Isothermal Flow-induced Crystallization of Polyamide 66 melts

Jiho Seo¹, Hideaki Takahashi², Behzad Nazari¹, Alicyn M. Rhoades³, Richard P. Schaake⁴, and Ralph H. Colby^{*,1}

¹Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802, United States

²Toray Research Center Inc., Otsu, Shiga 520-8567, Japan

³School of Engineering, Penn State Behrend, Erie, Pennsylvania 16563, United States

⁴SKF Engineering and Research Centre, 3439 MT Nieuwegein, The Netherlands

Supporting Information

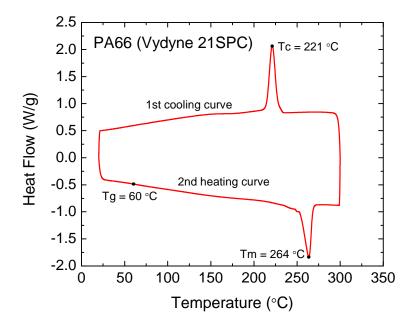


Figure S1. DSC 1st cooling and 2nd heating trace of polyamide 66 (Vydyne 21SPC). The cooling and heating rate were 10 °C/min. The Tg, Tm, and Tc were 60, 264, and 221 °C, respectively.

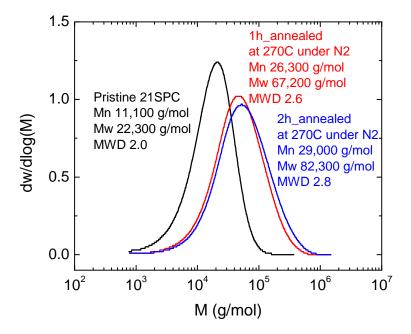


Figure S2. The molecular weight distributions of polyamide 66 (Vydyne 21SPC) pristine (black), annealed for 1 hour (red), and annealed 2 hours (blue) at 270 °C under N2, respectively. The

prepared PA66/HFIP solution (0.05 wt%) was filtered prior to SEC measurement in order to remove insoluble gels. The weight loss of 1 hour and 2 hours annealed PA 66 after the filter were 5.4 and 7.3 wt%, respectively.

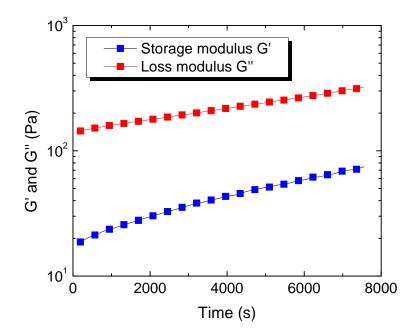


Figure S3. Oscillatory time sweep of polyamide 66 (Vydyne 21SPC) at 270 °C under N2. 25 mm cone and plate were used with a frequency of 0.05 rad/s and a strain amplitude of 0.05.

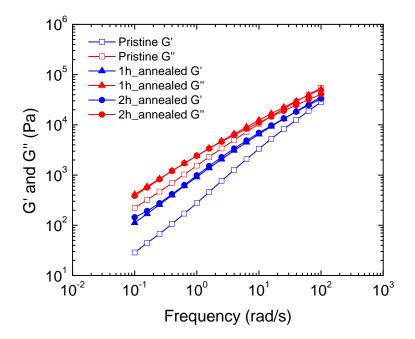


Figure S4. Linear viscoelastic behaviors of polyamide 66 (Vydyne 21SPC) pristine (open square), annealed for 1 hour (solid triangle), and annealed for 2 hours (solid circle) at 270 °C under N2, respectively. 8 mm parallel plates were used with a strain amplitude of 0.05.

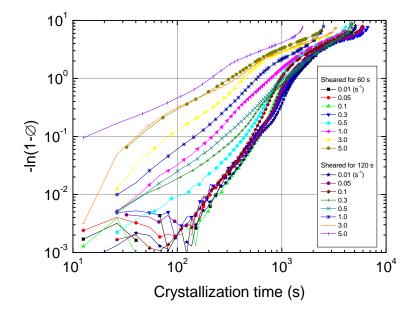


Figure S5. Avrami plot constructed with storage modulus evolution of PA 66 (Vydyne 21SPC) at $T_c = 245$ °C as a function of crystallization time. The samples were prepared by shearing at $T_s = 270$ °C for 60 s and 120 s using 8 mm parallel plates. The constant frequency of 1 rad/s was applied during crystallization with the constant strain amplitude of 0.05.