Supporting Information ## Switching Brake Materials to Extremely Wear-Resistant Self-Lubrication Materials via Tuning Interface Nanostructures Qinglun Che^{a,b}, Ga Zhang*b,c, Ligang Zhang^b, Huimin Qi^{b,d}, Guitao Li^b, Chao Zhang^e, Feng Guo^a ^aCollege of Mechanical Engineering, Qingdao University of Technology, Qingdao 266033, China ^bState Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China ^cQingdao Center of Resource Chemistry & New Materials, Qingdao 266071, China ^dUniversity of Chinese Academy of Sciences, Beijing 100049, China ^eCollege of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China *Corresponding author: Prof. Ga Zhang E-mail: gzhang@licp.cas.cn Tel: +86-931-4968041 Fax: +86-931-4968180 Figure S1. SEM morphologies of (a) ZrO₂, (b) Al₂O₃ and (c) SiO₂ nanoparticles. **Figure S2.** Sintering and annealing parameters (temperature, pressure and time) for preparing the composites. **Figure S3.** Photography of tribometer (a) and schema of contact configuration of sliding pair (b). **Figure S4.** Optical micrographs of triboflims formed on steel counterface after sliding against BraM-C (a), BraM-3Zr (b), BraM-3Al (c), and BraM-3Si (d) at 30 MPa. Arrows indicate areas covered by tribofilms. **Figure S5.** SEM micrographs (a) and EDS maps of Fe (b), O (c), C (d), Ba (e), Mg (f) and Si (g) elements of the steel surface rubbed with BraM-C at 30 MPa.