluent.

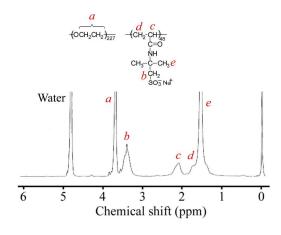


Figure S3. ¹H NMR spectrum for PAMPS48-b-PEG227-b-PAMPS48 in D₂O at 20°C.

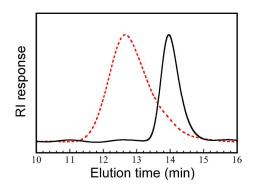


Figure S4. GPC elution curves for HO-PEG-OH (——) and PAMPS48-b-PEG227-b-PAMPS48 (----) using phosphate buffer (50 mM, pH 9) containing 10 vol % acetonitrile as eluentical structures of the block copolymers.

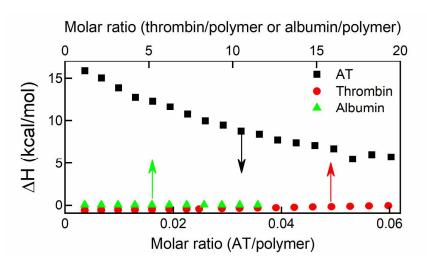


Figure S5. The heat of interaction between PEG47-b-PAMPS108 polymer with AT and thrombin. Albumin was used as a non-interacting reference protein ($c_{PEG47-b-PAMPS108}$ =1.35 mg/mL).

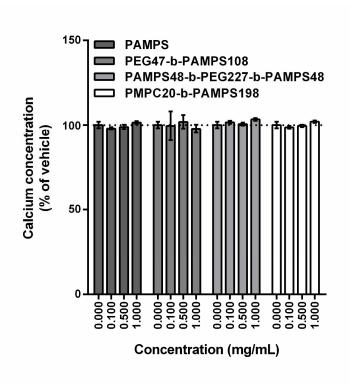


Figure S6. Effects of PAMPS-based polymers on calcium concentration. Results are shown as median with lower and upper limits, n = 5.

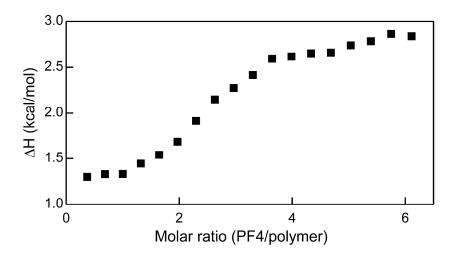


Figure S7. The heat of interaction between PEG47-b-PAMPS108 polymer and PF4. The concentration of PEG47-b-PAMPS108 was 1.35 mg/mL.

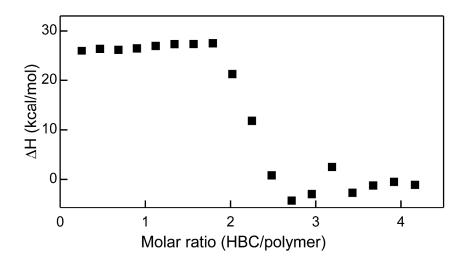


Figure S8. The heat of interaction between PEG47-b-PAMPS108 and HBC. The concentration of PEG47-b-PAMPS108 was 1.35 mg/mL.

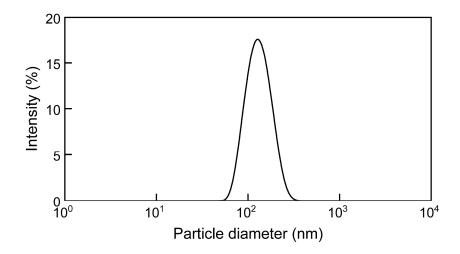


Figure S9. The size distribution of the PIC complexes formed by HBC (c=12 mg/mL) and PEG47-b-PMAPTAC108 (c=12 mg/mL) in PBS measured using DLS technique.

Table S3. Complete blood count results after incubation of blood with the polymers solution in the final concentration of 0.01-1 mg/mL.

	Conc. (mg/mL)	PAMPS275	PEG47-b- PAMPS108	PAMPS48-b- PEG227-b- PAMPS48	PMPC20- <i>b</i> - PAMPS198
	0.01	101.8	93.7	96.7	101.0
		(84.1-109.0)	(85.7-99.9)	(84.7-104.0)	(80.8-109.6)
PLT	0.1	102.7	95.4	98.0	100.2
		(87.7-109.0)	(85.1-99.9)	(89.4-102.5)	(79.9-107.1)
	1	93.8	95.6	88.7*	91.6
		(83.0-102.4)	(89.4-100.6)	(85.3-96.9)	(79.4-99.3)
	0.01 0.1 1	104.6	98.4	102.5	104.6
		(99.5-112.2)	(98.4-102.5)	(94.3-102.5)	(96.9-107.1)
		104.6	102.5	98.4	102.0
ZZZW		(99.5-109.7)	(90.2-106.6)	(94.3-102.5)	(99.5-107.1)
		99.5	98.4	98.4	102.0
		(91.8-102.0)	(90.2-102.5)	(86.1-98.4)	(91.8-104.6)
	0.01	99.7	98.8	100.5	100.9
		(99.2-102.0) 101.4	(92.2-100.8) 100.8	(97.9-104.8) 99.1	(100.4-101.0) 100.5
	0.1	(100.9-102.5)	(93.7-104.5)	99.1 (97.4-102.5)	(97.9-103.5)
RBC		104.4*	99.3	102.7	104.4*
\simeq	1	(102.2-108.9)	(98.8-106.5)	(100.6-104.2)	(101.4-104.9)
		101.3	99.5	102.8	100.5
	0.01	(99.7-102.1)	(95.5-100.3)	(97.1-105.2)	(100.5-100.5)
		101.3	100.3	100.3	102.1
~	0.1	(101.3-103.7)	(97.1-104.4)	(97.1-102.8)	(97.3-102.1)
HGB		105.3*	100.3	102.8	101.0*
Η	1	(102.1-109.3)	(98.7-105.2)	(100.3103.6)	(100.4-101.5)
		101.0	98.8	100.3	99.8
	0.01	(98.6-101.5)	(92.1-100.9)	(97.9-105.3)	(97.4-103.6)
		101.8	100.9	99.1	94.8
_	0.1	(101.0-103.9)	(95.0-104.7)	(98.2-103.2)	(92.5-98.5)
НСТ		104.2*	100.0	102.3	104.5*
iΤί	1	(102.4-110.5)	(97.7-106.7)	(100.9-104.7)	(100.1-105.7)
	0.01	100.4	99.0	99.0	100.4
	0.01	(100.4-102.2)	(99.0-99.0)	(99.0-100.7)	(100.4-100.4)
	0.1	100.4	100.7	100.7	100.4
>	0.1	(100.4-102.2)	(99.0-100.7)	(99.0-100.7)	(100.4-100.4)
MCV	1	100.4	99.0	100.7	100.4
_	1	(100.4-102.2)	(99.0-100.7)	(99.0-100.7)	(98.6-100.4)
	0.01	100.9	100.0	100.5	99.9
	0.01 (9	(99.9-101.8)	(99.5-103.8)	(99.5-101.9)	(99.4-100.4)
	0.1	100.5	101.0	100.9	
Ħ,	(99.4-101.4)	(99.5-103.8)	(99.0-101.0)	(98.9-101.4)	
МСН	1	100.9	100.0	100.5	100.4
	1	(99.9-100.9)	(99.0-101.0)	(97.6-101.4)	(99.4-101.4)
	0.01	100.6	100.3	100.6	99.8
		(100.1-102.0)	(99.8-104.2)	(99.5-102.5)	(99.0-100.6)
()	0.1	100.1	100.1	99.2	101.2
МСНС	0.1	(99.6-100.9)	(98.9-102.6)	(98.4-102.3)	(98.8-102.3)
MC	1	100.1	99.5	100.1	100.4
	1	(99.0-101.7)	(98.7-102.6)	(98.4-101.2)	(98.8-102.8)

Abbreviations: WBC, white blood cells; RBC, red blood cells; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; PLT, blood platelets. *p<0.05 vs whole blood without studied polymers, Mann-Whitney test.

Results are expressed as a percentage of the control samples and shown as a median with lower and upper limits, n = 5.

Table S4. Complete blood count results in rats treated intravenously with PAMPS-based polymers administered at the dose of 6 mg/kg.

	Vehicle	PAMPS	PEG47-b- PAMPS108	PAMPS48- <i>b</i> - PEG227- <i>b</i> - PAMPS48	PMPC20-b- PAMPS198
WBC, 10 ³ /mm ³	2.5 ± 0.5	4.3 ± 0.9 ***	4.1 ± 1.0 ***	4.6 ± 0.9 ***	4.2 ± 1.0 ***
RBC, 10 ⁶ /mm ³	6.4 ± 0.7	6.3 ± 0.5	6.7 ± 0.8	6.6 ± 0.7	6.4 ± 0.5
HGB, g/dL	13.6 ± 0.7	13.3 ± 0.7	13.9 ± 1.0	13.7 ± 0.8	13.6 ± 0.7
HCT, %	40.0 ± 2.9	39.6 ± 2.3	41.4 ± 3.8	40.7 ± 3.0	40.4 ± 2.5
MCV, μm³	62.3 ± 2.6	62.8 ± 2.6	62.3 ± 3.1	62.3 ± 2.1	62.0 ± 2.0
MCH, pg	21.3 ± 1.7	21.2 ± 1.4	21.0 ± 1.5	21.0 ± 1.4	21.2 ± 1.2
MCHC, g/dL	34.2 ± 1.5	33.7 ± 1.1	33.7 ± 1.2	33.7 ± 1.1	33.7 ± 0.9
PLT, 10 ³ /mm ³	667 ± 65	497 ± 79 ***	653 ± 68	665 ± 46	562 ± 103

Abbreviations: WBC, white blood cells; RBC, red blood cells; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; PLT, blood platelets. *p<0.05, ***p<0.001 vs vehicle, unpaired Student's t-test. Results are shown as mean \pm SD, n = 8-10.