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1. Free energy perturbation theory  

Free-energy	 perturbation	 (FEP)	 theory	 was	 initially	 introduced	 by	 Zwanzig.1	 It	

represents	an	efficient	and	widely	used	method	 to	estimate	 the	 free	energy	difference	

between	a	reference	and	a	target	state	of	a	system.	It	requires	calculating	the	average	of	

a	function	of	the	reference	and	target	states	energy	difference	using	the	sampling	for	the	

reference	state.	

The	Helmholtz	 free	energy	difference	between	a	system	described	by	 the	Hamiltonian	

𝐻!	and	a	target	system	described	by	the	Hamiltonian	𝐻!	is	given	by:2,3	

Δ𝐴 = 𝐴! − 𝐴! = − !
!

 ln𝑄! − − !
!

 ln𝑄! = − !
!

 ln !!
!!

 (S1) 

where	 the	 constant	β	is	 the	 inverse	 temperature	 (kBT)-1	 and	𝑄! 	are	 the	 corresponding	

canonical	partition	functions: 

𝑄! =
!

!!!!!
𝑒!! !!(𝐱,𝐩𝐱) 𝑑𝐱 𝑑𝐩𝐱 (S2) 

Here,	𝑁 	is	 the	 number	 of	 particles	 and 𝐱	and	𝐩𝐱 	are	 the	 Cartesian	 coordinates	 and	

associated	momenta.	 

Substituting	(S2)	into	equation	(S1)	and	using	the	definition:	

 𝐻! 𝐱,𝐩𝐱 = 𝐻! 𝐱,𝐩𝐱 + ∆𝐻 𝐱,𝐩𝐱 	 (S3)	

one	can	write:	

Δ𝐴 = − !
!

 ln !!! ∆!(𝐱,𝐩𝐱) !!! !!(𝐱,𝐩𝐱) !𝐱 !𝐩𝐱
!!! !!(𝐱,𝐩𝐱) !𝐱 !𝐩𝐱

	 (S4)	

In	 this	 expression,	 one	 recognizes	 the	 probability	𝑃! 𝐱,𝐩𝐱 	of	 finding	 the	 reference	

system	in	a	state	with	values	 𝐱,𝐩𝐱 	for	the	coordinates	and	momenta:	

𝑃! 𝐱,𝐩𝐱  = !!! !!(𝐱,𝐩𝐱)

!!! !!(𝐱,𝐩𝐱) !𝐱 !𝐩𝐱
	 (S5)	



so	that	one	can	write:	

Δ𝐴 = − !
!

 ln 𝑒!! ∆!(𝐱,𝐩𝐱) !	 (S6)	

The	brackets	indicate	an	ensemble	average	over	configurations	sampled	in	the	reference	

state.	If	the	Hamiltonians	𝐻!	and	𝐻!	involve	systems	with	the	same	masses,	as	assumed	

in	our	case,	then	equation	(S6)	simplifies	to:	

Δ𝐴 = − !
!
ln 𝑒!! !!

!	 (S7)	

where	Δ𝑉 	represents	 the	 potential	 energy	 difference	 between	 the	 target	 and	 the	

reference	system:	

Δ𝑉 = 𝑉! − 𝑉!	 (S8)	

Equation	 (S7)	 is	 the	 basic	 equation	 in	 FEP	 theory.	 It	 states	 that	 the	 free	 energy	

difference	 can	 be	 computed	 over	 configurations	 from	 the	 reference	 state	 sampling.	

Though	this	expression	is	exact	in	principle,	in	practice	it	can	only	be	successfully	used	

when	∆𝐻 	represents	 a	 perturbation	 of	 the	 system	 so	 that	 the	 sampling	 from	 the	

reference	state	does	not	deviate	much	from	the	sampling	of	the	target	state.	Note	that	it	

can	be	useful	to	rewrite	equation	(S7)	as:	

Δ𝐴 = Δ𝑉 ! −
!
!
ln 𝑒!! !"!

!	 (S9)	

where	δΔ𝑉 = Δ𝑉 − Δ𝑉 !	represents	 the	 fluctuations	of	 the	potential	energy	difference	

with	respect	to	its	average	value	 Δ𝑉 ! .		

In	many	 chemical	 problems,	 statistical	 simulations	 are	 carried	 out	 in	 the	 isothermal-

isobaric	ensemble	to	parallel	standard	experimental	conditions.	In	that	case,	Gibbs	free	

energies	are	used	instead	of	Helmholtz	free	energy	leading	to:4	

Δ𝐺 = − !
!
ln 𝑒!! !!

!	 (S10)	

	

		



	

which	 is	 equivalent	 to	 the	 so-called	 potential	 distribution	 theorem	 for	 calculating	 the	

excess	 chemical	 potential	 of	 a	 solute	 in	 solution.3	 It	 is	worth	 reminding	 also	 that	 the	

reference	 and	 target	 systems	 can	 be	 reversed.	 Following	 the	 same	 procedure	 and	

keeping	the	same	meaning	for	Δ𝐺	and	Δ𝑉	one	obtains	(see	page	36	of	reference2):	

Δ𝐺 = !
!
ln 𝑒! !!

!	 (S11)	

where	the	average	is	made	now	over	the	sampling	of	the	target	state.	

In	 the	 FEG-FEP	 method,	 described	 in	 our	 work,	 the	 reference	 and	 target	 systems	

correspond	 to	 the	 same	 solute-solvent	 system	 described	 by	 two	 different	 QM/MM	

Hamiltonians	 at	 low	 QM	 level	 (LL)	 and	 high	 QM	 level	 (HL),	 respectively.5	 Hence	

substituting	 in	 equation	 (S10)	 above	 Vo	 by	 VLL	 and	 V1	 by	 VHL,	 equation	 (3)	 of	 the	

manuscript	is	obtained.	

 

2. Structure of the water molecule in gas phase using different methods 

	 dOH	(Å)	 αHOH  (degrees)	 Dipole	moment	(D)	

HF/6-31G(d)	 0.947 105.5	 2.20	

B3LYP/6-311+G(d,p)	 0.962 105.1 2.16	

QCISD/aug-cc-pVTZ	 0.959 104.4 1.86	

CCSD/aug-cc-pVTZ	 0.959	 104.4	 1.86	

experiment	 0.957 104.5 1.85	

	
 

3. Details on FEP-FEG convergence tests 

We	show	below	the	results	of	some	tests	concerning	the	convergence	of	the	calculated	

free	energy	gradients	or	atom	displacements	in	the	FEG-FEP	study	of	the	water	molecule	



in	 liquid	water	reported	 in	the	paper.	We	discuss	the	convergence	when	the	gradients	

are	 calculated	 using	 the	 standard	 equation	 or	 the	 approximated	 FEG-FEP	 equation	

separately.	

	

1)	Convergence	of	the	standard	FEG	calculation		

To	discuss	the	convergence	of	the	free	energy	gradient	in	the	standard	FEG	calculation,	

let	 us	 consider	 the	 reference	 simulation	of	 the	water	molecule	 in	 liquid	water	 in	 case	

study	1,	i.	e.	the	QM/MM	simulation	at	the	B3LYP/6-311+G(d,p)	level.	The	geometry	of	

the	 QM	 water	 molecule	 corresponds	 to	 the	 starting	 structure	 in	 that	 study	 (i.	 e.	 the	

optimized	geometry	in	gas	phase	at	the	HF	level,	dOH=0.947	Å,	αHOH=105.5°).	We	analyze	

the	data	for	the	40	ps	simulation	carried	out	after	equilibration	of	the	system.		

Figure	S1	illustrates	the	instantaneous	value	of	the	potential	energy	gradient	and	of	its	

time	average,	i.	e.	the	free	energy	gradient	in	the	standard	FEG	equation:	

!!
!𝒒
= !!

!𝒒
				 (S12)	

For	 the	 sake	of	 simplicity,	we	only	 show	 the	 largest	 component	 in	 the	Figure,	 i.	 e.	 the	

oxygen	 Z-component.	 As	 shown,	 a	 good	 convergence	 of	 the	 free	 energy	 gradient	 is	

obtained	in	the	first	few	picoseconds	because	despite	the	presence	of	large	fluctuations	

of	the	potential	energy	gradient,	they	occur	at	a	quite	short	time	scale.	This	fact	can	also	

be	illustrated	with	the	predicted	change	in	the	geometry.	For	 instance,	after	10	ps,	 the	

predicted	change	in	OH	distance	is	+0.0047±0.0002	Å,	very	close	to	the	final	value	(after	

40	ps),	which	amounts		+0.0046±0.0001	Å.		Note	that	only	half	of	this	change	is	due	to	

the	 gradient	 of	 the	 solute	 internal	 potential	 energy	 (+0.0023).	 	 We	 made	 another	

convergence	test	by	comparing	the	results	obtained	using	the	first	20	ps	and	the	last	20	

ps.	The	predicted	changes	in	OH	distance	are	quite	similar,	specifically,	+0.0047±0.0002	

Å	and	+0.0045±0.0001	Å,	respectively.	The	error	bars	given	in	these	figures	correspond	



to	 the	 differences	 found	 for	 the	 two	 OH	 distances,	 which	 as	 pointed	 out	 in	 the	

manuscript	are	smaller	than	0.0002	Å	on	average.	

	

	

	

Figure	 S1.	 The	 potential	 energy	 gradient	 (the	 oxygen	 Z-component),	 and	 its	 time	

average,	 i.e.,	 the	 free	 energy	 gradient,	 as	 a	 function	 of	 simulation	 time.	 Calculations	

correspond	 to	 the	 first	 step	 of	 the	 optimization	 process	 in	 case	 study	 1	 using	 the	

QM/MM	simulation	at	the	B3LYP/6-311+G(d,p)	level	

	

	

2)	Convergence	of	the	FEG-FEP	calculation		

To	illustrate	the	convergence	of	the	FEG-FEP	calculation	of	the	free	energy	gradient,	we	

consider	again	the	computations	in	case	study	1.	The	free	energy	gradient	components	

are	calculated	using	the	approximate	equation:	

!!!"
!"#!!"#(𝒒)

!𝒒
= !!!"(𝒒;𝒔)

!𝒒
𝑤(𝒒; 𝒔) !!				 (S13)	

	

	



and	are	compared	with	calculations	using	the	standard	FEG	equation:	

!!!"
!"#(𝒒)
!𝒒

= !!!"(𝒒;𝒔)
!𝒒 !"				 (S14)	

The	 high-level	 (HL)	 is	 B3LYP/6-311+G(d,p)	while	 the	 low-level	 (LL)	 	 is	 HF/6-31G(d).	

Figure	 S2	 displays	 the	 mean	 squared	 errors	 between	 the	 approximate	 and	 rigorous	

values	of	the	gradient:	

MSE = !
!

(!!!"
!"#(𝒒)
!!!

  − !!!"
!"#!!"#(𝒒)

!!!
)!!

!!! 							 (S15)	

As	shown	in	Figure	S2,	a	suitable	agreement	between	the	FEG	and	FEG-FEP	gradients	is	

obtained	after	20-25	ps	of	simulation	time.	This	time	is	significantly	longer	than	the	time	

required	 for	 the	 FEG	 to	 converge.	 Hence,	 25	 ps	 was	 considered	 to	 be	 the	 minimum	

simulation	 time	 to	 ensure	 that	 both	 1)	 the	 FEG	 gradient	 is	 converged,	 and	 2)	 the	

approximate	FEG-FEP	gradient	accurately	reproduces	the	FEG	gradient.	The	longer	time	

required	 for	 getting	 a	 good	 agreement	 between	 the	 FEG	 and	 FEG-FEP	 gradients,	

compared	to	the	time	required	for	the	FEG	gradient	to	converge,	is	explained	by	the	fact	

that	 FEP	 calculations	 use	 the	 sampling	 from	 the	 simulation	 at	 the	 low	 level.	 It	 is	

therefore	necessary	to	explore	the	configurational	space	thoroughly	in	order	to	include	

favorable	configurations	at	the	high	level.	The	convergence	of	the	FEG-FEP	calculations	

can	also	be	illustrated,	as	made	above,	using	the	predicted	change	in	OH	distance.	After	

25	ps,	the	predicted	change	is	+0.0046±0.0001	Å,	which	is	exactly	the	same	than	the	one	

obtained	after	40	ps	with	either	the	FEG	gradient	(see	above),	or	the	FEG-FEP	gradient.						

	

	

	



	

Figure	 S2.	 Mean	 squared	 error	 (MSE)	 of	 the	 free	 energy	 gradient	 components	 as	 a	

function	 of	 the	 simulation	 time	 in	 case	 study	 1;	 we	 compare	 the	 rigorous	 FEG	

calculations	with	approximate	FEG-FEP	calculations	in	the	first	step	of	the	optimization	

process.	

	

	

Finally,	we	have	examined	the	minimum	number	of	snapshots	that	are	necessary	to	get	

accurate	averages.	This	 is	 illustrated	 in	Figure	S3	using	data	 from	case	study	2	 for	 the	

predicted	change	 in	OH	distances,	at	 the	 first	step	of	 the	optimization	process.	We	use	

the	sampling	of	 the	40	ps	simulation,	but	we	take	a	number	of	points	that	varies	 from	

125	to	4000	(by	doubling	the	number	of	points	each	time).	The	snapshots	in	all	cases	are	

uniformly	distributed	along	the	simulation.	As	described	in	our	paper,	we	decided	to	use	

4000	 points,	 i.	 e.	 one	 snapshot	 every	 10	 fs,	 but	 as	 shown	 in	 Figure	 S3,	 a	 good	

convergence	is	obtained	using	1000	snapshots.		

	

	



	 	

Figure	 S3.	Values	of	 the	predicted	OH1	and	OH2	distances	 change	as	a	 function	of	 the	

number	of	snapshots	taken	to	calculate	the	average	gradients	in	case	study	2	using	the	

FEG-FEP	 method	 (QCISD/aug-cc-pVTZ::B3LYP/6-311+G(d,p)	 dual	 level).	 Calculations	

correspond	to	the	first	step	of	the	optimization	process.	The	simulation	time	was	40	ps	

and	the	points	are	taken	uniformly	distributed	along	the	simulation.	The	final	converged	

values	are	dOH1=0.001006	Å	(full	circles)	and	dOH2=0.001010	Å	(open	circles).		
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