Supporting Information

A Highly Transparent Crosslinkable Radical Copolymer Thin Film as the Ion Storage Layer in Organic Electrochromic Devices

Jiazhi He,[†] Sanjoy Mukherjee,[‡] Xingrui Zhu,[‡] Liyan You,[†] Bryan W. Boudouris^{,†,‡} and Jianguo Mei^{*,†}

[†]Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States

[‡]Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States

*E-mail: jgmei@purdue.edu

Table of Contents	Page number
Double-potential step chronoamperometry of a two-electrode cell o	f PTMA-co-BP and pre
oxidized ECP-magenta	S-3
Cyclic voltammogram of ECP-magenta	S-3
EIS measurements of the PTMA and PTMA-co-BP thin films	S-3-S-4
R(Q(RM)) Equivalent Circuit	S-4
Reference	S-5

Figure S1. Double-potential step chronoamperometry of a two-electrode cell of PTMA-*co*-BP and pre-oxidized ECP-magenta. The voltage was switched between -1.0 V and 2.2 V.

Figure S2. Cyclic voltammogram of ECP-magenta with a thickness of ~ 240 nm at the scan rate of 40 mV s⁻¹.

The EIS experiments were obtained using a 20 mV perturbation amplitude ($V_{rms} = 14.4 \text{ mV}$) in a frequency ranging from 1.0 Hz to 1.0 MHz. The stray points with a negative value in high frequency and the deviated points in low frequency were removed before data fitting.

Figure S3. (a)EIS measurements of the PTMA thin film (inset: the full spectrum of EIS), and (b) the crosslinked PTMA-*co*-BP thin film (inset: the full spectrum EIS).

Scheme S1. R(Q(RM)) Equivalent Circuit

Both EIS measurements show small semi-circle in the high-frequency region which is related to the double layer capacitance and charge transfer resistance. In the low-frequency region, the impedance plots show a line approaching 90°. While coming to the lower frequency ~ 10 Hz, they start to deviate and appear like an arc shape. (Figure S1) Thus, a modified Randles circuit with a restricted linear diffusion element was used as the equivalent circuit to model the EIS spectra after removing the deviation points. (Scheme S1) From the fitting results, the R_{ct} for PTMA and PTMA-co-BP are 14.2 Ω and 15.7 Ω , respectively. The similar values of R_{ct} suggest the crosslinking of PTMA-co-BP thin films did not result in an increase of ionic resistances.

Reference

(1) Bobacka, J.; Lewenstam, A.; Ivaska, A. Electrochemical Impedance Spectroscopy of Oxidized poly(3,4-Ethylenedioxythiophene) Film Electrodes in Aqueous Solutions. *J. Electroanal. Chem.* **2000**, 489 (1), 17–27.