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1. Analytic theory on the transmission and reflection coefficients of the metasurface

Consider an x-polarized light incident normally onto the metasurface, as shown in Fig. 1 in the
main text, and also in Fig. S1. We assume that the metasurface is made of perfectly electric
conductor (PEC). For region I (incident region) and III (transmitted region), the Bloch’s theorem

allows us to expand the diffracted electromagnetic (EM) waves in a quantized form as,

Z |: tko (z+h12) Rmn —t;(mn(z+h/2):|ei¢mn
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(1.1)
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where @, =a,(x—a/2)+p,(y-b/2) and k=2n/\. a,=27xm/d, , B=2zn/d, , and

Ko =4/ kg —a,i - ,an are momenta of diffracted waves in x, y, and z directions, respectively.

Since we are considering that both b and g, are in sub-wavelength, we approximate EM waves
in two light channels in the metasurface, denoted by ¢ and ¢ in Fig. S1, by using single-mode
expansion. Note that higher-order waveguide modes decay rapidly in the metasurface, so that
their contribution to the electromagnetic wave configuration in the metasurface becomes smaller

with narrower b and g ,. Then, the field distribution in channel ¢ can be given by [1]
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and for channel c(z), it can be written as
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EQ = 4,¢™ +Be™, EV) =0, E} =0,

xIT zIl
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0

Here, A;, and B;, are amplitudes of internal waveguide modes in two channels. Now, we can

readily apply the boundary conditions. Continuity of E, field at z=-h/2 gives

_—Z(,BnRz mn 10000 F Lo Ry )emf,,m

()mn

=Sin(%j[z‘lleik’h/2 +Bleiklh/2:|, (on C(l)) (1.4)

—i 1 2
= dye ikyh/2 +Bzezk0h/2, (on C( ))

=0 (otherwise),

and at z=h/2, we have

——Z(ﬂnTm Ty JE*"

()mn

=sin (%)[Aleik‘h/z + Bleﬂvk‘h/2 ] , (on VY ) (1.5)

A » )
_ Azezkoh/z +Be zkoh/2, (on C( ))

=0 (otherwise).
Also, continuity of E, field at z=+h/2 yields

D (ZwRe ¥R, )% =0, (2,1 —at, T, )™ =0, (1.6)

mn mn

On the other hand, divergence-less of magnetic field gives

amR\',mn +IBnRv,mn _ZmnRz,mn :O’ m xmn ﬂn y,mn +/1/mn z,mn :O' (17)

By combining Eq. (1.6) and (1.7), we can reduce R,,, and 7}, as the following:
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Then, the first terms of Eq. (1.4) and (1.5) become
L/ Konn By
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ko Ko (1.9)
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After inverse Fourier transform of Eq. (1.4) and (1.5), incorporated with (1.9), we can write y-

component of R, and T}, in terms of coefficients A4, and B »:

kyy : ,
0 _ —ikih/2 k12 —ikoh!2 ikoh!2
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(1.10)
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Here, O, and @mn, the vector-dependencies between external diffracted waves and internal

waveguide modes in two channels, are given by

mnzdLj jdysm( jﬂ 0, ﬁng‘dj dye ™. (1.11)

Equation (1.10) gives the relationship between the diffracted waves and waveguide modes in the
metasurface. Specifically, with the fact that Oy =2ab/d d r and @OO =g /d,, we can obtain

the zero-th order transmittance and reflectance that are given in Eq. (2) of the main text,
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In order to fix undetermined coefficients 4;, and B, we can go over the same procedure by
using the continuity of tangential magnetic fields at two interfaces. Continuity of H, field at z=-

h/2 gives

Y [8,00,0+ R, ,, e

mn

:%Sin [%j[/llezklh/z _Bleiklh/z] (on c(l)), (1.13)

0

. " )
= dye ikyh!2 —B2€lkoh/2 (on c( )).

Also, from the continuity at z=h/2, we have

i¢mn
2T me
mn

= %sin (%j[Aleik‘h/z - Ble"ik‘h/z] (on W ), (1.14)

0

ikoh/2 —ikgh/2 2
=4, —B,e™ (onc()).

Previously, we have used the Fourier transform that is identical to the projection onto the plane-
wave basis. This was possible because the electric field in the metasurface is defined everywhere
including inside the metal, whereas the magnetic field is defined only in two light channels.

Therefore, for the magnetic field, instead of Fourier transform, we make use of projection of the

(1

plane-wave onto waveguide modes [1, 2]. From Eq. (1.13), projections onto the modes in ¢*’ and

@

? respectively give
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and from Eq. (1.14), we have
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_ K h2 ik
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(1.16)
ZTy mn@.mn _ [Azeikoh/z _Bze—z’koh/z:"
Here, two vector-dependencies P, and P, are defined by
_ 2 ra b (7Y ) 2dxdy
Pmn =—j0 dXIO dysm(T} —7 i
(1.17)

1 a+w+ , : d,
E’mn E—d-[ - jod dye o :g_@mn.

X

Combining Eq. (1.12), (1.15), and (1.16), we can obtain a coupled equation for coefficients A4 »

and B »:

Ae o Hih/2 (W—i— 11:1 j_i_Bleiklh/Z (W—%]—F Aze—ikoh/ZW +Bzeikoh/zﬁ} :§,
0

. T
] A D A N v A N 7 ) 1.18
1 i 1 k 2 2 ( )
0 0

A&V 4 BV 4 Ape M (V +1)+ B (V1) =2,
Aleiklh/zﬁ n Ble—iklh/zﬁ n Azez’koh/z (V _1) n Bze—ikoh/z (V +1) =0.

Four coupling factors are given by
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where
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The followings can be obtained explicitly from Eq. (1.18):

A1+Bl=i{—ﬁ}cos(mj+i(lfcos(k° —isin Ohj }
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2. Resonance condition

The deep sub-wavelength thickness and lattice spacing of the metasurface allows to approximate
Eq. (1.12) and (1.20). By expanding up to linear terms of koh, kih, and gh, we have an

approximated form of Eq. (1.12) as

T~ [A + B +(4, B)’kzh} g"[A2+BZ+(A B)lkzh}

"0 dd n d,
2ab ik ik _
N a i g, i
Ry,oo~1—dx yﬂ_[Al-i-Bl (A B) 21 } dX[A2+BZ (A B) 5 }
Equation (1.20) can be also approximately written as

A+ B~ ——[-al¥ -4y —2ikh], 4B~ 4k
n, 7Z'k

A, +B, ~ b ;rW—m——W B, ~1, 2.2)
7T 2k,

Then, by putting Eq. (2.2) into Eq. (2.1), we arrive at simplified zero-th order transmission

coefficient that are necessary to define the resonance condition:

T, o~ F+io
2
o 1| 2ab (=W + 4y — 2k ) + o —iz S 4 || (2.3)
7y | d.d,w d, 2k,

o =kop| 220, 8 |
dd .z 2d,
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Note that o is real-valued and very small when #,g <<a,b. Now, we find the resonance

condition by examining the requirement for the vanished transmittance. From Eq. (2.3), the

vanished transmittance can be written as
1700 i +2Re(F)o ~Re(F)+2Im(F)o=0. (2.4)

In Eq. (2.4), we neglected the contribution from o and used an approximation |F|*~ Re(F) that

can be found from Eq. (1.12) and the lossless condition |7]*+ |R|*= 1. Also, by using the fact that

TRe(W)= 4Re(ﬁ) and ﬁRe(@’) =4Re(V), we can rewrite Eq. (2.4) as

Re(F)+2Im(F)o =Im(zn,)+20Re(7,) (2.5)

Therefore, the resonance condition can be approximately found by evaluating #; and letting
Im(7;)+20Re(#,)=0. From Eq. (1.19) and (2.2), one can find that the real and imaginary parts of

71 can be written as

o 4ady2gx N Zaha’y2

Re(n)~—pa ** opa
. t (2.6)
Im(p)~—2_| &k gy 784 L ki
V=Faa| = 2db k2 |

Substituting Eq. (2.6) into (2.5) gives the resonance condition as

rg.d’ 7*d 4ad? 2ahd?
2.k, In 278, |3 +—g" j’i—mﬂ%h 1+g"‘ = - §gx§2+ — [=0. 2.7)
V4 d 2) 2db" k, 2 8ab n°b’d, nbd,

X
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Note that Qzln(27rgx/dx)—3/2. For deep sub-wavelength thickness and lattice spacing,

h,g.<<a,b< A, the last term of the left-hand-side of Eq. (2.7) can be suppressed. Then, we

finally arrive at simplified resonance condition:

22d°
M| 28| ' +3=0. 2.8)
g d_ ) 4db

Or equivalently, the resonance wavelength can be found as

X

2
g =20 |4 hT 5287 g (2.9)
d \d\g. d

y y

3. Macroscopic channel competition

The lattice-spacing-dependent resonance condition we have discussed so far is based on the
behavior of transmission amplitude of incident light. For the sake of deeper physical
interpretation of the resonance, it is worth focusing on some macroscopic near-field features.

Let’s revisit the transmission coefficient in Eq. (1.12):

dngﬂ [Aleiklh/Z +Ble—ik1h/2:|+%|:Azeikoh/2 +Bze—ik0h/2j|. (3.1)

x7y X

T, =

One can readily find that Eq. (3.1) can rewrite as

E, (xa y) '

3.2
dd (3.2)

T, o= (J-c(l) dxdy + J-cm dxdy)

Explicit evaluation of the integral over the channel ¢! by using Egs. (2.1)-(2.3) gives rise to
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2 2 .
2aba)zx (0) _a)res)_la

3 ; (3.3)
dd, nd.d, (a)z—a)zs) +a’

re.

where o = zd}w’ /(2b'k,) >0, w=27¢,/ A, @, =27c,/ A

res

and ¢ is the speed of light in

vacuum. In Eq. (3.3), we can find that the sign of Re(E (1)) changes at the resonance, while that

X

of Im(E(l)) does not change. Explicit evaluation of the integral over the second channel ¢

X

exhibits the same trend except for that overall sign is opposite to the ¢! case. Combining these
facts, we can restate the resonance condition in terms of lattice-averaged electric field

components by

Re(@) - Re(@) -0, Im(ﬁ) " Im(ﬁ) -0, (3.4)

X

All those trends are shown in Fig. S3(a) which plots lattice-averaged field components as
functions of lattice spacing. On the other hand, one can find that the magnetic field components

in each channel can be approximately written as

4 .
HS) ~ i—sm(ﬂj, HSI) ~ i, (3.5)
Hy 7T b Hy

with negligible imaginary parts as shown in Fig. S3(b). Therefore, the total energy flux through

the metasurface system, equivalent to the z-component of the time-averaged Poynting vector

<8 >= Re(Exﬁ* /2), can be simplified as <S:>=Re(E\)H,/2. This gives rise to an intuitive

criterion for the resonance condition through
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(s)>0, (s¥)<0, forg<g,
<S§‘>> <0, <S§2)> >0, forg>g, (3.6)

(s} =(s")=0, forg=g,.

The incident light transmits through the channel ¢!” when g<g, and otherwise the incident light
chooses channel ¢ to pass through the metasurface. Therefore, the resonance is a result of the
competition between those two channels to admit incident light. As shown in Fig. S4, our

interpretation perfectly agrees with FDTD results.
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Fig. S1. Schematics of our metasurface. ¢ and ¢® denote the two dominant light channels in

the metasurface.
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Fig. S2. Lattice-spacing-dependent transmission spectra in loosely-coupled metasurfaces. We set

b=2a, w=0.04a, and h=0.1a.
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Fig. S3. Lattice-averaged (a) E, and (b) H, at z=0 for two light channels. Blue dotted line in (a)

denotes the critical lattice spacing g;, calculate by Eq. (2.8). We set b=a, w=0.05a, and 4#=0.05a,

and A=10a.

S-15



0 <Sz> 0.03
- Jiam

K -0.07 0 <Sz>0.07 -0.03

&> o -
1 =0U. ‘ gx, =0.07

H, |

Fig. S4. FDTD-calculated maps of the time-averaged Poynting vectors through metasurfaces

with two different lattice spacing sizes. We considered the same geometric parameters used in

Fig. S3.

References

[1]J. H. Kang, J. H. Choe, D. S. Kim, and Q. H. Park, Optics Exp. 17, 15652 (2009).

[2] F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729

(2010).

S-16



