Supporting Information

Halobenzoquinone-Induced Alteration of Gene Expression Associated with Oxidative Stress Signaling Pathways

Jinhua Li,*^{,†,‡} Birget Moe,^{‡,§} Yanming Liu,[‡] and Xing-Fang Li^{*,‡}

[†] Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, China 130021

[‡] Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3

[§] Alberta Centre for Toxicology, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1

Corresponding Authors

*Email: Xing-Fang Li <u>xingfang.li@ualberta.ca</u>. *Email: Jinhua Li <u>jinhua1@jlu.edu.cn</u>

Table of Contents

Methods
Table S1. HBQ chemical structure, molecular weight, molecular formula, and purity
Table S2. Primer sequences used for real-time PCR S6
Table S3. Genes included for analysis in the TaqMan array S7
Table S4. Significant gene expression changes vs concurrent negative controls after 2 h and 8 hHBQ exposure in SV-HUC-1 cellsS9
Figure S1. The 96-well format of the customized Taqman array
Figure S2. Cytotoxicity response profiles of the normalized cell index (CI) over time for SV-HUC-1 cells exposed to (A) 2,6-DCBQ, (B) 2,5-DCBQ, (C) 2,6-DBBQ, (D) 2,5-DBBQ, (E) DCMBQ, and (F) TriCBQ. S14
Figure S3. Cytotoxicity response profiles of the normalized cell index (CI) over time for SV-HUC-1 cells exposed to (A) 2,6-DCBQ, (B) 2,6-DBBQ, (C) DCMBQ, and (D) TriCBQ with 1 mM <i>N</i> -acetyl-L-cysteine (NAC) pretreatment
Figure S4. IC ₅₀ values of the HBQs with or without 1 mM <i>N</i> -acetyl-L-cysteine (NAC) pretreatment in SV-HUC-1 cells after (A) 24 h, (B) 48 h, or (C) 72 h exposure
Figure S5. Time-course of ROS generation in SV-HUC-1 cells after each HBQ treatment at their respective IC ₂₀ values
Figure S6. Densitometry plot of the capillary electrophoresis data of the RNA isolated from HBQ-treated SV-HUC-1 cells, obtained using an Agilent Bioanalyzer 2100
Figure S7. Typical capillary electropherograms of the RNA isolated from HBQ-treated SV- HUC-1 cells, obtained using an Agilent Bioanalyzer 2100
Figure S8. Time-course of HBQ-induced (A) <i>NFE2L2</i> and (B) <i>NQO1</i> gene response in SV-HUC-1 cells. S20
References

Methods

HBQ-Induced Cytotoxicity. The principles and detailed procedures for real-time cell analysis (RTCA; ACEA Biosciences, San Diego, CA) have been reported previously.¹ The unitless parameter, cell index (CI), is the data output of the instrument and corresponds to the density of adherent cells on the bottom of each well. SV-HUC-1 cells were seeded into 96-well E-plates of the instrument at a density of 1.5×10^4 cells per well. When the CI reached a value of 1 after approximately 20 h growth, cells were treated with a range of serially-diluted HBQs (0–75 μ M for 2,6-DCBQ, 2,6-DBBQ, DCMBQ, TriCBQ; 0–50 μ M for 2,5-DCBQ; 0–20 μ M for 2,5-DBBQ). The CI of each well was measured hourly for up to 80 h after treatment. Negative controls (no HBQ treatment; culture medium) and solvent controls (1% methanol (v/v) in culture medium) were tested concurrently with the HBQ treatments. Replicates were prepared in triplicate for each experimental condition, and three independent experiments were performed (n = 3).

To confirm that oxidative stress is involved in HBQ-induced cytotoxicity in SV-HUC-1 cells, RTCA experiments described above were repeated following pretreatment with the antioxidant *N*-acetyl-L-cysteine (NAC; Sigma-Aldrich, St. Louis, MO). Cells were pretreated at the time of seeding with 1 mM NAC. When the CI reached a value of 1, the medium in each well was discarded and cells were treated with a range of serially-diluted HBQs (0–150 μ M for 2,6-DCBQ, TriCBQ; 0–125 μ M for 2,6-DBBQ; 0–100 μ M for DCMBQ) for up to 80 h after treatment. NAC controls (1 mM NAC) were included in each experiment in addition to the negative controls and solvent controls described above. Replicates were prepared in triplicate for each experimental condition, and three independent experiments were performed (*n* = 3).

Detection of Reactive Oxygen Species. SV-HUC-1 cells were seeded into solid black 96-well plates (Corning Costar, Fisher Scientific, Ottawa, ON, Canada) at a density of 1.5×10^4 cells per well. After 20 h growth, each well was washed twice with Dulbecco's phosphate buffered saline (DPBS; Invitrogen, Burlington, ON, Canada), loaded with 25 μ M DCFH-DA in F-12K medium without FBS, and incubated at 37°C for 45 min. After incubation, each well was washed twice with DPBS and treated with individual HBQs at their respective concentration of equivalent biological response (IC₂₀). The plate was read ($\lambda_{ex} = 485$ nm, $\lambda_{em} = 535$ nm) in a fluorescence microplate reader (Beckman Coulter DTX880 Multimode Detector) at the indicated time points of exposure (0.5, 1, 2, 4, 6, 8, 24, 48, and 72 h). Negative controls (no HBQ treatment; culture

medium) and solvent controls (1% methanol (v/v) in culture medium) were also measured at each time point. Six replicates were used for each experimental condition, and three independent experiments were performed (n = 3).

Real-time PCR with Fast SYBR Green. A 10 μ L reaction system was used, consisting of 2 × Fast SYBR Green Master Mix and 500 nM of each primer and cDNA. The amplification reaction conditions were 95 °C for 20 s, followed by 40 cycles of 95 °C for 3 s and 60 °C for 30 s. Melt curves were conducted after amplification for each gene.

TaqMan Array. The plate layout file was first imported into the real-time PCR system computer. A volume of 10 μ L of reaction system was added into each well, consisting of 2 × TaqMan Fast Universal PCR Master Mix and cDNA. After the plate was covered and briefly centrifuged, the real-time PCR reaction was run on the plate: 50 °C for 2 min and 95 °C for 20 s, followed by 40 cycles of 95 °C for 3 s and 60 °C for 30 s.

HBQs	Molecular Weight	Molecular Formula	Purity	Structure
2,6-dichloro-1,4- benzoquinone [2,6-DCBQ]	176.98	$C_6H_2Cl_2O_2$	98%	
2,5-dichloro-1,4- benzoquinone [2,5-DCBQ]	176.98	$C_6H_2Cl_2O_2$	98%	CI CI
2,6-dichloro-3- methyl-1,4- benzoquinone [DCMBQ]	191.01	$C_7H_4Cl_2O_2$	98%	CI CI CI CH ₃
2,6-dibromo-1,4- benzoquinone [2,6-DBBQ]	263.84	$C_6H_2Br_2O_2$	≥98%	Br Br
2,5-dibromo-1,4- benzoquinone [2,5-DBBQ]	263.84	$C_6H_2Br_2O_2$	N.A.*	Br O O
2,3,6-trichloro-1,4- benzoquinone [TriCBQ]	211.43	C ₆ HCl ₃ O ₂	≥98%	CI CI CI CI CI

Table S1. HBQ chemical structure, molecular weight, molecular formula, and purity

*N.A. = not available from the manufacturer. The mass spectra of 2,5-DBBQ showed high purity in our previous publication (Huang, et al.).²

1 abit 52.1	Timer sequences used for real-time reck	
Gene	Forward (5'-3')	Reverse (5'-3')
NFE2L2	TCC AGT CAG AAA CCA GTG GAT	GAA TGT CTG CGC CAA AAG CTG
NQO1	ACT GCC CTC TTG TGG TGC AT	GCT CGG TCC AAT CCC TTC AT
GAPDH	TGC ACC ACC AAC TGC TTA GC	GGC ATG GAC TGT GGT CAT GAG

 Table S2. Primer sequences used for real-time PCR

	Functional Group	Gene	Symbol
1	Transcription factor	Nuclear factor-erythroid 2- related factor (Nrf2)	NFE2L2
1	and its inhibitor	Kelch-like ECH-associated protein 1	Keap1
2	GSH utilization	Glutathione transferase	GST: GSTP1, GSTT1, GSTZ1, GSTM1, GSTA1, GSTA4
		Glutathione peroxidase	GPX: GPX1, GPX2, GPX4
3	GSH production	Glutamate–cysteine ligase	GCL: GCLM (GCL modifier subunit), GCLC (GCL catalytic subunit)
		Glutathione reductase	GSR
		Glutathione synthetase	GSS
		Thioredoxin reductase	TXNRD: TXNRD1, TXNRD2
4	Thioredoxin system	Peroxiredoxin	PRDX: PRDX1, PRDX2, PRDX3, PRDX4, PRDX5
		Sulfiredoxin	SRXN1
5	Membrane transporters	Multidrug resistance protein/ATP-binding cassette transporter subfamily C	MRP/ABCC: ABCC1, ABCC2, ABCC3, ABCC4, ABCC5
		NADPH:quinone oxidoreductase 1	NQO1
		Catalase	CAT
6	Antioxidants	Superoxide dismutase	SOD: SOD1, SOD2, SOD3
		Prostaglandin-endoperoxide synthase 2 [Cyclooxygenase-2]	PTGS2 [COX-2]
		Heme oxygenase (decycling) 1	HMOX1

Table S3. Genes included for analysis in the TaqMan Array

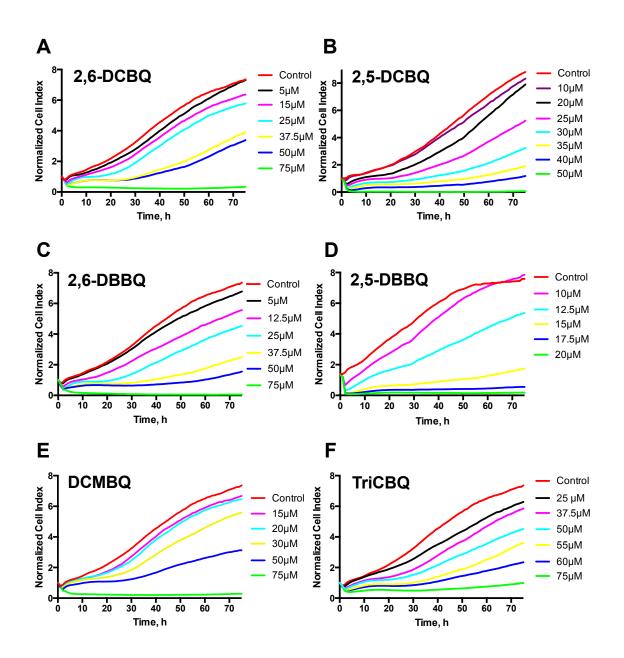
		N-acetyltransferase	NAT: NAT1, NAT2
		Lactoperoxidase	LPO
7	St	Myeloperoxidase	МРО
7	Stress responsive genes	Cytochrome b-245 beta chain	СҮВВ
		Cytoglobin	CYGB
		NADPH oxidase, EF-hand calcium binding domain 5	NOX5
8	Oxidative DNA damage repair	8-Oxoguanine glycosylase	0GG1
9	Cell cycle regulation	Cyclin-dependent kinase inhibitor 1, CDK-interacting protein 1[p21 / WAF1]	CDKNIA

		2,6-D	OCBQ	2,5-D	OCBQ	2,6-I	DBBQ	2,5-I	DBBQ	DCM	MBQ	Tri	CBQ
Gene	Time	fold	<i>P</i> value	fold	P value	fold	P value	fold	P value	fold	<i>P</i> value	fold	P value
		change		change		change		change		change		change	
NFE2L2	2h	1.309	0.034			1.437	0.003			1.589	0.005	1.443	0.005
	8h			1.153	0.030	-1.173	< 0.001	1.305	0.016			-1.085	< 0.001
KEAP1	2h			-1.337	0.003			-1.204	0.001				
	8h			1.208	0.007	-1.066	< 0.001					-1.108	< 0.001
GSTP1	2h	1.191	0.041	-1.224	0.011	1.419	0.031	1.151	0.045			1.281	0.019
	8h	-1.084	< 0.001			-1.095	< 0.001	-1.064	0.001	-1.071	< 0.001	-1.251	< 0.001
GSTT1	2h			-1.470	0.001			-1.414	< 0.001				
	8h	-1.091	< 0.001	-1.330	< 0.001	-1.323	< 0.001	-1.456	< 0.001	-1.201	0.003	-1.362	0.002
GSTZ1	2h			-1.286	0.019								
	8h	-1.174	< 0.001	1.134	0.036	-1.132	< 0.001			-1.315	0.004	-1.243	< 0.001
GSTA4	2h	-1.121	0.006	-1.373	0.014			-1.110	0.006			-1.142	0.006
	8h							1.477	0.039				
GPX1	2h	-1.099	< 0.001	-1.276	0.004			-1.090	< 0.001			-1.042	< 0.001
	8h	-1.266	< 0.001	-1.098	< 0.001	-1.149	< 0.001	-1.181	< 0.001	-1.232	< 0.001	-1.306	< 0.001
GPX2	2h	2.031	0.004			3.867	0.003			1.495	0.034	1.593	0.012
	8h	11.462	< 0.001	9.022	< 0.001	8.370	< 0.001	8.701	< 0.001	9.191	< 0.001	5.421	< 0.001
GPX4	2h					1.286	0.043						
	8h	-1.251	< 0.001	-1.093	0.001	-1.224	0.003	-1.240	< 0.001	-1.236	< 0.001	-1.371	0.003
GCLM	2h	1.512	0.003			1.477	< 0.001	1.330	0.001			1.394	0.015

Table S4. Significant gene expression changes vs concurrent negative controls after 2 h and 8 h HBQ exposure in SV-HUC-1 cells

	8h	2.016	0.002	2.372	< 0.001	1.557	0.010	2.605	0.008	2.170	< 0.001	1.616	0.024
GCLC	2h			-1.492	0.016			-1.302	< 0.001				
	8h	1.697	0.003	2.134	0.002	1.220	0.020	2.375	0.003	1.583	0.012	1.285	0.019
GSR	2h			-1.383	< 0.001			-1.163	< 0.001				
	8h	1.400	0.014	1.666	0.004	1.194	0.018	1.937	0.003	1.503	0.014	1.275	0.012
GSS	2h			-1.823	< 0.001	1.199	0.017	-1.097	< 0.001				
	8h					-1.043	0.004	-1.116	< 0.001	-1.176	0.003	-1.216	0.002
NQ01	2h	1.788	< 0.001	2.796	< 0.001	1.898	0.005	1.252	0.002	2.004	0.031	1.575	0.006
	8h	3.663	< 0.001	3.631	< 0.001	3.029	< 0.001	3.397	< 0.001	4.130	< 0.001	3.147	< 0.001
CAT	2h	1.171	0.015			1.326	0.001						
	8h	1.430	0.012	1.528	0.010	1.550	0.046	1.565	0.007	1.348	0.023	1.370	0.027
PTGS2	2h	2.364	< 0.001	1.365	0.007	2.378	0.006	1.352	0.035	3.403	0.004	1.693	0.035
	8h	2.089	< 0.001	1.903	< 0.001	1.638	0.001	2.673	< 0.001	3.262	< 0.001	1.184	< 0.001
SOD1	2h												
	8h			1.117	0.042	-1.257	0.002	1.195	0.013			-1.258	0.002
SOD2	2h												
	8h			1.275	0.021	-1.162	0.002	1.251	0.009			-1.199	< 0.001
HMOX1	2h	6.662	< 0.001	10.172	< 0.001	5.508	< 0.001	10.992	< 0.001	6.869	< 0.001	4.920	< 0.001
	8h	13.693	< 0.001	41.132	< 0.001	7.390	< 0.001	50.238	< 0.001	18.845	< 0.001	10.317	< 0.001
NAT1	2h												
	8h	-1.044	< 0.001			-1.088	0.002					-1.153	0.001
NAT2	2h	-1.443	0.021	-1.935	0.020								
	8h	-2.698	0.012	-2.649	< 0.001			-2.303	< 0.001			-3.210	0.004
CYBB	2h	2.244	0.003	3.519	0.017	1.746	0.020	3.770	0.006			1.719	0.002

	8h	3.536	0.005	16.999	< 0.001	14.008	< 0.001	20.085	< 0.001	2.433	< 0.001	13.962	< 0.001
CYGB	2h							-1.164	< 0.001				
	8h	1.501	0.026	1.930	0.002	1.297	0.002	1.651	< 0.001	2.200	< 0.001	1.183	0.005
NOX5	2h	-1.061	< 0.001	-1.488	< 0.001			-1.496	< 0.001			-1.107	0.004
	8h	-1.155	0.001	-1.425	0.001	-1.205	< 0.001	-1.621	0.002	-1.426	< 0.001	-1.339	0.007
OGG1	2h	-1.054	< 0.001	-1.561	< 0.001	1.148	0.011	-1.490	< 0.001	1.111	0.004		
	8h	-1.044	< 0.001	-1.402	0.001	-1.073	< 0.001	-1.597	< 0.001	-1.046	< 0.001	-1.204	0.005
CDKN1A	2h	1.445	0.015	1.281	< 0.001	1.431	0.009	1.447	0.049	1.307	< 0.001	1.204	0.018
	8h	1.389	0.029	1.820	0.003			2.530	0.011	1.477	0.016		
TXNRD1	2h	2.516	0.002	1.886	0.005	2.313	0.004	1.972	0.004	2.570	0.002	1.971	0.004
	8h	1.955	< 0.001	3.553	< 0.001	1.590	< 0.001	4.785	0.001	2.575	< 0.001	1.789	< 0.001
TXNRD2	2h	-1.024	< 0.001	-1.737	0.001			-1.382	< 0.001				
	8h	-1.159	< 0.001	-1.455	< 0.001	-1.164	0.002	-1.593	< 0.001	-1.094	< 0.001	-1.262	< 0.001
PRDX1	2h							-1.096	0.001				
	8h	1.090	0.013			-1.042	< 0.001	1.095	0.010	1.149	0.028	-1.102	0.004
PRDX2	2h	-1.045	0.001			1.115	0.003	-1.188	< 0.001				
	8h					-1.101	< 0.001	-1.063	< 0.001	-1.050	< 0.001	-1.092	< 0.001
PRDX3	2h	-1.046	< 0.001			1.174	0.009	-1.138	< 0.001				
	8h			-1.047	< 0.001	-1.062	< 0.001	-1.137	< 0.001	-1.075	< 0.001	-1.150	0.002
PRDX4	2h							-1.353	< 0.001				
	8h			-1.216	< 0.001	-1.292	0.004	-1.303	< 0.001	-1.061	< 0.001	-1.336	0.002
PRDX5	2 h					1.1878	0.022						
	8h	-1.139	0.001			-1.200	0.002			-1.120	0.001	-1.329	0.002
SRXN1	2h					1.369	< 0.001	-1.197	< 0.001	1.315	< 0.001	1.228	0.007


	8h	1.739	0.007	1.987	0.008			2.283	0.009	1.755	0.011		
ABCC1	2h			-1.210	< 0.001			-1.245	< 0.001				
	8 h							1.061	0.018				
ABCC2	2 h			-1.331	0.001								
	8h	1.529	0.010	2.083	0.001	1.231	0.027	3.051	0.002	1.740	< 0.001		
ABCC3	2 h			-1.665	< 0.001			-1.67	< 0.001				
	8h	1.778	0.004			1.300	0.016			1.851	0.019	1.266	0.011
ABCC4	2 h	-1.140	< 0.001	-1.167	< 0.001	-1.008	< 0.001	-1.089	< 0.001			-1.045	< 0.001
	8h												
ABCC5	2 h			-1.300	< 0.001			-1.197	< 0.001				
	8h					-1.100	0.001			1.178	0.046	-1.116	< 0.001

Functional gene groups: membrane transporter, coidative DNA damage repair, cell cycle regulation, stress responsive gene, antioxidants, thioredoxin system, transcription factors, GSH utilization, and GSH production.

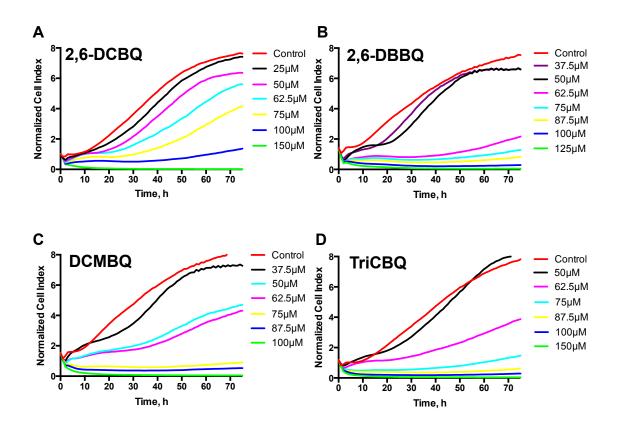
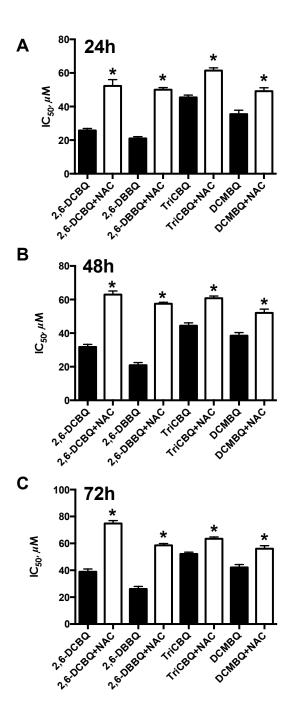

	1	2	3	4	5	6	7	8	9	10	11	12
Α	18S rRNA	GAPDH	HPRT1	GUSB	NFE2L2	KEAP1	18S rRNA	GAPDH	HPRT1	GUSB	NFE2L2	KEAP1
B	GSTP1	GSTT1	GSTZ1	GSTM1	GSTA1	GSTA4	GSTP1	GSTT1	GSTZ1	GSTM1	GSTA1	GSTA4
С	GCLM	GCLC	GPX1	GPX2	GPX4	GSR	GCLM	GCLC	GPX1	GPX2	GPX4	GSR
D	GSS	NQ01	NAT1	NAT2	TXNRD1	TXNRD2	GSS	NQ01	NAT1	NAT2	TXNRD1	TXNRD2
Ε	CAT	SOD1	SOD2	SOD3	PTGS2	PRDX1	CAT	SOD1	SOD2	SOD3	PTGS2	PRDX1
F	PRDX2	PRDX3	PRDX4	PRDX5	SRXN1	LPO	PRDX2	PRDX3	PRDX4	PRDX5	SRXN1	LPO
G	MPO	CYBB	CYGB	NOX5	HMOX1	<i>OGG1</i>	MPO	CYBB	CYGB	NOX5	HMOX1	<i>OGG1</i>
Η	CDKN1A	ABCC1	ABCC2	ABCC3	ABCC4	ABCC5	CDKN1A	ABCC1	ABCC2	ABCC3	ABCC4	ABCC5

Figure S1. The 96-well format of the customized TaqMan Array. *18S rRNA, GAPDH, HPRT1*, and *GUSB* were used as the reference controls. Samples are in duplicate format.


Functional gene groups: membrane transporter, citative DNA damage repair, cell cycle regulation, stress responsive gene, antioxidants, thioredoxin system, transcription factors, GSH utilization, and GSH production.

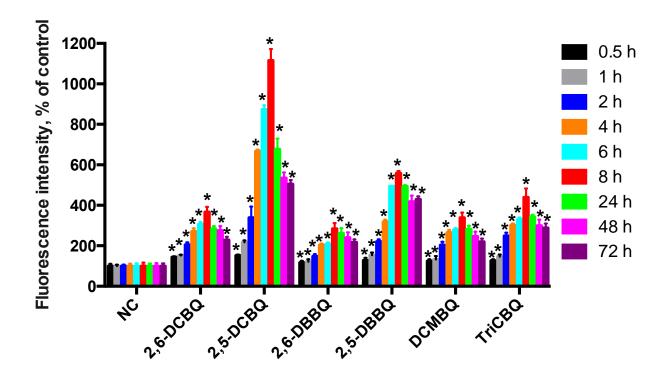
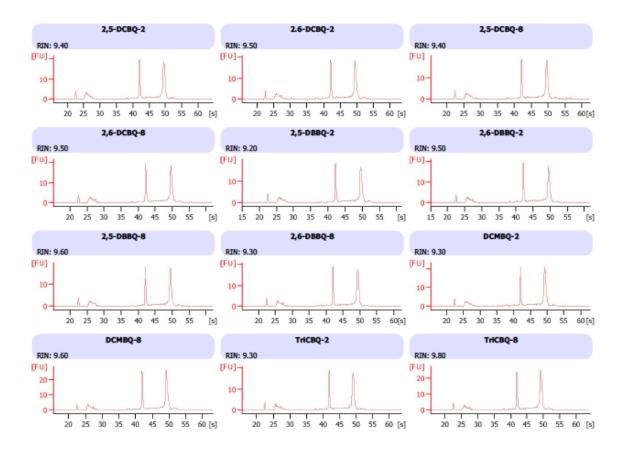
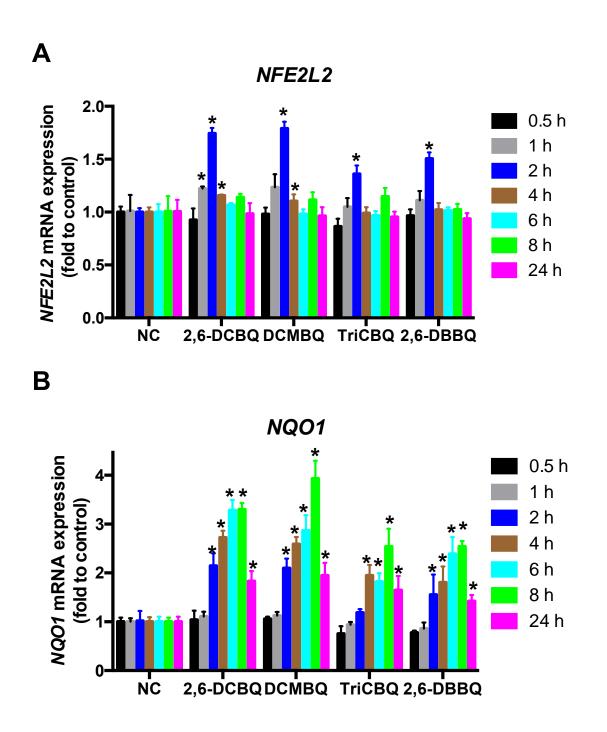

Figure S2. Cytotoxicity response profiles of the normalized cell index (CI) over time for SV-HUC-1 cells exposed to (A) 2,6-DCBQ, (B) 2,5-DCBQ, (C) 2,6-DBBQ, (D) 2,5-DBBQ, (E) DCMBQ, and (F) TriCBQ.

Figure S3. Cytotoxicity response profiles of the normalized cell index (CI) over time for SV-HUC-1 cells exposed to (A) 2,6-DCBQ, (B) 2,6-DBBQ, (C) DCMBQ, and (D) TriCBQ with 1 mM *N*-acetyl-L-cysteine (NAC) pretreatment.


Figure S4. IC₅₀ values of the HBQs with or without 1 mM *N*-acetyl-L-cysteine (NAC) pretreatment in SV-HUC-1 cells after (A) 24 h, (B) 48 h, or (C) 72 h exposure. Values are expressed as the mean \pm SD, n = 3. *P < 0.05, HBQ + NAC treatment group vs. HBQ treatment group.


Figure S5. Time-course of ROS generation in SV-HUC-1 cells after each HBQ treatment at their respective IC₂₀ values. All values are expressed as mean \pm SEM of six replicates determined in a representative experiment, and similar results were obtained in three independent experiments (*n* = 3). NC = negative control. *P < 0.05, ROS generation at each time point compared with their concurrent control at the corresponding time point.

[5]	Ladder	2,5-DCBQ-2	2.6-DCBQ-2	2,5-DCBQ-8	2,6-DCBQ-8	2.5-DBBQ-2	2,6-DBBQ-2	2,5-DBBQ-8	2,6-DBBQ-8	DCMBQ-2	DCMBQ-8	TriCBQ-2	TriCBQ-8
65 —	٠												
60 —													
55 —													
50 —		_	_	_	_	_	_	_	_	_	_	_	_
<mark>45</mark> —	_												
40 —	_												
35 —													
30 —													
25 —	_												
20 —													
15 —													
	L	1	2	3	4	5	6	7	8	9	10	11	12

Figure S6. Densitometry plot of the capillary electrophoresis data of the RNA isolated from HBQ-treated SV-HUC-1 cells, obtained using an Agilent Bioanalyzer 2100.

Figure S7. Typical capillary electropherograms of the RNA isolated from HBQ-treated SV-HUC-1 cells, obtained using an Agilent Bioanalyzer 2100. The RNA Integrity Number (RIN) values were greater than 9.0 in all samples, indicating high RNA integrity.

Figure S8. Time-course of HBQ-induced (A) *NFE2L2* and (B) *NQO1* gene response in SV-HUC-1 cells. SV-HUC-1 cells were treated with HBQ concentrations equal to 24h-IC₂₀ values. mRNA expression was determined by real-time PCR and normalized by *GAPDH*. Values are expressed as the mean \pm SD, n = 3. *P < 0.05, HBQ treatment group vs concurrent negative control (NC).

References

(1) Du, H.; Li, J.; Moe, B.; McGuigan, C. F.; Li, X.-F. A real-time cell-electronic sensing method for comparative analysis of toxicity of water contaminants. *Anal. Methods* **2013**, *6*, 2053-2058.

(2) Huang, R.; Wang, W.; Qian, Y.; Boyd, J. M.; Zhao, Y.; Li, X.-F. Ultra pressure liquid chromatography-negative electrospray ionization mass spectrometry determination of twelve halobenzoquinones at ng/L levels in drinking water. *Anal. Chem.* **2013**, *85* (9), 4520-4529.