Supporting Information

Synergistically Enhanced Antimetastasis Effects by Honokiol-Loaded pH-Sensitive Polymer-Doxorubicin Conjugate Micelles

Yang Zou, Yuanhang Zhou, Yao Jin, Chuyu He, Yunqiang Deng, Shidi Han, Chuhang Zhou, Xinru Li, Yanxia Zhou, and Yan Liu*

Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
*Corresponding author. E-mail: yanliu@bjmu.edu.cn

Figure S1. (A) Thin layer chromatograms (TLC) of PEOz-PLA-CHO purified in ether for three (PP-CHO3) and four (PP-CHO4) times and 4-Carboxybenzaldehyde (CBA). (B) TLC of PEOz-PLA-CHO (PP-CHO), PEOz-PLA-imi-DOX before (PP-DOX') and after (PP-DOX) applied to Sephadex LH-20 column, and DOX. PEOz-PLA-CHO and PEOz-PLA-imi-DOX were developed to be yellow spots by iodine. PEOz-PLA-CHO and CBA showed fluorescence quenching under 254 nm UV lamp, PEOz-PLA-imi-DOX and DOX showed fluorescence under 365 nm UV lamp. TLC of PEOz-PLA-imi-DOX following hydrolysis for 24 h at pH 5.0 and pH 7.4 (C), and 5 min at pH 3.4 (D). PEOz-PLA-imi-DOX was dissolved in methanol (MeOH) and buffer solution with different pH (ABS with pH 3.4 and 5.0 , and PBS with pH 7.4).

Figure S2. Plot of the ratio of fluorescence intensity at 335 nm to that at 333 from pyrene as a function of $\ln (1 / C)$ for PEOz-PLA-imi-DOX in distilled water.

B1

Figure S3. Changes in particle size and its distribution (A) and morphology (B) of HNK5/PP-DOX1-PM in PBS (pH 7.4) with time at $37^{\circ} \mathrm{C}$. TEM images were obtained at 0 h (B1) and $72 \mathrm{~h}(\mathrm{~B} 2)$.

Table S1. The Blood Routine Index of BABL/C Nude Mice Injected MDA-MB-231-Luc-GFP Cells After Treatment with Various Micellar Formulations.

Blood routine index	Saline	HNK5+DOX1/PP-PM	HNK5/PP-DOX1-PM
GR (10 $/ \mathrm{L})$	2.98 ± 0.93	3.36 ± 1.29	2.51 ± 1.53
GR\% (\%)	36.25 ± 11.32	54.74 ± 16.29	52.33 ± 10.24
HCT (\%)	47.68 ± 1.20	40.40 ± 2.72	37.43 ± 5.68
HGB (g/L)	150.50 ± 5.24	125.20 ± 8.37	121.16 ± 18.40
LY (10 $/ \mathrm{L})$	4.78 ± 1.41	2.46 ± 1.04	1.78 ± 0.51
LY\% (\%)	57.48 ± 10.67	40.68 ± 15.46	42.26 ± 10.51
MCH (pg)	15.15 ± 0.54	14.48 ± 0.60	14.51 ± 0.54
MCHC (g/L)	315.50 ± 8.02	309.80 ± 9.62	323.83 ± 9.98
MCV (fL)	47.98 ± 2.08	46.66 ± 1.62	44.93 ± 1.45
MO (109/L)	0.51 ± 0.12	0.28 ± 0.08	0.23 ± 0.12
MO\% (\%)	6.27 ± 1.09	4.58 ± 1.31	5.40 ± 2.09
MPV (fL)	5.68 ± 1.05	4.94 ± 0.11	5.30 ± 0.11
PCT (\%)	0.19 ± 0.09	0.26 ± 0.05	0.21 ± 0.05
PDW (fL)	13.62 ± 0.94	13.24 ± 0.29	13.86 ± 0.58
PLT (10 $/ \mathrm{L})$	371.83 ± 173.28	$526.80 \pm 100.77^{\mathrm{a}, \mathrm{c}}$	$399.50 \pm 95.27^{\mathrm{b}}$
RBC (10 $12 / \mathrm{L})$	9.95 ± 0.60	8.64 ± 0.74	8.32 ± 1.22
RDW (\%)	13.40 ± 1.13	13.08 ± 0.76	12.50 ± 0.23
WBC (109 $/ \mathrm{L})$	8.28 ± 1.38	6.10 ± 0.94	4.53 ± 2.06

${ }^{a} p<0.001,{ }^{b} p>0.05$, vs saline;
${ }^{c} p<0.001$, vs HNK5/PP-DOX1-PM.

