Supporting information.

Characterisation of degraded proteins in paintings using bottom-up proteomic approaches: new strategies for protein digestion and analysis of data

Sibilla Orsini¹, Avinash Yadav^{2,3}, Marialaura Dilillo², Liam A. McDonnell^{2,4}, Ilaria Bonaduce¹

¹Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy.

² Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Pisa, Italy

³ Scuola Normale Superiore, Pisa, Italy

⁴ Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the

Netherlands

* Correspondence to ilaria.bonaduce@unipi.it

S.1 Samples
Table S-1. Sample code, geographical origin and dating of artistic samples.
S.2 Analytical procedures4
S.2.1 Chemicals and Reagents 4
S.2.2 Analytical protocol based on using urea followed by trypsin digestion (UREA)
S.2.3 Analytical protocol based on using PNGaseF followed by trypsin digestion (PNGase)
S.2.4 Analytical protocol based on the use of TFA (TFA)4
S.2.5 Sample desalting
S.2.6 LC-MS/MS
S.3 Results
Table S-2: Comparison of protocols and database search methods for analysis of CP16 th AD
Table S-3: Comparison of protocols and database search methods for analysis of EP15 th AD7
Table S-4: Comparison of protocols and database search methods for analysis of MP14 th AD
Table S-5: Comparison of protocols and database search methods for analysis of MP13 th AD
Table S-6: Comparison of protocols and database search methods for analysis of MP2 nd AD10
Table S-7: Comparison of protocols and database search methods for analysis of MP4 th BC11
S.3.1 Variable modifications
Table S-8: Numbers of modified peptides found in CP16 th AD and MP2 nd AD12
S.3.2 Examples of protein sequence coverage obtained using the different digestion protocols and
different database search modes
S.3.3 Effect of identification threshold in tryptic search15
Table S-9: Effect of database search stringency on number of identified peptides
S.3.4 Analysis of a standard sample of casein from bovine milk
Table S-10: Comparison of protocols and database search methods for the analysis of a standard sample
of casein from bovine milk

S.1 Samples

Samples from polychromies, canvas and mural paintings with different conservation conditions and geographical origins are described in Table S-1, indicating the sample code, the typology of the artwork, its age and geographical origin, as well as the nature of the proteinaceous materials present (previously identified by GC-MS analysis¹) are reported in Supporting Information Table S-1.

 Table S-1. Sample code, geographical origin and dating of artistic samples.

Code	Туре	Origin	Age	Description	GC/MS ID ¹
CP16 th AD	Canvas Painting	Italy	16 th century AD	easel painting on canvas	collagen
EP15 th AD	Easel Painting	Greece	15 th century AD	Greek icon	casein, collagen, egg
MP13 th AD	Mural Painting	Italy	13 th century AD	restoration glue on a mural painting	casein, collagen
MP14 th AD	Mural Painting	Italy	14 th century AD	gilding on a mural painting of a church	egg
MP4 th BC	Mural Painting	Turkey	4 th century BC	painted decoration of an internal wall of a house	unknown
MP2 nd AD	Mural Painting	Pakistan	2 nd century AD	painted decoration of an external wall of a civic building	unknown

S.2 Analytical procedures

S.2.1 Chemicals and Reagents

Trypsin from Bovine Pancreas, Dithiothreitol (DTT), trifluoroacetic acid (TFA), formic acid (FoAc), urea, ammonium bicarbonate (AmBic), water and ACN were purchased from Sigma Aldrich. Peptide-N-glycosidase F (PNGaseF) was obtained from Roche Custom Biotech. All samples were treated in Eppendorf Protein LoBind tubes (1.5 mL) purchased from Sigma-Aldrich.

S.2.2 Analytical protocol based on using urea followed by trypsin digestion (UREA)

The sample was treated according to the protocol reported previously 2,3 . In brief, the sample (50-200 µg) was treated with 10 µL of 6M Urea for 10 min at room temperature and then sonicated for 20 min at room temperature. The solution was then diluted 1:6 with water, followed by the addition of 0.5 µL of trypsin (1 µg/ µL), and left to incubate for 15-18 hours at 37°C. To stop the proteolytic digestion the solution was acidified by the addition of 20 µL of 10% formic acid.

S.2.3 Analytical protocol based on using PNGaseF followed by trypsin digestion (PNGase)

The sample was treated according to the protocol reported previously⁴. In brief, the sample (50-200 μ g) was partially dissolved in 50 μ L of 50 mM ammonium bicarbonate, 3 μ L of PNgaseF solution added, and the solution left to incubate at room temperature for 2 hours then stopped by boiling for 2 minutes. For proteolytic digestion 0.5 μ L of trypsin (1 μ g/ μ L) was added, and the solution left to incubate for 15-18 hours at 37°C. The solution was acidified with 10% formic acid to stop the trypsin digestion.

S.2.4 Analytical protocol based on the use of TFA (TFA)

The sample was treated according to the protocol reported previously⁵. In brief, 20 μ L of 25% (v/v) trifluoroacetic acid was added to 50-200 μ g of sample followed by 0.1 μ L of 30mg/ml of dithiothreitol . Then the sample vials were placed in a plastic beaker, which contained water in sufficient volume to immerse the sample solution (in the Eppendorf tube), and the beaker placed in a domestic microwave oven (Smeg, model number SA37X). After ten minutes of microwave irradiation at 450 W power, 80 μ L of water was added to the sample. The non-specific protein digest was centrifuged at 14000 rpm for 10 min and the supernatant collected.

For samples containing a high amount of calcium carbonate, especially those from mural paintings, we added 25% (v/v) trifluoroacetic acid until CO₂ gas production ceased. Then the solution was dried under N₂ flow, and 20 μ L of 25% (v/v) trifluoroacetic acid was added to the sample and treated as described above.

S.2.5 Sample desalting

Peptide desalting was performed using an AssayMAP Bravo platform (Agilent technologies) with C18 cartridges (Agilent, 5 μ L bed volume) using the peptide cleanup V2 protocol. Briefly, C18 cartridges were primed with ACN, equilibrated with 50 μ L of 0.1% formic acid, 100 μ L of diluted samples were loaded at 5

 μ L/min; two cup wash and a cartridge wash were performed with 50 μ L at 10 μ L/min, followed by a stringent syringe wash with ACN and peptide elution with 30 μ L of 80% ACN and 0.1% FoAC at 5 μ L/min. The solutions were dried in a SpeedVac and re-suspended in 10 μ L of 10% formic acid. An aliquot of the solution (1-3 μ g) was then injected in an LC-MS/MS instrument for protein identification.

S.2.6 LC-MS/MS

The LC-MS/MS analysis was performed using an EASY-nLC 1000 coupled to an Orbitrap Fusion mass spectrometer (both Thermo Scientific GmbH, Bremen, Germany). The peptides were first desalted on a C18 trap column (Acclaim® PepMap100, 75 μ m x 2 cm, 3 μ m particle size, 100Å pore size) and then separated on a 75 μ m x 50 cm C18 analytical column (Acclaim® Rapid Separation Liquid Chromatography (RSLC) column, 2 μ m particle size, 100 Å pore size) using a flow rate of 300 nl/min and a 35min run. Briefly, peptides were loaded at 800 bar followed by a non-linear gradient: 0min, 2%B; t=15min, 35%B; t=23min, 95%B; t=35min, 95%B. Buffer A consisted of 0.1% formic acid in water and Buffer B of 0.1% formic acid in ACN. Data-dependent analysis was performed in a top-speed mode with a 2 second cycle time. MS scans were acquired in the Orbitrap at 120 K resolution, m/z range 375-1500, AGC target of 5×10⁵ and 100 ms maximum injection time. Monoisotopic precursors with a charge state from +2 to +8 and intensity greater than 5 × 10³ were subject to MS/MS in the ion trap using collision-induced dissociation (CID): 1.6 m/z quadrupole isolation window, 35% NCE, AGC target of 5 × 10³, 300 ms maximum injection time and dynamic exclusion of 20s.

S.3 Results

The selection of paintings and polychromies described in Table S-1 were analyzed with the protocols and database search methods reported in Figure 1. The number of identified peptides, protein sequence coverage (%) and PSMs were chosen as output parameters to compare the data. The results are reported in Tables S-2 to S-7.

Table S-2: Comparison of protocols and database search methods for analysis of CP16thAD.

Identified peptides, protein sequence coverage (%) and PSMs of proteins from animal glue of Bos taurus in CP16thAD. The largest number of identified peptides, protein sequence coverage (%) and number of PSMs for each protein are indicated in red. Results are reported for different database search modes: T for tryptic cleavage, S for semitryptic and U for unspecific.

Prot.		#	iden	tifie	d pep	otides	5		seq	uen	ce co	overa	nge (%	/0)				PS	Ms		
		Urea	l	Р	PNGase TFA		U	frea		P	NGa	se	TFA		Urea	ì	P	NGa	se	TFA	
	Т	S	U	Т	S	U	U	Т	S	U	Т	S	U	U	Т	S	U	Т	S	U	U
COL1A1	28	188	162	48	245	195	588	32	48	43	52	61	55	62	92	298	229	154	405	303	894
COL1A2	19	125	104	26	166	141	329	23	41	37	29	50	48	53	39	153	123	57	210	174	470
COL3A1	16	44	30	3	73	51	119	23	30	24	4	39	34	44	34	65	45	6	109	76	180
COL2A1	1	15	11	-	17	11	58	9	8	3	-	10	6	18	5	17	13	-	21	13	<mark>81</mark>
COL4A1	-	-	-	-	2	4	29	-	-	-	-	1	2	16	-	-	-	-	2	4	31

Table S-3: Comparison of protocols and database search methods for analysis of EP15thAD.

Identified peptides, protein sequence coverage (%) and PSMs of animal glue proteins from *Bos taurus*, egg from *Gallus gallus* and milk from *Ovis aries* in EP15thAD. The largest number of identified peptides, protein sequence coverage (%) and number of PSMs for each protein are indicated in red. Results are reported for different database search modes: T for tryptic cleavage, S for semitryptic and U for unspecific.

Prot.			# ide	entifi	ied p	eptid	es		seq	uen	ce co	vera	ge (%	(0)				PSN	⁄Is		
		Urea	a	P	NGa	lse	TFA		Urea	ı	Р	NGa	.se	TFA		Urea	l	P	NGa	se	TFA
	Т	S	U	Т	S	U	U	Т	S	U	Т	S	U	U	Т	S	U	Т	S	U	U
COL1A1	52	227	177	52	150	114	215	56	59	55	56	58	53	42	265	478	339	253	323	239	227
COL1A2	32	158	132	38	97	77	93	40	48	46	50	51	47	34	107	243	190	97	148	120	96
COL3A1	23	68	52	27	44	34	25	32	44	39	41	43	36	23	65	121	87	62	74	54	25
COL2A1	5	17	16	2	9	9	30	6	9	9	2	5	5	11	13	28	20	8	14	11	31
COL4A1	-	5	5	-	3	-	7	-	4	4	-	2	-	5	-	6	5	-	3	-	7
VIT2	43	101	95	57	164	160	266	26	35	34	33	44	40	39	104	181	164	207	347	321	285
VIT1	22	31	28	43	91	79	102	12	15	14	26	30	27	21	33	44	41	84	138	125	105
APOV1	3	15	15	3	19	18	44	33	52	52	33	55	54	55	20	34	32	30	54	48	51
APOA1	6	5	4	7	7	7	-	16	16	16	21	21	21	-	6	5	4	7	7	7	-
АРОВ	-	8	9	-	16	15	1	-	2	2	-	4	4	1	-	8	9	-	21	19	1
VIT3	3	3	3	3	5	5	1	7	7	7	11	12	12	1	3	3	3	4	6	6	1
MUC5B	-	-	-	-	2	1	-	-	-	-	-	1	1	-	-	-	-	-	2	1	-
OVAL	-	-	-	-	2	2	-	-	-	-	-	1	1	-	-	-	-	-	2	2	-
TRFE	6	8	7	6	6	5	2	8	10	9	9	9	9	1	7	8	7	6	6	5	2
LYSC	3	4	4	3	3	3	-	13	18	18	10	10	10	-	3	4	4	5	5	5	-
CASB	-		-	-	-	-	18	-	-	-	-	-	-	27	-	-	-	-	-	-	26
CSN2	-	-	-	-	-	-	2	-	-	-	-	-	-	13	-	-	-	-	-	-	3
LACB	-	-	-	-	-	-	2	-	-	-	-	-	-	3	-	-	-	-	-	-	2

Table S-4: Comparison of protocols and database search methods for analysis of MP14thAD.

Identified peptides, protein sequence coverage (%) and PSMs of egg from *Gallus gallus* in MP14thAD. The largest number of identified peptides, protein sequence coverage (%) and number of PSMs for each protein are indicated in red. Results are reported for different database search modes: T for tryptic cleavage, S for semitryptic and U for unspecific.

Protein		#	iden	tified	l pep	tides	1		seq	uenc	e co	vera	ge (%	(0)				PSI	Ms		
		Urea	l	P	NGa	se	TFA		Urea	l	P	NGa	se	TFA		Urea	l	P	NGas	se	TFA
	Т	S	U	Т	S	U	U	Т	S	U	Т	S	U	U	Т	S	U	Т	S	U	U
VIT2	22	80	73	77	72	62	33	14	23	23	24	26	23	8	43	109	98	125	121	105	36
VIT1	9	25	22	25	22	19	8	6	9	9	12	12	11	3	10	28	24	33	29	27	8
APOV1	3	15	16	15	15	14	8	33	33	33	51	43	43	30	7	21	21	26	26	24	9
APOB	2	3	2	3	4	1	-	1	30	27	2	35	10	-	2	3	2	3	4	1	-
VIT3	-	1	-	4	2	1	-	-	1	-	8	5	1	-	-	1	-	4	2	1	-
MUC5B	2	2	2	2	2	3	-	1	1	1	2	2	2	-	2	2	2	2	2	3	-
VMO1	1	1	1	2	2	3	-	1	1	1	10	10	8	-	2	2	2	4	4	5	-
OVAL	1	6	14	6	8	10	11	2	8	17	8	11	17	10	1	6	15	6	8	10	13
OVALY	1	5	4	3	5	4	-	1	7	5	5	7	5	-	1	5	4	3	5	4	-
OVALX	1	2	1	1	1	1	-	1	2	1	1	2	1	-	1	2	1	1	1	1	-
TRFE	5	10	9	7	17	12	1	8	12	10	10	17	12	1	6	11	10	11	18	13	1
LYSC	2	6	6	4	9	8	4	6	14	14	5	24	23	7	5	11	10	17	24	22	4

Table S-5: Comparison of protocols and database search methods for analysis of MP13thAD.

Identified peptides, protein sequence coverage (%) and PSMs of collagen and milk from *Bos taurus* in MP13thAD. The largest number of identified peptides, protein sequence coverage (%) and number of PSMs for each protein are indicated in red. Results are reported for different database search modes: T for tryptic cleavage, S for semitryptic and U for unspecific.

Prot.			# ide	ntifi	ed pe	eptid	es		S	eque	nce	cove	rage	e (%)				PSN	ls		
		Urea	ı	P	PNGase TFA			Urea	a	Pl	NGa	se	TFA		Urea		P	NGa	se	TFA	
	Т	S	U	Т	S	U	U	Т	S	U	Т	S	U	U	Т	S	U	Т	S	U	U
COL1A1	93	232	189	41	126	87	449	58	67	66	45	48	39	55	534	621	497	123	195	133	475
COL1A2	68	182	151	41	89	67	232	50	64	59	49	45	39	50	256	383	298	88	141	101	239
COL3A1	14	20	15	7	5	4	23	23	25	18	8	7	7	23	19	27	19	7	5	4	24
COL2A1	25	38	26	6	12	10	48	27	28	20	6	7	6	15	49	55	36	9	14	11	51
COL4A1	-	6	4	-	-	-	14	-	16	14	-	-	-	8	-	6	4	-	-	-	15
CASA1	1	22	30	1	15	24	17	5	27	29	5	15	33	35	10	83	85	4	61	62	24
CASB	5	39	18	5	35	65	142	15	28	21	15	30	37	57	50	217	31	43	144	169	241
CASA2	4	11	2	4	11	12	8	12	26	1	12	26	26	18	15	31	6	14	31	34	8
CASK	1	5	5	1	6	10	11	3	9	9	3	11	18	18	8	20	11	4	16	23	13
LACB	1	-	-	5	7	7	-	3	-	-	10	12	12	-	1	-	-	7	12	9	-

Table S-6: Comparison of protocols and database search methods for analysis of MP2ndAD.

Identified peptides, protein sequence coverage (%) and PSMs of collagen from *Bos taurus* and egg white from *Gallus gallus* in MP2ndAD. The largest number of identified peptides, protein sequence coverage (%) and number of PSMs for each protein are indicated in red. Results are reported for different database search modes: T for tryptic cleavage, S for semitryptic and U for unspecific.

Protein		#	ider	ntifie	d pep	tides			sec	quen	ce co	vera	ge (%	b)				PSI	Ms		
		Urea	l	Р	NGa	se	TFA		Urea	ì	Р	NGa	se	TFA		Urea	l	Р	NGa	se	TFA
	Т	S	U	Т	S	U	U	Т	S	U	Т	S	U	U	Т	S	U	Т	S	U	U
COL1A1	8	7	6	33	38	35	45	7	6	5	40	38	35	18	16	11	9	70	64	60	45
COL1A2	5	5	4	23	25	23	23	4	4	3	27	24	23	16	7	7	5	45	41	35	23
COL3A1	1	2	2	4	6	6	16	1	3	3	6	11	11	14	1	2	2	6	9	8	16
COL2A1	-	1	1	1	1	1	5	-	1	1	1	1	1	4	-	1	1	2	1	1	5
COL4A1	-	1	1	-	-	-	1	-	1	1	-	-	-	2	-	1	1	-	-	-	1
VIT2	-	-	-	-	4	4	-	-	-	-	-	1	1	-	-	-	-	-	5	4	-
LYSC	-	-	-	2	2	2	-	-	-	-	19	19	19	-	-	-		2	2	2	-

Table S-7: Comparison of protocols and database search methods for analysis of MP4thBC.

Identified peptides, protein sequence coverage (%) and PSMs of collagen from *Bos taurus* in MP4thBC. The largest number of identified peptides, protein sequence coverage (%) and number of PSMs for each protein are indicated in red. Results are reported for different database search modes: T for tryptic cleavage, S for semitryptic and U for unspecific.

Prot.		#	ident	ified	l pep	tides		Pr	oteir	ı seq	uen	ce cov	verag	e (%)				PSN	Ís		
		Urea	ı	P	NGa	Gase TFA			Urea	ì	P	NGa	se	TFA		Urea		P	NGa	se	TFA
	Т	S	U	Т	S	U	U	Т	S	U	Т	S	U	U	Т	S	U	Т	S	U	U
COL1A1	52	211	208	6	34	32	15	50	61	60	5	18	18	10	349	531	525	10	44	40	17
COL1A2	46	161	156	-	19	18	31	50	59	58	-	12	11	24	202	333	315	-	23	20	39
COL3A1	40	86	78	-	10	7	14	52	61	56	-	12	10	11	166	203	186	-	10	8	14
COL2A1	5	15	16	-	8	10	1	5	9	9	-	6	7	2	23	31	30	-	10	12	1
COL4A1	-	7	6	-	7	6	1	-	5	5	-	4	3	1	-	8	7	-	9	8	1

S.3.1 Variable modifications

Table S.8 shows examples of the incidence of different protein modifications in paintings and polychromies, and the effect of the number of variable modifications on the ability to identify proteins. Two representative samples were selected, CP16thAD (one of the samples with the largest number of identified peptides) and MP2ndAD (a highly degraded sample), and the Mascot search was performed using two sets of variable modifications.

Table S-8: Numbers of modified peptides found in CP16thAD and MP2ndAD.

Number of modified peptides identified for samples $CP16^{th}AD$ and $MP2^{nd}AD$ using the PNGaseF protocol and semitryptic search with **A**) four variable modifications, and **B**) eight variable modifications.

Variable modification	CP1	6 th AD	MP2	nd AD
	Α	B	Α	B
Hydroxylation P	1178	1081	211	167
Oxidation M	124	120	93	90
Deamidation N	137	134	116	110
Deamidation Q	157	146	59	46
Hydroxylation K		25		15
Oxidation C		10		4
Oxidation H		4		3
Oxidation W		4		4

S-12

S.3.2 Examples of protein sequence coverage obtained using the different digestion protocols and different database search modes

Sample MP13thAD; COL1A2 sequence coverage with UREA protocol. MLSFVDTRTLLLLAVTSCLATCQSLQEATARKGPSGDRGPRGERGPPGPPGRDGDDGIPGP PGPPGPPGPPGLGGNFAAQFDAKGGGPGPMGLMGPRGPPGASGAPGPQGFQGPPGEPG EPGQTGPAGARGPPGPPGKAGEDGHPGKPGRPGERGVVGPQGARGFPGTPGLPGFKGIR GHNGLDGLKGQPGAPGVKGEPGAPGENGTPGQTGARGLPGERGRVGAPGPAGARGSDG SVGPVGPAGPIGSAGPPGFPGAPGPKGELGPVGNPGPAGPAGPRGEVGLPGLSGPVGPPG NPGANGLPGAKGAAGLPGVAGAPGLPGPRGIPGPVGAAGATGARGLVGEPGPAGSKGESG NKGEPGAVGQPGPPGPSGEEGKRGSTGEIGPAGPPGPPGLRGNPGSRGLPGADGRAGVM GPAGSRGATGPAGVRGPNGDSGRPGEPGLMGPRGFPGSPGNIGPAGKEGPVGLPGIDGRP <u>GPIGPAGARGEPGNIGFPGPK</u>GPSGDPGKAGEK<u>GHAGLAGARGAPGPDGNNGAQGPPGLQ</u> <u>GVQGGKGEQGPAGPPGFQGLPGPAGTAGEAGKPGERGIPGEFGLPGPAGARGERGPPGES</u> GAAGPTGPIGSRGPSGPPGPDGNKGEPGVVGAPGTAGPSGPSGLPGERGAAGIPGGKGEK GETGLRGDIGSPGRDGARGAPGAIGAPGPAGANGDRGEAGPAGPAGPAGPRGSPGERGEV <u>GPAGPNGFAGPAGAAGQPGAKGERGTKGPKGENGPVGPTGPVGAAGPSGPNGPPGPAGS</u> RGDGGPPGATGFPGAAGRTGPPGPSGISGPPGPPGPAGKEGLRGPRGDQGPVGRSGETG ASGPPGFVGEKGPSGEPGTAGPPGTPGPQGLLGAPGFLGLPGSRGERGLPGVAGSVGEPG PLGIAGPPGARGPPGNVGNPGVNGAPGEAGRDGNPGNDGPPGRDGQPGHKGERGYPGNA <u>GPVGAAGAPGPQGPVGPVGKHGNRGEPGPAGAVGPAGAVGPRGPSGPQGIRGDKGEPGD</u> <u>KGPR</u>GLPGLK<u>GHNGLQGLPGLAGHHGDQGAPGAVGPAGPR</u>GPAGPSGPAGKDGR<u>IGQPGA</u> VGPAGIRGSQGSQGPAGPPGPPGPPGPPGPSGGGYEFGFDGDFYRADQPRSPTSLRPKDY EVDATLKSLNNQIETLLTPEGSRKNPARTCRDLRLSHPEWSSGYYWIDPNQGCTMDAIKVYCD FSTGETCIRAQPEDIPVKNWYRNSKAKKHVWVGETINGGTQFEYNVEGVTTKEMATQLAFMR LLANHASQNITYHCKNSIAYMDEETGNLKKAVILQGSNDVELVAEGNSRFTYTVLVDGCSKKTN EWQKTIIEYKTNKPSRLPILDIAPLDIGGADQEIRLNIGPVCFK

—	tryptic
—	semitryptic
—	unspecific

An analysis of the identified peptides of COL1A2 revealed that four peptides identified using an unspecific search were not identified in semitryptic mode. These peptides were due to protein hydrolysis. On the other hand, thirty-one semi-tryptic peptides were not identified using an unspecific search because they did not pass the threshold score (because the much larger search space significantly reduced the statistical significance of a match).

Sample MP13thAD; CASB sequence coverage with UREA protocol.

MKVLILACLVALALAREQEELNVVGETVESLSSSEESITHINKKIEKFQSEEQQQTEDELQDKIH PFAQAQSLVYPFTGPIPNSLPQNILPLTQTPVVVPPFLQPEIMGVPKVKETMVPK<u>HKEMPFPKY</u> <u>PVEPFTESQSLTLT</u>DVEKLHLPLPLVQSWMHQPPQPLPPTVMFPPQSVLSLSQPKVLPVPQKA VPQRDMPIQAFLLYQEPVLGPVRGPFPILV

 tryptic
 semitryptic
 unspecific

Sample MP13thAD; CASB sequence coverage with PNGaseF protocol. MKVLILACLVALALAREQEELNVVGETVESLSSSEESITHINKKIEKFQS<u>EEQQQTEDELQDK</u>IH PFAQAQSLVYPFTGPIPNSLPQNILPLTQ<u>TPVVVPPFLQPE</u>IMGVPKVKETMVPK<u>HKEMPFPKY</u> PVEPFTESQSLTLTDVEKLHLPLPLVQSWMHQPPQPLPPTVMFPPQSVLSLSQPKVLPVPQKA VPQRDMPIQAFLLYQEPVLGPVRGPFPILV

 tryptic
 semitryptic
 unspecific

The protein sequence coverage and the number of identified peptides of CASB obtained using an unspecific database search was greater than that obtained using semitryptic and tryptic searches. This is probably due to the slaked lime that was used during a 20th century restoration⁶, which will have led to hydrolysis of the protein.

S.3.3 Effect of identification threshold in tryptic search.

A stricter database search may be performed by increasing the Mascot identification score threshold or decreasing the Mascot expectation value threshold. The expectation value (E) is derived directly from the score and the threshold:

$$E = P_{threshold} * \exp((S_{threshold} - score) / 10))$$

in which $P_{threshold}$ is a probability threshold, *S* the peptide score and $S_{theshold}$ the threshold score. The expectation value is the number of times you could expect to get this score or better by chance. To determine the effect of a stricter search on the number of peptides identified in the tryptic search the peptide identifications were filtered by decreasing the peptide expectation value threshold from 0.05, to 0.025 and 0.01. Results are summarized in Table S-9:

Table S-9: Effect of database search stringency on number of identified peptides.

Number of identified peptides, sequence coverage (%) and number of PSMs for sample MP2ndAD analyzed using the PNGaseF protocol and searched in tryptic, semitryptic and unspecific mode using different thresholds of the peptide expectation value threshold. T is for tryptic, S for semitryptic and U for unspecific.

	Numb	oer identi	fied pep	otides		Seque	ence cove	rage (%)		Number PSMs						
	peptid	e expecta	tion valu	ue thresh	ıold	peptic	le expecta	tion valu	ue thres	hold	peptide expectation value threshold						
	0.05	0.025	0.01	0.05	0.05	0.05	0.025	0.01	0.05	0.05	0.05	0.025	0.01	0.05	0.05		
	Т	Т	Т	S	U	Т	Т	Т	S	U	Т	Т	Т	S	А		
COL1A1	33	30	27	38	35	40	38	33	38	35	70	61	55	64	60		
COL1A2	23	21	18	25	23	27	25	20	24	23	45	41	32	41	35		
COL3A1	4	4	4	6	6	6	4	4	11	11	6	6	6	9	8		
COL2A1	1	-	-	1	1	1	-	-	1	1	2	-	-	1	1		
COL4A1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
VIT2	-	-	-	4	4	-	-	-	1	1	-	-	-	5	4		
LYSC	2	2	2	2	2	19	19	19	19	19	2	2	2	2	2		

S.3.4 Analysis of a standard sample of casein from bovine milk

Casein from bovine milk was dissolved in water by adding a few drops of 2.5M NH₃, until a clear solution was obtained (5 mg/ml). The solution was then applied onto a glass slide and allowed to dry. Samples were then collected with a scalpel and analyzed. The number of identified peptides, protein sequence coverage and PSMs are reported in Table S-10.

Table S-10: Comparison of protocols and database search methods for the analysis of a standard sample of casein from bovine milk.

Identified peptides, protein sequence coverage (%) and PSMs of casein from *Bos taurus* in a reference sample of casein analysed with UREA, PNGaseF and TFA. The highest values of identified peptides, protein sequence coverages (%) and PSMs for each protein are reported in red. Results are reported for different search modes: T for tryptic, S for semitryptic, and U for unspecific. The TFA protocol was run in duplicate $(U_1 \text{ and } U_2)$.

	# identified peptides							Sequence coverage (%)									PSMs							
	Urea		PNGase		TFA		Urea		PNGase		TFA		Urea			PNGase			TFA					
	Т	S	U	Т	S	U	U_1	U_2	Т	S	U	Т	S	U	U_1	U_2	Т	S	U	Т	S	U	U_1	U ₂
CASA1	8	14	16	8	22	24	78	79	13	21	21	10	15	15	41	46	21	65	69	24	110	113	164	155
CASB	21	55	66	17	31	33	217	234	20	35	37	21	34	36	62	63	87	253	247	41	62	60	433	462
CASA2	15	30	40	12	18	20	16	22	16	26	27	10	18	18	20	24	42	75	77	31	40	42	37	37
CASK	6	18	29	15	37	40	32	28	5	21	21	16	28	28	25	25	36	97	91	84	153	154	46	44
LACB	18	23	23	22	48	49	6	1	25	41	41	26	33	33	6	1	24	39	38	52	160	162	15	1

References

(1) Bonaduce, I.; Colombini, M. P. Rapid Communications in Mass Spectrometry 2003, 17, 2523-2527.

(2) Gambino, M.; Cappitelli, F.; Cattò, C.; Carpen, A.; Principi, P.; Ghezzi, L.; Bonaduce, I.; Galano, E.; Pucci, P.; Birolo, L.; Villa, F.; Forlani, F. *J. Biosci.* **2013**, *38*, 397-408.

(3) Lluveras-Tenorio, A.; Vinciguerra, R.; Galano, E.; Blaensdorf, C.; Emmerling, E.; Perla Colombini, M.; Birolo, L.; Bonaduce, I. *PLOS ONE* **2017**, *12*, e0172990.

(4) Vinciguerra, R.; Galano, E.; Vallone, F.; Greco, G.; Vergana, A.; Bonaduce, I.; Marino, G.; Pucci, P.; Amoresano, A.; Birolo, L. *Analytical Chemistry* **2015**, *87*, 10178-10182.

(5) Zhong, H.; Marcus, S. L.; Li, L. J. Am. Soc. Mass Spectrom. 2005, 16, 471-481.

(6) Andreotti, A.; Baracchini, C.; Bonaduce, I.; Caleca, A.; Colombini, M.; Paolucci, A. In *Proceedings of 2008 ICOM-CC Triennial Conference*, 2014, pp 825-832.