Asymmetric Construction of a Multi-Pharmacophore-Containing Dispirotriheterocyclic Scaffold and Identification of a Human Carboxylesterase 1 Inhibitor

Xiaoze Bao, ${ }^{\text {a }}$ Shiqiang Wei, ${ }^{\text {a }}$ Xingkai Qian,, Jingping $\mathrm{Qu},{ }^{\text {a }}$ Baomin Wang, ${ }^{*, a}$ Liwei Zou, ${ }^{*, b}$ and Guangbo Ge ${ }^{\text {b }}$
${ }^{a}$ State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China; E-mail: bmwang@dlut.edu.cn
${ }^{b}$ Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China; E-mail: chemzlw@163.com

Contents:

1. General information S1
2. General procedure and characterization of 4-isothiocyanato pyrazolone 1 S1
3. Experimental procedures and characterization of compounds 3-10 S3
4. X-ray structures of 3af and ent-6 S25
5. Evaluation of the inhibitory activity to hCE1 -S25
6. Table S - 1 and Figure S - 1 S26
7. References -S26
8. NMR spectra for compounds -S27

1. General information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. Column chromatography was performed on silica gel (200~300 mesh). Enantiomeric excesses (ee) were determined by HPLC using corresponding commercial chiral columns as stated at $30^{\circ} \mathrm{C}$ with UV detector at 254 nm . Optical rotations were reported as follows: $[\alpha]^{\mathrm{T}}{ }_{\mathrm{D}}\left(c \mathrm{~g} / 100 \mathrm{~mL}\right.$, solvent). All ${ }^{1} \mathrm{H}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker Avance II 400 MHz and Bruker Avance III 471 MHz respectively, ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance II 101 MHz or Bruker Avance III 126 MHz with chemical shifts reported as ppm (in $\mathrm{CDCl}_{3}, \mathrm{TMS}$ as an internal standard). Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad singlet, $\mathrm{dd}=$ double doublet, coupling constants in Hz, integration). HRMS (ESI) was obtained with a HRMS/MS instrument (LTQ Orbitrap XL TM). The absolute configuration of 3af and ent-6 were assigned by the X-ray analysis.
N-Boc ketimines 2a-j were prepared from isatin according to the literature. ${ }^{[1]}$ Catalyst Q5 was synthesized according to the literature procedure. ${ }^{[2]}$ The racemic products were synthesized using quinine/quinidine $=1: 1$ as the catalyst.

2. General procedure and characterization of 4-isothiocyanato pyrazolone 1

Step 1: To a round bottom flask equipped with a magnetic stir bar was charged with pyrazolone ($4.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{EtOH}(15.0 \mathrm{~mL})$. After cooling to $0^{\circ} \mathrm{C}$, concentrated HCl aqueous ($0.5 \mathrm{~mL}, 6 \mathrm{mmol}, 1.5$ equiv) was added dropwise. To the resulting solution was added a solution of $\mathrm{NaNO}_{2}(0.414 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.5$ equiv $)$ in 1.5 mL of water slowly. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h . The precipitation (water could be added if there was no precipitation) was filtrated, washed with water (15 mL) and $\mathrm{EtOH}(5.0 \mathrm{~mL})$. The solid was dried under vacuum to yield the 4-hydroxyimino pyrazolone as orange or yellow solid in $85-95 \%$ yield, and used directly to the next step without further purification.

Step 2: To a round bottom flask equipped with a magnetic stir bar was charged with 4-hydroxyimino pyrazolone (4.0 mmol, 1.0 equiv) and $\mathrm{MeOH}(40.0 \mathrm{~mL})$, under argon. After the addition of $(10 \% \mathrm{Pd} / \mathrm{C})(5 \% \mathrm{w} / \mathrm{w})$, the reaction mixture was exchanged with H_{2}, and stirred overnight at rt till the consumption of the starting material. After that, 6.0 mL of concentrated HCl aqueous was added to the reaction mixture and stirred at rt for 0.5 h . The Pd / C was removed through celite pad, washed with MeOH . The filtrate was concentrated and dried under vacuum. The 4 -amino pyrazolone hydrochloride was used directly for the next step without any further purification.

Step 3: To a suspension of 4-amino pyrazolone hydrochloride ($4.0 \mathrm{mmol}, 1.0$ equiv) in EtOH (10 mL) were added $\mathrm{CS}_{2}\left(3.05 \mathrm{~g}, 40.0 \mathrm{mmol}, 10.0\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(1.62 \mathrm{~g}, 16.0 \mathrm{mmol}, 4.0$ equiv), under argon. The reaction mixture was stirred for 45 min at room temperature and then cooled on an ice bath. Then a solution of $\mathrm{Boc}_{2} \mathrm{O}(0.87 \mathrm{~g}, 4.0 \mathrm{mmol}, 1.0$ equiv) and DMAP ($10 \mathrm{~mol} \%$) in 3 mL EtOH was added slowly. The reaction mixture was kept in the ice bath for 5 min , and then stirred for another 15 min at room temperature. Then the reaction mixture was quenched with $10 \% \mathrm{HCl}$ aqueous (10 mL), and the mixture was extracted with DCM. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc $=6: 1$) or recrystallization (dichloromethane/hexane) to obtain the 4-isothiocyanato pyrazolone 1a-k in 40-70\% yields.

4-isothiocyanato-1,3-diphenyl-1H-pyrazol-5-ol (1a)

12

Prepared according to the general procedure as white solid (purified by recrystallization, $0.76 \mathrm{~g}, 65 \%$ yield). mp 225.0-227.4 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO d_{6}) $\delta 7.80(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.55-7.43(\mathrm{~m}, 5 \mathrm{H})$, $7.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO d_{6}) δ 145.0, 138.2, 129.6, 129.4, 127.2, 126.8,
122.1; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OS}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$294.0696, Found 294.0698.

4-isothiocyanato-1-phenyl-3-p-tolyl-1H-pyrazol-5-ol (1b)
Prepared according to the general procedure as off-white solid (purified by recrystallization, $0.86 \mathrm{~g}, 70 \%$
 yield). mp 231.0-234.4 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO} d_{6}$) $\delta 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=8.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO d_{6}) δ 145.0, 139.4, 138.1, 123.0, 129.6, 127.1, 126.7, 121.9, 21.4; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{OS}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 308.0852$, Found 308.0858.
4-isothiocyanato-1-phenyl-3-m-tolyl-1H-pyrazol-5-ol (1c)

1c

Prepared according to the general procedure as white solid (purified by recrystallization, $0.83 \mathrm{~g}, 67 \%$ yield). mp 205.6-208.4 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO d_{6}) $\delta 7.82-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO d_{6}) δ 145.2, 138.6, 138.2, 130.3, 129.6, 129.3, 127.3, 127.2, 123.9, 122.0, 21.6; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{OS}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 308.0852$, Found
308.0857.

4-isothiocyanato-1-phenyl-3-o-tolyl-1H-pyrazol-5-ol (1d)

1d

Prepared according to the general procedure as white solid (purified by recrystallization, $0.49 \mathrm{~g}, 40 \%$ yield). mp 188.0-190.4 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO} d_{6}$) $\delta 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO} d_{6}\right) \delta 147.0$, 138.2, 137.1, 131.2, 130.1, 129.7, 129.6, 127.1, 126.4, 121.9, 20.3; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{OS}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$308.0852, Found 308.0857.
3-(4-fluorophenyl)-4-isothiocyanato-1-phenyl-1H-pyrazol-5-ol (1e)

1e F
-(2-fluorophenyl)-4-isothiocyanato-1-phenyl-1H-pyrazol-5-ol (1f)

Prepared according to the general procedure as off-white solid (purified by column chromatography, $0.49 \mathrm{~g}, 40 \%$ yield). mp $170.6-172.7^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO d_{6}) $\delta 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.33(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{DMSO} d_{6}$) $\delta-114.81$; ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO d_{6}) $\delta 159.9(\mathrm{~d}, J=249.6 \mathrm{~Hz}), 149.8,142.3,138.2,134.3,132.0(\mathrm{~d}, J=7.7$ Hz), $131.0(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 129.6,127.4,125.4,122.3,119.0,116.6(\mathrm{~d}, J=21.7 \mathrm{~Hz}) ; \operatorname{HRMS}(E S I) \mathrm{m} / \mathrm{z}$ Calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FN}_{3} \mathrm{OS}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$312.0601, Found 312.0606.
4-isothiocyanato-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-5-ol (1g)

Prepared according to the general procedure as grey solid (purified by recrystallization, $0.91 \mathrm{~g}, 70 \%$ yield). mp 213.0-216.4 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO} d_{6}\right) \delta 7.82-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO d_{6}) $\delta 160.6$, 144.6, 138.0, 129.6, 128.3, 127.0, 121.7, 114.9, 55.8; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 324.0801$, Found 324.0803.
4-isothiocyanato-3-(naphthalen-2-yl)-1-phenyl-1H-pyrazol-5-ol (1h)

Prepared according to the general procedure as grey solid (purified by recrystallization, $0.96 \mathrm{~g}, 70 \%$ yield). mp 230.5-232.7 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO d_{6}) $\delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 8.01-7.94 (m, 3H), $7.84(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO d_{6}) $\delta 145.0,138.2,133.4,133.2,129.6,129.0,128.8,128.5,128.2$, 127.4, 127.3, 126.0, 124.3, 122.1; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{OS}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 344.0852$,

Found 344.0857.
4-isothiocyanato-1-phenyl-3-(thiophen-2-yl)-1H-pyrazol-5-ol (1i)

1i

Prepared according to the general procedure as white solid (purified by column chromatography, 0.60 g , 50% yield). mp 207.8-209.9 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO} d_{6}$) $\delta 7.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.65(\mathrm{~m}$, $1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO d_{6}) $\delta 150.8,141.0,138.1,133.2,129.6,128.5,127.5,127.3,125.8,122.2,93.0$; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{OS}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 300.0260$, Found 300.0265.
3-benzyl-4-isothiocyanato-1-phenyl-1 H-pyrazol-5-ol (1j)

1j

Prepared according to the general procedure as light yellow solid (purified by recrystallization, 0.63 g , 51% yield). mp 159.5-161.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO d_{6}) $\delta 7.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38-7.23 (m, 5H), $3.94(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO d_{6}) $\delta 147.7,138.1,137.8$, 129.5, 129.1, 128.9, 127.1, 126.8, 121.7, 33.0; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{OS}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 308.0852, Found 308.0857.

4-isothiocyanato-3-methyl-1-phenyl-1 H-pyrazol-5-ol (1k)

1k

Prepared according to the general procedure as light yellow solid (purified by recrystallization, 0.38 g , 41% yield). mp 201.3-203.7 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO d_{6}) $\delta 7.68(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.47(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO d_{6}) $\delta 144.7,137.8$, 129.5, 126.5, 121.1, 11.8; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{OS}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$232.0539, Found 232.0540 .

3. Experimental procedures and characterization of compounds 3-10

A Schlenk tube equipped with a magnetic stir bar was charged with 4-isothiocyanato pyrazolone 1 (0.2 mmol), Q5 (0.01 mmol), and DCM (2 mL). After stirring for 5 min , isatin derived ketimine $2(0.24 \mathrm{mmol})$ was added in one portion. The reaction was detected by TLC. After 5-24 h, the mixture was purified by column chromatography on silica gel (unless otherwise noticed, petroleum ether/EtOAc $=6: 1$ was used as the eluent) directly to give the product 3 .

Compound 3aa

3aa

Prepared according to the procedure within 5 h as off-white solid ($120.0 \mathrm{mg}, 96 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 171.2-174.6^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}=-190.3\left(c 0.79, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~s}, 1 \mathrm{H})$, 7.84-7.72 (m, 2H), 7.36-7.30 (m, 2H), 7.25-7.11 (m, 11H), $6.93(\mathrm{td}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}$, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 183.0,169.2,168.7,153.2,147.6$, $141.6,136.9,135.0,131.5,130.7,130.0,128.9,128.8,128.4,128.0,127.7,126.9,125.9,125.6,123.4$, 122.5, 119.3, 108.7, 84.9, 74.1, 72.0, 44.6, 27.5; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 652.1989$, Found 652.1997; Enantiomeric excess was determined to be 96% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=7.9 \mathrm{~min}, t_{\text {minor }}=38.5 \mathrm{~min}$).

Compound 3ab

3ab

Prepared according to the procedure within 5 h as white solid ($104.6 \mathrm{mg}, 94 \%$ yield, $\mathrm{dr}=10: 1$) mp 182.3-184.5 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{17}=-178.4\left(c 0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00$ (brs, 1 H), $7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.06$ $(\mathrm{s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.0,169.2,168.6,153.6,147.5,142.5,136.9$, 131.5, 130.9, 130.2, 128.9, 128.6, 126.9, 126.0, 125.5, 123.3, 122.4, 119.6, 107.8, 84.7, 74.4, 72.0, 27.4, 26.8; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$576.1676, Found 576.1683; Enantiomeric excess was determined to be 98% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=70 / 30, \lambda=254 \mathrm{~nm}$, $30^{\circ} \mathrm{C}, 0.4 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=15.6 \mathrm{~min}, t_{\text {minor }}=29.4 \mathrm{~min}$).

Compound 3ac

3ac

Prepared according to the procedure within 5 h as white solid ($107.6 \mathrm{mg}, 93 \%$ yield, $\mathrm{dr}>20: 1$). mp $153.2-155.6^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{18}=-158.6\left(c 0.88, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33$ (brs, 1 H), $7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.69-5.57 (m, 1H), $5.19(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.49(\mathrm{~m}, 1 \mathrm{H}), 3.66$ (dd, $J=16.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.9,168.9,168.8,153.7$, $147.5,141.7,137.0,131.6,130.7,130.6,130.1,128.8,128.5,126.9,125.8,125.5,123.4,122.3,119.4,118.2,108.5,84.8$, 74.2, 72.3, 42.9, 27.4; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$602.1832, Found 602.1828; Enantiomeric excess was determined to be 93% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30$, $\left.\lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=7.6 \mathrm{~min}, t_{\text {minor }}=15.0 \mathrm{~min}\right)$.

Compound 3ad

Prepared according to the procedure within 24 h as white solid (petroleum ether/EtOAc $=4: 1,97.0$
 $\mathrm{mg}, 90 \%$ yield, $\mathrm{dr}>20: 1$). mp 197.5-199.9 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{18}=-147.8\left(c 0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz ,
acetone $\left.d_{6}\right) \delta 9.73(\mathrm{~s}, 1 \mathrm{H}), 9.00($ brs, 1 H$), 7.83-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53-6.46$ $(\mathrm{m}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , acetone d_{6}) $\delta 182.8,170.3,168.6,153.8,147.7,141.2,137.5,132.1,130.7$, 130.1, 128.9, 128.4, 126.8, 125.6, 125.3, 124.3, 121.6, 118.9, 109.9, 84.1, 74.4, 72.0, 26.78; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$562.1519, Found 562.1521; Enantiomeric excess was determined to be 94% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=7.6 \mathrm{~min}, t_{\text {minor }}=$ 12.7 min).

Compound 3ae

Bn
3ae

Prepared according to the procedure within 5 h as white solid ($131.5 \mathrm{mg}, 93 \%$ yield, $\mathrm{dr}>20: 1$). mp 172.8-176.0 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{18}=-224.1\left(c 0.72, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~s}, 1 \mathrm{H})$, $7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 10 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 182.7,168.6,168.5,152.7,147.5,140.5,136.8,134.6,133.5,131.0,130.5,129.0$, 128.9, 128.5, 128.2, 127.7, 126.7, 126.0, 125.2, 119.3, 115.5, 110.2, 85.4, 73.5, 71.8, 44.7, 27.6; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{BrN}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 730.1094$, Found 730.1101; Enantiomeric excess was determined to be 88% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, $\left.0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=8.4 \mathrm{~min}, t_{\text {minor }}=27.4 \mathrm{~min}\right)$.

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	8.395		0.9964	1.10370 e 4	163.74792	49.9046
2	25.206	MM	5.3677	1.10792 e 4	34.40055	50.0954

Compound 3af

Bń
3af

Prepared according to the procedure within 5 h as white solid ($134.1 \mathrm{mg}, 95 \%$ yield, $\mathrm{dr}>20: 1$). $\mathrm{mp} 173.4-177.1^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{18}=-164.6\left(c 0.72, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H})$, $7.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 10 \mathrm{H}), 6.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66$ $(\mathrm{d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=15.3 \mathrm{~Hz}$, 1 H), 1.17 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 182.8, 167.0, 168.5, 153.2, 147.5, 142.7, 136.9, 134.4, 131.4, 130.1, 129.0, 128.5, 128.2, 127.6, 127.0, 126.7, 126.0, 125.3, 124.5, 122.3, 119.3, 112.0, 85.4, 73.5, 72.1, 44.8, 27.6; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{BrN}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 730.1094$, Found 730.1085; Enantiomeric excess was determined to be 90% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.8 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=5.8 \mathrm{~min}, t_{\text {minor }}=17.5 \mathrm{~min}$).

Compound 3ag

3 ag

Prepared according to the procedure within 5 h as white solid ($117.5 \mathrm{mg}, 91 \%$ yield, $\mathrm{dr}>20: 1$). mp 173.1-175.5 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{1 \mathrm{~s}}=-191.3\left(c 1.03, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.12(\mathrm{~m}, 11 \mathrm{H}), 6.66-6.58(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{dd}, J=8.2$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (377 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-119.48 ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.8,168.9,168.6,158.3$ (d, $J=244.9$ Hz), 152.9, 147.5, 137.6, 136.9, 134.7, 131.3, 130.3, 128.9, 128.4, 128.1, 127.7, 126.9, 125.9, $125.0(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 119.3,117.1(\mathrm{~d}, J=23.6 \mathrm{~Hz}), 113.9(\mathrm{~d}, J=25.8 \mathrm{~Hz}), 109.7(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 85.3,73.7,71.9,44.8$, 27.5; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{FN}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 670.1895$, Found 670.1886 ; Enantiomeric excess was determined to be 91% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, $0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=7.6 \mathrm{~min}, t_{\text {minor }}=28.5 \mathrm{~min}$).

Compound 3ah

3ah

Prepared according to the procedure within 5 h as white solid ($123.0 \mathrm{mg}, 92 \%$ yield, $\mathrm{dr}>20: 1$). mp 175.4-178.4 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{1 \mathrm{~s}}=-236.6\left(c 1.13, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H})$, $7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.11(\mathrm{~m}, 11 \mathrm{H}), 6.86(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.46(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.8,168.6,152.8,147.5,140.1,136.8,134.6,131.1,130.6,130.4$, 128.9, 128.9, 128.4, 128.2, 127.7, 126.8, 126.3, 126.0, 124.9, 119.3, 109.8, 85.4, 73.5, 71.9, 44.7, 27.6; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$686.1599, Found 686.1594; Enantiomeric excess was determined to be 88% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, $\left.0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=7.8 \mathrm{~min}, t_{\text {minor }}=26.0 \mathrm{~min}\right)$.

Compound 3ai

Bń
3ai

Prepared according to the procedure within 5 h as white solid ($125.0 \mathrm{mg}, 95 \%$ yield, $\mathrm{dr}>20: 1$). mp 168.4-170.9 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{18}=-225.1\left(c \mathrm{c} .20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~s}$, $1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.12(\mathrm{~m}, 11 \mathrm{H}), 6.45(\mathrm{~d}, J=12.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 1.13$ ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.2,168.9,155.4,153.3,147.5,136.9,135.1,134.8$, 131.5, 129.8, 128.9, 128.8, 128.3, 128.0, 127.8, 127.0, 125.9, 124.5, 119.4, 116.1, 111.6, 109.6, 84.9, 74.2, 72.2, 55.4, 44.7, 27.5; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{NaO}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 682.2095$, Found 682.2089; Enantiomeric excess was determined to be 97% (determined by HPLC using chiral AD-H column, hexane/2-propanol = $\left.70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=9.7 \mathrm{~min}, t_{\text {minor }}=79.4 \mathrm{~min}\right)$.

Compound 3aj

3aj

Prepared according to the procedure within 5 h as white solid ($124.5 \mathrm{mg}, 97 \%$ yield, $\mathrm{dr}>20: 1$). mp 167.1-170.4 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{19}=-239.7\left(c 1.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~s}, 1 \mathrm{H})$, 7.86-7.71 (m, 2H), 7.34-7.28 (m, 2H), 7.22-7.10 (m, 11H), $6.68(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H})$, $6.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}$, $9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.2,169.1,168.9,153.3,147.6,139.0,136.9,135.1,132.3$, $131.5,130.9,129.8,128.9,128.8,128.1,127.9,127.7,126.9,126.6,125.8,123.4,119.4,108.5$, 84.8, 73.9, 72.2, 44.6, 27.5, 20.5; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 666.2145$, Found 666.2130; Enantiomeric excess was determined to be 96% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=$ $\left.70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{major}}=7.4 \mathrm{~min}, t_{\text {minor }}=30.7 \mathrm{~min}\right)$.

Compound 3ba

Prepared according to the procedure within 5 h as light yellow solid ($122.1 \mathrm{mg}, 95 \%$ yield, $\mathrm{dr}>$ 20:1). mp 170.6-173.3 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{16}=-132.1\left(c 1.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ent-3ba was prepared according to the procedure with quinine $\mathbf{Q} 2$ as the catalyst within 24 h ($115.8 \mathrm{mg}, 90 \%$ yield, $\mathrm{dr}>20: 1,93 \% \mathrm{ee}$);
mp 173.8-176.4 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{19}=+131.0\left(c 0.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 8 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.0,169.4,168.4,153.5,147.6,141.8,140.4,137.1,134.9,130.6,129.1,128.8,128.7,127.9,127.7$, 127.0, 125.7, 123.3, 122.4, 119.2, 108.7, 84.8, 74.2, 72.0, 44.6, 27.4, 21.4; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{NaO}_{4} \mathrm{~S}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$666.2145, Found 666.2140; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $\left.=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=9.3 \mathrm{~min}, t_{\text {minor }}=33.5 \mathrm{~min}\right)$. For ent-3ba, enantiomeric excess was determined to be 93% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=30.8 \mathrm{~min}, t_{\text {minor }}=9.7 \mathrm{~min}$).

Compound 3ca
Prepared according to the procedure within 5 h as white solid ($120.9 \mathrm{mg}, 94 \%$ yield, $\mathrm{dr}>20: 1$). mp

3ca 171.8-174.6 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{16}=-179.8\left(c 1.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.78$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 7 \mathrm{H}), 7.07(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.9 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.41(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.1,169.1,168.7,153.4,147.6,141.6,137.9,137.0,135.0,131.3,130.7,130.5,128.9,128.8$, 128.3, 128.0, 127.5, 125.8, 125.5, 124.4, 123.3, 122.4, 119.3, 108.5, 84.8, 74.0, 72.1, 44.5, 27.4, 21.1; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 666.2145$, Found 666.2124; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{major}}=8.3$ $\left.\min , t_{\text {minor }}=34.3 \mathrm{~min}\right)$.

Compound 3da

3da

Prepared according to the procedure within 24 h as white solid ($60.1 \mathrm{mg}, 47 \%$ yield, $\mathrm{dr}>20: 1$ after recrystallization by ether/hexane). $\mathrm{mp} 166.0-169.7^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{16}=-270.7\left(c 0.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO d_{6}) $\delta 10.32(\mathrm{brs}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.12-7.03 (m, 3H), $6.94(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.36-6.27 (m, 1H), $5.16(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO d_{6}) δ 182.1, 169.3, 168.5, 152.1, 147.7, 141.6, 137.3, 136.2, 136.2, 131.3, 130.8, 130.4, 129.7, 129.1, 128.8, 128.4, 128.2, 126.2, 125.5, 124.2, 123.5, 122.5, 118.9, 109.7, 84.4, 72.8, 72.7, 44.1, 27.5, 19.5; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 666.2145$, Found 666.2128; Enantiomeric excess was determined to be 96% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.7$ $\left.\mathrm{mL} / \mathrm{min}, t_{\mathrm{major}}=7.0 \mathrm{~min}, t_{\mathrm{minor}}=67.5 \mathrm{~min}\right)$.

Compound 3ea

Prepared according to the procedure within 5 h as white solid ($116.5 \mathrm{mg}, 90 \%$ yield, $\mathrm{dr}>20: 1$). mp $168.1-170.9^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{16}=-176.5\left(c 1.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.73$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.11(\mathrm{~m}, 10 \mathrm{H}), 6.97(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.58-6.48(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~s}$, 9H); ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-109.72$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.2,169.2,168.7$, $163.6(\mathrm{~d}, \mathrm{~J}=252.6 \mathrm{~Hz}), 152.4,147.5,141.5,136.8,134.9,130.8,129.3(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}), 128.9$, 128.8 , 128.0, 127.8, 126.0, 125.6, 123.4, 122.6, 119.4, 115.5 (d, $J=22.1 \mathrm{~Hz}$), 108.8, 85.0, 73.4, 72.1, 44.6, 27.4; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{FN}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 670.1895$, Found 670.1877; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=7.4 \mathrm{~min}, t_{\text {minor }}=21.3 \mathrm{~min}\right)$.

Compound 3fa

Prepared according to the procedure within 8 h as off-white solid ($120.1 \mathrm{mg}, 93 \%$ yield, $\mathrm{dr}>20: 1$). mp 115.1-117.3 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{19}=-151.2\left(c 0.49, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 88.67(\mathrm{~s}, 1 \mathrm{H})$, $7.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 7 \mathrm{H}), 6.98(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.65(\mathrm{~m}, 4 \mathrm{H}), 6.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}$, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.03 ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 182.4,168.8,168.7,159.0(\mathrm{~d}, \mathrm{~J}=253.6 \mathrm{~Hz}), 148.7,147.7,141.4,136.9,134.5,131.3(\mathrm{~d}, \mathrm{~J}$ $=8.1 \mathrm{~Hz}$), 130.7, 129.7, 129.0, 128.7, 128.0, 127.9, 125.9, 124.2, 124.01, 123.7, 122.6, 119.7, 119.1, 115.7 (d, J=21.7 Hz), 108.78, 84.8, 73.2, 72.2, 44.7, 27.6; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{FN}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 670.1895$, Found 670.1877; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $\left.=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=8.7 \mathrm{~min}, t_{\text {minor }}=53.2 \mathrm{~min}\right)$.

Compound 3ga

Prepared according to the procedure within 24 h as white solid ($125.1 \mathrm{mg}, 95 \%$ yield, $\mathrm{dr}>20: 1$). mp 170.2-172.9 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{19}=-119.3\left(c 1.04, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~s}, 1 \mathrm{H})$,
$7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 6 \mathrm{H}), 6.97(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}$, 9 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.0,169.5,168.1,161.1,153.4,147.6,141.9,137.1,134.9,130.7,128.8,128.7$, 127.9, 127.7, 125.7, 124.2, 123.3, 122.4, 119.3, 114.0, 108.8, 84.8, 74.4, 72.0, 55.5, 44.6, 27.4; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{NaO}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$682.2095, Found 682.2073; Enantiomeric excess was determined to be 96% (determined by HPLC using chiral AD-H column, hexane/2-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=10.5$ $\min , t_{\text {minor }}=32.3 \mathrm{~min}$).

Compound 3ha

Prepared according to the procedure within 5 h as white solid ($129.1 \mathrm{mg}, 95 \%$ yield, $\mathrm{dr}>20: 1$). mp 180.3-183.4 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{14}=-64.8\left(c 1.14, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{~s}, 1 \mathrm{H})$, $7.83-7.68(\mathrm{~m}, 5 \mathrm{H}), 7.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.11$ $(\mathrm{m}, 6 \mathrm{H}), 6.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 183.2,169.4,168.1,153.4,147.6,141.8,137.1,135.0,133.7,132.5,130.6,129.1,128.9$, $128.8,128.7,128.2,128.0,127.7,127.5,127.4,126.6,125.8,125.6,123.8,123.0,122.3,119.2,108.8,84.8,74.4,72.1$, 44.6, 27.4; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$702.2145, Found 702.2135; Enantiomeric excess was determined to be 96% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}$, $30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=10.3 \mathrm{~min}, t_{\text {minor }}=31.5 \mathrm{~min}$).

Compound 3ia
Prepared according to the procedure within 5 h as yellow solid ($120.7 \mathrm{mg}, 96 \%$ yield, $\mathrm{dr}>20: 1$).

3ia mp 181.3-183.0 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{14}=+10.88\left(c 0.62, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO d_{6}) $\delta 10.29(\mathrm{~s}$, $1 \mathrm{H}), 7.85(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.17(\mathrm{~m}, 13 \mathrm{H}), 6.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz DMSO d_{6}) δ 182.2, 170.1, 166.6, 151.6, 147.7, 143.4, 136.9, 135.9, 133.8, 131.7, 131.5, 129.7, 129.1, 128.9, 128.3, 128.1, 126.6, 124.9, 122.7, 122.2, 119.3, 110.3, 84.5, 74.4, 71.8, 44.2, 27.4; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{NaO}_{4} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$658.1553, Found 658.1536; Enantiomeric excess was determined to be 96% (determined by HPLC using chiral $\mathrm{AD}-\mathrm{H}$ column, hexane $/ 2$-propanol $=70 / 30, \lambda=$ $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=13.0 \mathrm{~min}, t_{\text {minor }}=34.4 \mathrm{~min}$).

Compound 3ja

Bń
3ja

Prepared according to the procedure within 5 h as white solid ($122.0 \mathrm{mg}, 95 \%$ yield, $\mathrm{dr}>20: 1$). mp 158.5-160.8 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{19}=-115.0\left(c 1.06, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , acetone d_{6}) $\delta 8.76(\mathrm{~s}, 1 \mathrm{H})$, $7.64(\mathrm{t}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.44(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.27-7.14(\mathrm{~m}, 8 \mathrm{H})$, $7.06-6.99(\mathrm{~m} \mathrm{~Hz}, 3 \mathrm{H}), 5.28(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.07(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , acetone d_{6}) $\delta 182.6,169.1$, 167.9, 156.5, 147.9, 142.8, 137.6, 135.6, 134.5, 131.5, 129.6, 128.8, 128.7, 128.2, 127.7, 127.6, 126.8, 125.3, 124.5, 124.2, 123.0, 118.4, 110.2, 84.0, 73.5, 72.1, 44.0, 35.8, 27.0; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 666.2145$, Found 666.2137; Enantiomeric excess was determined to be 74% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=13.1 \mathrm{~min}, t_{\text {minor }}$ $=50.1 \mathrm{~min}$).

Compound 3ka

Prepared according to the procedure within 5 h as white solid ($107.5 \mathrm{mg}, 95 \%$ yield, $\mathrm{dr}=13: 1$). mp $159.1-162.3{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{19}=-91.9\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , acetone d_{6}) $\delta 8.72(\mathrm{~s}, 1 \mathrm{H})$,
$7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 5 \mathrm{H})$, $6.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , acetone d_{6}) $\delta 182.6,169.1,167.7,155.0,147.9,142.7,137.5,135.6,131.3,128.8,128.6,127.6,125.3,124.3,124.1$, 122.9, 118.4, 101.0, 84.0, 73.2, 71.9, 44.0, 27.0, 15.3; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{NaO}_{4} \mathrm{~S}$ ([M+Na]+) 590.1832, Found 590.1826; Enantiomeric excess was determined to be 52% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $\left.=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=9.3 \mathrm{~min}, t_{\text {minor }}=31.2 \mathrm{~min}\right)$.

Gram scale synthesis of the product 3ba

To a Schlenk tube equipped with a magnetic stir bar was charged with 4-isothiocyanato pyrazolone $\mathbf{1 b}$ (553 mg , $1.8 \mathrm{mmol}, 1.0$ equiv) and $\mathbf{Q 5}(53.7 \mathrm{mg}, 0.09 \mathrm{mmol}, 0.05$ equiv), followed with DCM (18 mL). After stirred for 5 min , isatin derivatived ketimine $\mathbf{2 a}$ ($665 \mathrm{mg}, 1.98 \mathrm{mmol}, 1.1$ equiv) was added in one portion. The reaction was detected by TLC. After 5 h , the solvent was removed under vacuum, the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc $=6: 1$) directly to give the product 3 ba 1.16 g as light-yellow solid (yield 96%, ee 95%, dr > 20:1).

The procedure for the synthesis of compounds 4-10.

Synthesis of compound 4

To a solution of $3 \mathbf{b a}\left(64.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0\right.$ equiv) in acetone $(2.0 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(16.6 \mathrm{mg}, 0.12 \mathrm{mmol}$, 1.2 equiv) and benzyl bromide ($20.5 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv) in sequence. The reaction mixture was stirred at rt for 1 h . The solvent was evaporated, and then the crude mixture was purified by silica gel column chromatography $(\mathrm{EtOAc} /$ petroleum ether $=1 / 6)$ to give 4 as white solid $\left(66.8 \mathrm{mg}, 91 \%\right.$ yield). $\mathrm{mp} 173.7-176.0^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{15}=-181.2(c 0.25$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.08$ $(\mathrm{m}, 6 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.28(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.26(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,168.4,155.9,141.6,139.7,137.7,136.6,135.1,130.1$, 129.9, 129.3, 128.8, 128.7, 128.6, 127.8, 127.4, 127.3, 126.6, 125.2, 124.9, 124.5, 121.6, 119.0, 108.3, 75.0, 44.4, 37.2, 27.4, 21.4; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{44} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 756.2615$, Found 756.2601; Enantiomeric excess was determined to be 93% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}$, $\left.30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=10.4 \mathrm{~min}, t_{\text {minor }}=8.6 \mathrm{~min}\right)$.

Synthesis of compound 5

To a solution of $3 \mathbf{b a}$ ($64.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) in acetone (2.0 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(16.6 \mathrm{mg}, 0.12 \mathrm{mmol}$, 1.2 equiv) and methyl iodide ($17.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv) in sequence. The reaction mixture was stirred at rt for 1 h . The solvent was evaporated, and then the crude mixture was purified by silica gel column chromatography $(\mathrm{EtOAc} /$ petroleum ether $=1 / 6)$ to give 5 as white solid $(64.4 \mathrm{mg}, 98 \%$ yield $) \mathrm{mp} 186.7-188.3^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{15}=-202.0(c 0.39$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.08(\mathrm{~m}, 8 \mathrm{H}), 6.98-6.85$ $(\mathrm{m}, 3 \mathrm{H}), 6.55(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J$ $=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,168.4,155.9,148.9$, $141.7,139.9,137.6,135.1,130.3,130.0,128.8,128.7,127.8,127.4,126.6,125.2,124.9,124.5,121.6,119.0,108.5,84.2$, 83.5, 75.3, 44.4, 27.4, 21.4, 15.8; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$680.2302, Found 680.2306; Enantiomeric excess was determined to be 93% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=$ $\left.70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=8.4 \mathrm{~min}, t_{\text {minor }}=17.3 \mathrm{~min}\right)$.

Synthesis of compound 6

To a solution of $5\left(65.8 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL})$ was added $85 \% \mathrm{mCPBA}(21.3 \mathrm{mg}, 0.105$ mmol, 1.05 equiv) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . And then the mixture was diluted with DCM $(10 \mathrm{~mL})$ and quenched with saturated NaHCO_{3} aqueous (5 mL). The organic phase was separated and washed with saturated NaHCO_{3} aqueous and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated. The crude mixture was purified by silica gel column chromatography (EtOAc/petroleum ether $=1 / 2$) to give 6 as white solid ($61.2 \mathrm{mg}, 91 \%$ yield, $\mathrm{dr}>20: 1$). mp 121.0-123.4 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{15}=-198.2$ (c 0.49, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ent-6 ($60.6 \mathrm{mg}, 90 \%$ yield, $\mathrm{dr}>20: 1,93 \% \mathrm{ee}$); mp 125.3-128.5 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{19}=+190.6\left(c 0.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$,
7.23-7.16 (m, 6H), $7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.24$ ($\mathrm{s}, 3 \mathrm{H}$), $1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.8,169.4,166.2,155.1,141.0,140.1,137.2,134.8,130.7,129.5$, 128.9, 128.8, 128.8, 128.0, 127.6, 127.3, 126.8, 125.7, 124.8, 123.1, 122.1, 119.4, 108.6, 85.7, 83.5, 76.2, 44.4, 42.7, 27.3, 21.4; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{NaO}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$696.2251, Found 696.2272; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral OD-H column, hexane $/ 2$-propanol $=90 / 10, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, $0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=18.4 \mathrm{~min}, t_{\text {minor }}=23.5 \mathrm{~min}$). For ent -6 , enantiomeric excess was determined to be 93% (determined by HPLC using chiral OD-H column, hexane $/ 2$-propanol $=90 / 10, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=23.1 \mathrm{~min}, t_{\text {minor }}$ $=19.6 \mathrm{~min}$).

Synthesis of compound 7

To a solution of $5\left(65.8 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL})$ was added $85 \% \mathrm{mCPBA}(42.6 \mathrm{mg}, 0.21 \mathrm{mmol}$, 2.1 equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . And then the mixture was diluted with $\mathrm{DCM}(10 \mathrm{~mL})$ and quenched with saturated NaHCO_{3} aqueous $(5 \mathrm{~mL})$. The organic phase was separated and washed with saturated NaHCO_{3} aqueous and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated. The crude mixture was purified by silica gel column chromatography ($\mathrm{EtOAc} /$ petroleum ether $=1 / 2$) to give 7 as white solid ($58.9 \mathrm{mg}, 94 \%$ yield). $\mathrm{mp} 159.3-162.3^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{15}$ $=-176.2\left(c 0.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.09$ $(\mathrm{m}, 8 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9,169.6,155.7,154.0$, $147.5,141.9,140.2,137.2,135.0,130.3,129.0,128.9,128.7,127.9,127.6,126.7,125.6,125.6,124.0,122.3,119.1,108.5$, 84.1, 69.9, 68.4, 44.6, 27.5, 21.4; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{NaO}_{5}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 650.2374$, Found 650.2377.

Synthesis of compound 8

To a solution of $3 \mathbf{b a}(64.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(1.5 \mathrm{~mL})$ was added 30% ammonium hydroxide (0.5 ml) and 60% tert-butyl hydroperoxide ($69 \mathrm{mg}, 0.5 \mathrm{mmol}, 5.0$ equiv), the resulting mixture was stirred at rt overnight. And then the mixture was diluted with $\mathrm{DCM}(10 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$, extracted with $\mathrm{DCM}(10 \mathrm{~mL} \times 2)$. The organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated. The crude mixture was purified by silica gel column chromatography ($\mathrm{EtOAc} /$ petroleum ether $=1 / 2$) to give 8 as white solid ($59.5 \mathrm{mg}, 95 \%$ yield). mp 176.1-178.9 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{14}$ $=-169.0\left(c 0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=16.4,7.9 \mathrm{~Hz}, 4 \mathrm{H})$, 7.21-7.09 (m, 6H), 6.94-6.87 (m, 3H), $6.75(\mathrm{brs}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.3,170.6,158.7,156.9,150.4,141.8,139.5,137.9,135.1,130.5,129.7,128.7,128.7,127.7,127.4,126.8,125.0,124.9$, 121.5, 119.0, 108.3, 84.1, 80.2, 73.9, 44.4, 27.4, 21.4; HRMS (ESI) m/z Calcd. For $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 627.2714$, Found 627.2711; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral OD-H column, hexane $/ 2$-propanol $=70 / 30, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=8.1 \mathrm{~min}, t_{\text {minor }}=13.8 \mathrm{~min}$).

Synthesis of compound 9

To a solution of $3 \mathbf{b a}$ ($64.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and phenylboronic acid ($24.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv) in anhydrous THF (2.0 mL) was added copper(I) thiophene-2-carboxylate ($57.0 \mathrm{mg}, 0.3 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{Pd}^{\left(\mathrm{PPh}_{3}\right)_{4}}$ $\left(11.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1\right.$ equiv) in sequence, under argon. The resulting mixture was heated at $50{ }^{\circ} \mathrm{C}$ for 6 h . After cooling to rt , $\mathrm{DCM}(10 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$ were added to the mixture, extracted with $\mathrm{DCM}(10 \mathrm{~mL} \times 2)$. The organic phase was washed with saturated NaHCO_{3} aqueous and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated. The crude mixture was purified by silica gel column chromatography ($\mathrm{EtOAc} /$ petroleum ether $=1 / 6$) to give 9 as white solid ($35.8 \mathrm{mg}, 52 \%$ yield). mp 109.1-112.3 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{15}=-159.0\left(c 0.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.83-7.76 (m, 2H), 7.57-7.48 (m, 3H), 7.40-7.36 (m, 2H), 7.25-7.15 (m, 8H), 6.96-6.88 (m, 3H), 6.72 (d, J=7.0 Hz, $1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$, $1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,167.8,166.3,155.9,148.0,141.5,139.8,137.6,135.2,130.8,130.2$, 130.0, 128.8, 128.7, 128.0, 127.8, 127.4, 126.7, 125.3, 124.8, 124.6, 121.7, 119.2, 108.7, 83.7, 83.1, 75.1, 44.5, 27.4, 21.4; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{43} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$688.2918, Found 688.2903; Enantiomeric excess was determined to be 96% (determined by HPLC using chiral AD-H column, hexane $/ 2$-propanol $=90 / 10, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, 0.7 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=17.5 \mathrm{~min}, t_{\text {minor }}=54.9 \mathrm{~min}\right)$.

Synthesis of compound 10

To a solution of $3 \mathbf{b a}$ ($64.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was added sodium borohydride (3.8 mg , $0.1 \mathrm{mmol}, 1.0$ equiv) at ${ }^{\circ} 0 \mathrm{C}$. After 10 min , the solvent was removed under vacuum, the residue was purified by silica gel column chromatography (EtOAc /petroleum ether $=1 / 6$) to give 10 as light yellow solid ($61.4 \mathrm{mg}, 95 \%$ yield, $>20: 1 \mathrm{dr}$). Decomposed at $165^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{16}=-264.2\left(c 0.54, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.84(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.2,174.7,147.7,147.2,145.3,141.3,138.6,134.4$, $130.4,130.2,129.0,128.9,128.8,128.1,127.6,126.2,125.2,124.5,123.0,122.6,117.8,109.0,97.6,85.1,73.3,45.2,27.6$, 21.3; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{NaO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$668.2302, Found 668.2283; Enantiomeric excess was determined to be 95% (determined by HPLC using chiral OD-H column, hexane/2-propanol $=90 / 10, \lambda=254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, $\left.0.7 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{major}}=18.7 \mathrm{~min}, t_{\text {minor }}=31.4 \mathrm{~min}\right)$.

4. X-ray structures of 3af and ent-6

X-ray structure of 3af

X-ray structure of ent-6

5. Evaluation of the inhibitory activity to hCE1

Chemicals and reagents

Bis-p-nitrophenyl phosphate (BNPP) and bavachininwere were purchased from TCI (Tokyo, Japan). D-Luciferin methyl ester (DME) was synthesized by Dr. Liwei Zou from Shanghai University of Traditional Chinese Medicine and used as a specific probe substrate for hCE1 in human liver preparations. ${ }^{[3]}$ Luciferin detection reagent (LDR) was obtained from Promega Biotech (Madison, USA). The pooled human liver microsomes (HLM) from 50 donors were obtained from RILD Co. Ltd. (Shanghai, China), as the enzyme source for human carboxylesterases1 (hCE1) inhibition assays. The stock solutions of all compounds were dissolved by LC grade DMSO (Tedia, USA). Phosphate saline buffer ($100 \mathrm{mM}, \mathrm{pH} 6.5$) was prepared by using Millipore water and stored at $4^{\circ} \mathrm{C}$ until use. LC grade acetonitrile (Tedia, USA) was used to stop all incubations in this study.

General procedure for inhibition assays of hCE1-mediated DME hydrolysis

The inhibitory effects against human carboxylesterasel (hCE1) were investigated using D-Luciferin methyl ester (DME) as the probe substrate, while Bis-p-nitrophenyl phosphate (BNPP) and bavachinin were used as positive control. ${ }^{[3]}$ In brief, the incubation mixture with a total volume of $100 \mu \mathrm{~L} \mathrm{~mL}$ was consisted of PBS (pH 6.5), HLM ($10 \mu \mathrm{~g} / \mathrm{mL}$, final concentration), and each inhibitor. After 10 min pre-incubation at $37^{\circ} \mathrm{C}$, the reaction was started by the addition of DME ($3 \mu \mathrm{M}$, near the Km value of DME in HLM, final concentration), with the final concentration of DMSO at $1 \%\left(\mathrm{v} / \mathrm{v}\right.$, without loss of the catalytic activity). After incubation at $37^{\circ} \mathrm{C}$ for 10 min in a shaking bath, LDR (equal volume of incubation mixture, $50 \mu \mathrm{~L}$) was added to terminate the reaction. The mixture was then taken for luminescence measurements by a Synergy H1 Multi-Mode Reader (Biotek, USA). The lumines-
cent product of D-Luciferin (the hydrolytic metabolite of DME) was quantified with the excitation wavelength of 600 nm , while the emission wavelength was 662 nm . The gain value was set at 60 . The residual activities of hCE1 were calculated with the following formula: the residual activity (\%) (the florescence intensity in the presence of inhibitor)/the florescence intensity in negative control (without any inhibitor) $\times 100 \%$. All assays were conducted in triplicate, and the data were shown as mean \pm SD.

6. Table S-1 and Figure S-1

Table S-1. The Preliminary Evaluation of the Activity to Inhibit hCE1 ${ }^{a}$

entry	compound	$\mathrm{IC}_{50}(\mu \mathrm{M})$	entry	compound	$\mathrm{IC}_{50}(\mu \mathrm{M})$
1	3aa	>100	6	$\boldsymbol{r}-3 \mathbf{i a}$	>100
2	\boldsymbol{r}-3aa	>100	7	3 ba	>100
3	3ad	>100	8	\boldsymbol{r}-3ba	52.62 ± 6.40
4	\boldsymbol{r}-3ad	>100	9^{b}	Bavachinin	3.42 ± 0.81
5	$3 i a$	>100	10^{c}	BNPP	0.035 ± 0.003

${ }^{a}$ All data presented are averages of at least three separate experiments. ${ }^{b}$ Bavachinin, a positive inhibitor against hCE1. ${ }^{c}$ Bis- p-nitrophenyl phosphate (BNPP), a positive inhibitor against hCE1.

Figure S-1. The Inhibition Curve of ent-6 and the Structures of Positive Inhibitors.

7. Reference

[1] Yan, W.; Wang, D.; Feng, J.; Li, P.; Zhao, D.; Wang, R. Org. Lett. 2012, 14, 2512.
[2] Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Org. Lett. 2005, 7, 1967.
[3] Wang, D.-D.; Jin, Q.; Zou, L.-W.; Hou, J.; Lv, X.; Lei, W.; Cheng, H.-L.; Ge, G.-B.; Yang, L. Chem. Commun. 2016, 52, 3183.
8. NMR spectra for compounds

