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1: Experimental conditions 

All experiments were performed on an aberration-corrected FEI Titan Themis at 

80 kV with ~20 pA beam current. A 1.6-mrad convergence angle was used, leading to a 

~3 nm probe size, which is the spatial resolution we used for our experiments in this 

paper. More details are discussed in the fourth part of SI #2, optimizing convergence 

angle and spatial resolution. 

In addition, an exposure time of 1.86 ms (1 ms acquisition time along with 0.86 

ms readout time) was employed when acquiring the EMPAD 4D datasets. The scan size 

in real space (the number of pixels the beam scan across) can be set from 64×64 to 

512×512. The scan size of the data used in this paper was 512×512, followed by binning 

into 128×128 during the post-experiment data processing for speed and higher signal to 

noise ratio.  

Our data was collected under different magnifications. The full field-of-view 

ranges from 1.5 µm (such as Fig. 3d and Fig. 4d and e in the main manuscript) to 4 µm 

(such as Fig. 2a and b, Fig. 3a and c, Fig. 4c), which is indicated in the map’s scale bars. 

We used a 1.5 m camera length on our microscope, giving a ~50 mrad collecting angle on 

the EMPAD.  



 5 

2: Center of mass (CoM) accuracy 

CoM calculation 

 The CoM is calculated from the diffraction pattern, �����, using the following 

equation:  

    ⟨��⟩ = 	
 �� ��������	      (1) 

where  �� is the momentum in the diffraction space.  

 Fig. S1 shows the definition of our masks (green circles) that were applied to the 

diffraction disks and the center disk when we calculated their CoMs. The green dots label 

the calculated CoMs of all disks. Fig. S1c shows that the diffraction disk span across ~6 

pixels in diameter. The mask with a diameter of 12 pixels is aligned to the disk with 1/3-

pixel resolution by eye. We attempted aligning the mask as well as possible and, in fact, 

we achieved that the center of the mask is close to the measured CoM in Fig. S1d. In 

addition, measuring the centers for the EMPAD 4D data, generally a few gigabytes in 

size, requires a fast-computational algorithm. The CoM calculation is an O(n) algorithm 

(see code below), where n can usually be only tens of pixels for each diffraction disk. As 

a conclusion, CoM is a high-efficiency approach for measuring centers for the EMPAD 

4D datasets. 
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Figure S1 | CoM measurements. a, A diffraction pattern of WS2 on a 5 nm SiNx 

window taken by EMPAD. b, The diffraction pattern overlaid by the masks (green circles) 

and their CoMs (green dots). We manually placed the masks and aligned them to the 

diffraction spots by eye. c,d, A magnified diffraction disk (c) and its overlay with the 

mask and the CoM (d).  

 

The accuracy of CoM measurements 

 CoM has the advantage of speed and simplicity compared to more elaborate curve 

fitting procedures. The CoM provides sufficiently accurate centers of diffraction patterns 

of 2D materials mainly because of the following two reasons: 1) the rod-like nature of 

diffraction patterns of 2D materials and 2) the high dynamic range of our EMPAD, which 

counts all transmitted electrons. The errors for CoM measurements come from the 

unavoidable Poisson noise from the detector.   

 Here, we discuss how Poisson noise affects the CoM. For each pixel in the 

EMPAD, the Poisson noise is proportional to the square root of the number of electrons 

hitting that pixel. By calculating the error propagation in Equation (1), we achieved that  

��� = �⟨��⟩	
� 	     (2) 
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where	��� is the absolute error of CoM and I is the beam current. This result shows 

that reducing beam current will increase the error caused by Poisson noise, indicating that 

high beam current is preferred. However, there is a trade-off between high beam current 

for more accurate CoM and low beam current to avoid electron beam damage in 2D 

materials. Experimentally, we were working with a beam current of 20 pA, and used a 

binning factor of 4 in real space, resulting a total of 4x10
6 

electrons per frame and ~10
4
 

electrons in a second-order diffraction disk. 

 ⟨��⟩ is the second moment which will be defined in Equation (10). The second 

moment is a measure of the beam broadness and has a unit of length square in the 

diffraction space. As a result, Equ. (2) implies a linear growth of the error corresponding 

to the disk diameter. Fig. S2a shows the diffraction disks with different diameters, which 

can be measured in the unit of pixels of the detector. We simulated ��� for different 

disk diameters by averaging the errors from 1,000 diffraction patterns with Poisson noise 

(Fig. S2b). The results indicate the absolute error (���) is proportional to the disk 

diameter for a given dose. 

 There are two ways to reduce the disk diameters: decreasing the camera length 

(equivalent to building less pixels in the detector) or spread out the beam on the sample to 

focus the diffraction patterns in momentum space. We will discuss these two cases 

separately in the following sections. 

 

Designing number of pixels in the detector  

 The parameter determines the angular resolution is the percentage error, σ, which 

is the ratio between the absolute error (���) and the vector length, k:  

σ = 	���/�       (3) 

We note that k, as well as the disk diameter, changes correspondingly as we change the 

pixel size in the detector (or change the camera length to magnify or demagnify the 

diffraction patterns), as shown in Fig. S2c. In addition, since k is proportional to the disk 

diameter here, we ignored a constant scaling prefactor to assume k equals to the disk 

diameter. The percentage errors are plotted in Fig. S2d. The percentage errors are close to 

a constant with small increment at the smaller disk diameters, especially for the low-dose 

case. For example, if each diffraction disk only contains 10 electrons (blue curve in Fig. 
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S2d), we would choose 10-15 pixels for a disk diameter for reasonable angular resolution. 

For doses larger than 1000 electrons per disk, where we worked at, the optimized disk 

diameters will be any one larger than 5 pixels. Above that, the errors stay constant, 

indicating that we do not benefit from designing more pixels in the detector or 

magnifying the diffraction patterns. 

 

Optimizing convergence angle and spatial resolution 

 For diffraction disks at a fixed camera length and pixel size (k is fixed), the disk 

diameter is proportional to the convergence angle θ. Thus, the percentage error becomes: 

σ ∝ �
√�       (4) 

 Smaller convergence angles lead to less percentage errors (as shown in Fig. S2e 

and f). This means more parallel beam is preferred. The lower bound is a 2x2-pixel-sized 

diffraction disk, which is similar to a differential phase contrast (DPC) detector.  

 However, in STEM mode, the spatial resolution is determined by the spot size. 

For a diffraction-limited probe, there is a trade-off between the spatial resolution and the 

angular resolution in k-space. Reducing the convergence angle (improving the angular 

resolution) will decrease the spot size:  

�� = 1.22  
�       (5) 

d0 is the spot size and ! is the wavelength of the electrons. Combining Eq. (4) and (5) 

gives the relationship:  

 σ	 ∝ 1/��� × √��     (6) 

where improving the spatial resolution (reducing d0) will cause a reduction of the 

mapping precision for the same dose or it requires a square-dependence increment of the 

current to compensate.   
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Figure S2 | Accuracy of CoM measurements. a, Simulated diffraction patterns of 

different diameters (in pixels) with Poisson noise. b, Absolute errors of CoM (���) 

proportional to the disk diameters. c, Schematics of diffraction patterns when we increase 

the number of pixels in the detector (or magnify the diffraction patterns by changing the 

camera length). d, Percentage error plot (���/�) under the situation described in (c), 

with arrows indicating the lower bounds of the optimized disk diameters. (We used k = 



 10

disk diameter.) e, Schematics of diffraction patterns when we change the convergence 

angle. f, Percentage error plot (���/�) for cases in (e), showing that reducing the 

convergence angle will reduce the error and improve the angular resolution dramatically. 

(We used k = 30 pixels.) 

 

3: Mapping lattice constants 

 To calculate the lattice constants from a single diffraction pattern, we averaged 

the distances between diffracting beams and the center beam, d1 to d6, as shown in Fig. 

S3a. The averaged lattice constant is: 

      a$%& = '$()(
∑ )+,+-.

                                                  (7) 

where a0 and d0 are the calibrated ones from a referenced region. We used flat WS2 as the 

reference.  

 In STEM, EMPAD acquires diffraction patterns at each scan position with 1.86 

ms/frame (1 ms exposure time and 0.86 ms readout time) – so a 4D data (x and y in real 

space and kx and ky in momentum space) at 256×256 scan points can be reached in about 

two minutes. Using the 4D dataset, we can map the lattice constant throughout the entire 

sample.  

 Although there are strain and tilt at some regions in the sample, due to the 

averaging of the six spots in different directions, the strain and tilt effects are negligible. 

Fig. S3b and c show the schematics of how strain and tilt affect the diffraction pattern. 

The calculation below describes that the strain and tilt are higher order effects in the 

lattice constant calculation:  

   a′$%& ≅ 1$()(
).�2345�3�)�627√8� 945:

                             (8) 

where ; is the Poisson’s ratio (0.25 for WS2) and ε= is a small uniaxial strain (we used 

compressive strain here).  

   a′′$%& ≅ 1$()(
>.623?�� :3�>�623?

�
@ :

                                      (9) 

where A is the small tilt angle. 
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Figure S3 | Lattice constant map. a, Diffraction pattern of WS2-WSe2 on 20 nm SiNx 

windows. The gray circles are the masks we used to calculate the CoMs. The reciprocal 

lattice constants were measured, shown as d1 – d6. b, Schematic showing how strain 

affects the lattice constant measurements. c, Schematic showing how small tilt affects the 

lattice constant measurements. The small strain and tilt are higher order effects for the 

lattice constant calculation.  

 

4: Mapping strain  

 To map the strain from the 4D dataset, we calculated the diffraction vectors gi 

(i=1,2) (i.e. the reciprocal lattice vectors) as shown in Fig. S4a. The reference diffraction 
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vectors gi
ref

 were set by averaging 200 scan positions (or pixels) in real space where half 

of them are on WS2 and the other half are on the WSe2 region. The choice of these gi
ref 

is 

for mapping convenience. Afterwards, we derived the transformation matrix T using gi = 

T gi
ref

. T can be polar-decomposed into a rotation matrix R and a strain matrix U, from 

which the uniaxial strain εBB=1-U11 and  εCC=1-U22, shear strain εBC=U12, and rotation 

εDEF=asin(R12) can be calculated.  

 

 

Figure S4 | Maps of diffraction vectors. a, A single diffraction pattern of WSe2 taken 

by EMPAD with second order diffraction spots highlighted by the masks. For each spot, 

we calculated the CoM and achieved the diffraction vectors as labeled by g1 and g2. b,c, 

|g1| and |g2| maps over the entire triangle.  
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Figure S5 | Strain maps of broad WS2-WSe2 junctions. a, x-direction uniaxial strain 

map. b, y-direction uniaxial strain map. c,d, the same maps as (a) and (b) with a different 

color scale, chosen to highlight the misfit dislocation cores (indicated by arrows). e, shear 

map. f, rotation map with the dislocations shown in (c) and (d) indicated by arrows.  
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Figure S6 | Strain maps of WS2-WSe2 superlattices. a-d, x-direction uniaxial strain (a), 

y-direction uniaxial strain (b), shear strain (c), and rotation (d) maps. e,h, Magnified x-

direction uniaxial strain and y-direction uniaxial strain maps from the white boxes in (a) 

and (b). Scale bar: 500 nm. f,g, Histogram and the line profiles of (e). i,j, Histogram and 

line profiles of (h). Scale bar: 100 nm.   
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5: Mapping ripples using second moments 

 Second moments are the variance, which describes the broadness of the 

diffraction spots, for the x-component of momentum transfer:  

    ⟨�G�⟩ = 	
 �G� ��������	       (10) 

 We computed the second moments using the same masks we used for CoM 

calculation. From the calculated second moments for all diffraction spots, the broadness 

of the diffraction spots is 

H	��I	J, � = 	L⟨�G�⟩ + ⟨�N�⟩   (11)  

where the A, B, and C are the corresponding second moments of the diffraction spots in 

Fig. 4a. To plot rotational ripple maps, we defined the complex ripple measure:  

O = 		H + JPQ�R/1 + PQSR/1     (12) 

The phase of R represents the direction (or orientation) of the ripple line, while the 

amplitude shows the tilt angle of the ripples.  

 To quantify the tilt angle, we can plot the projection of R along the tilt direction 

OPTOU = 		H − 0.5J − 0.5     (13) 

whose intensity is proportional to the tilt angle, as shown in Fig. 5d (negative numbers 

represent the tilt perpendicular to the projection angle.  

 In addition, the amplitude of R is proportional to the tilt angle of the film. For a 

flat film, the amplitude of R can be calibrated by tilting the sample through a known set 

of angles and plotting R vs angle.  For small curved surfaces, this is more challenging as 

the sample moves when the sample holder rotates.  Here, we calibrated the maximum tilt 

using an atomic force microscope (AFM) to measure the peak to peak height difference 

of 3 nm (Fig. S7).  Although the lateral resolution of the AFM is lower, the height 

difference is still accurate, and from this the maximum tilt angle is 8 degrees.  
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Figure S7 | Atomic force microscopy (AFM) line profile of a ripple. The plot shows a 

typical ripple topology in the specimen shown in Fig. 5. The ripple has a 3 nm height and 

roughly ~45 nm width. The maximum tilt angle of the ripple is roughly 8
o
. Comparing it 

to Fig. 5d, we can estimate that the maximum intensity in the ripple map corresponds to 

an 8
o
 tilt.   
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6: Principle component analysis (PCA) 

 We performed PCA on the 4D dataset extract the most dominating features in the 

sample. To look at the diffraction spots only, we blocked the center beams for all 

diffraction patterns. The details of the PCA approach for multi-dimensional data can be 

found in reference 25 and 26 in the main manuscript. Fig. S8 shows additional principal 

components that are not included in Fig. 5 in the main manuscript.    

 

 

 

Figure S8 | PCA of 4D dataset. a,d, The first principle component which represents the 

SiNx substrate and the averaged diffraction patterns from the lattice. b,e, The sixth 

principle component representing the ripple with a different orientation from the one in 

Fig. 5i and j. c,f, The seventh principle component showing higher order derivatives of 

the diffraction patterns. For principle components more than seventh order, the real space 

images start to show less feature as the higher order terms mainly contain noise.  

 


