Supporting Information

Arylruthenium(III) Porphyrin-Catalyzed C–H Oxidation and Epoxidation at Room Temperature and $[Ru^{V}(Por)(O)(Ph)]$ Intermediate by Spectroscopic Analysis and DFT Calculations

Ka-Pan Shing,[†] Bei Cao,[†] Yungen Liu,[†] Hung Kay Lee,[‡] Ming-De Li,[†] David Lee Phillips,[†] Xiao-Yong Chang,[†] and Chi-Ming Che^{†,§,*}

[†]Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China

[‡]Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China

[§]HKU Shenzhen Institute of Research and Innovation, Shenzhen 518053, China

E-mail: cmche@hku.hk

Table of Contents

Abbreviations	S4
Experimental SectionMaterial and InstrumentationSynthesis and Characterization of Ru(II), Ru(III), Ru(IV) and Ru(VI) PorphyrinsX-Ray Crystal Structure DeterminationUV-vis Spectroelectrochemistry MeasurementGeneral Procedure for [Ru ^{III} (Por)(Ph)(L)]-Catalyzed Epoxidation and C-H OxidationCharacterization of Organic ProductsHammett PlotKinetic MeasurementsX-Band EPR SpectroscopyESI-MSPreparation of ¹⁸ O-Labelled <i>m</i> -CPBAResonance Raman SpectroscopyComputational Details	S4 S4 S5 S7 S7 S7 S7 S8 S9 S9 S9 S10 S10 S10 S12
References	S13
Table S1. Crystallographic Data for Complexes 1–3	S15
 Table S2. Catalyst Screening for the Oxidation of 1-Decene with ["Bu₄N]IO₄ Table S3. Data Used to Plot the Hammett Correlation for 1-Catalyzed C-H Oxidation of <i>para</i>-Substituted Ethylbenzenes with <i>m</i>-CPBA 	S16 S17
Table S4. Rate Constants (k_2) for the Oxidation of Hydrocarbons by ' 1 + <i>m</i> -CPBA (1 equiv)'	S18
Table S5. Comparison of the g Tensors for Ru Species with $S = 1/2$	S19
Figure S1. ESI-MS Spectra of 1 and 2	S20
Figure S2. UV-vis Spectral Change of the Electrochemical Oxidation of 2 at Constant Voltage (+0.5 V)	S21
Figure S3. UV-vis Spectral Changes for $1 + m$ -CPBA in CH ₂ Cl ₂	S22
Figure S4. Simulated and Observed Isotopic Patterns for $[Ru(TDCPP)(O)(Ph)]$ (A) and '95% $[Ru(TDCPP)(Ph)(^{16}O)] + 5\% [Ru(TDCPP)(Ph)(^{18}O)]$ '	S23
Figure S5. X-Band EPR Spectrum of 1 Recorded at 40 K	S24
Figure S6. Graphs Showing k_{obs} of Hydrocarbon Oxidation by 1 vs Concentration of Hydrocarbons (298 K)	S25
Figure S7. Graphs Showing $\ln A-A_{\infty} $ at 420 nm vs Time for Various Concentrations of Ethylbenzene	S27
Figure S8. Graphs Showing $\ln A-A_{\infty} $ at 420 nm vs Time for Various Concentrations of Xanthene	S28
Figure S9. Graphs Showing $\ln A-A_{\infty} $ at 420 nm vs Time for Various Concentrations of 9,10-Dihydroanthracene	S29
Figure S10 . Graphs Showing $\ln A-A_{\infty} $ at 420 nm vs Time for Various Concentrations of Fluorene	S 30
Figure S11 . Graphs Showing $\ln A-A_{\infty} $ at 420 nm vs time for Various Concentrations of Methylcyclohexane	S31
Figure S12 . Graphs Showing $\ln A-A_{\infty} $ at 420 nm vs Time for Various Concentrations of Methylcyclohexane- d_{14}	S32
Figure S13 . Graphs Showing $\ln A-A_{\infty} $ at 420 nm vs Time for Various Concentrations of 1-Phenylethanol	S33
Figure S14 . Graphs Showing $\ln A-A_{\infty} $ at 420 nm vs Time for Various Concentrations of 1-Phenylethanol- d_{10}	S34

Figure S15 . Graphs Showing $\ln A-A_{\infty} $ at 420 nm vs Time for Various Concentrations of 1-Decene	S35
Figure S16. Free Energy Surface of Hydroxylation of Methylcyclohexane by	
[Ru ^V (TDCPP)(O)(Ph)]	S36
Figure S17. TD-DFT Simulated UV-vis Spectra of [Ru ^V (TDCPP)(O)(Ph)], [Ru ^{VI} (TDCPP)(O) ₂], and [Ru ^{III} (TDCPP)(Ph)]	S37
Figure S18. Graph Showing the Brønsted-Evans-Polanyi Relationship	S38
Cartesian Coordinates from DFT Calculations	S39

Abbreviations

Cl₂pyNO: 2,6-dichloropyridine-*N*-oxide *m*-CPBA: *m*-chloroperoxybenzoic acid CCl₄: carbon tetrachloride TMSCI: trimethylsilyl chloride ESI-MS: electrospray ionization mass spectrometry N_4OH : bis[2-(2-pyridyl)ethyl][2-hydroxy-2-(2-pyridyl)ethyl]amine OEP: 2,3,7,8,12,13,17,18-octaethylporphyrinato(2-) Oxone: potassium peroxymonosulfate, 2KHSO₅·KHSO₄·K₂SO₄ Por: porphyrinato(2-) qpy: 2,2':6',2'':6'',2''':e''',2''''-quinquepyridine TDCPP: 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrinato(2-) TDFPP: 5,10,15,20-tetrakis(2,6-difluorophenyl)porphyrinato(2-) TPP: 5,10,15,20-tetrakis(2,4,6-trimethylphenyl)porphyrinato(2-) F₂₀-TPP: 5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato(2-)

Experimental Section

Materials and Instrumentation

Anhydrous 1,4-dioxane and other reagents were purchased from Sigma-Aldrich and used without purification unless mentioned otherwise. $Ru_3(CO)_{12}$ was purchased from Dieckmann. Acetonitrile and dichloromethane were freshly distilled with CaH₂ before use. Iodosylbenzene (PhI=O),¹ H₂TDCPP,^{2a} H₂TDFPP,^{2b} (*E*)-1-phenyl-1,3-diene,³ α -methyl- γ -phenylallyl pivalate and α -methyl- γ -phenylallyl acetate⁴ were synthesized according to literature methods. Merck silica gel 60 was used for flash column chromatography. ¹H and ¹³C NMR spectra were recorded using a Bruker DPX400 or DPX300 spectrometer; the solvent CDCl₃ contains trimethylsilane (TMS) as an internal standard and all the chemical shifts were reported relative to TMS. Effective magnetic moments were measured by the Evans method. Cyclic voltammetry was carried out on a Princeton Applied Research Model 273A potentiostat/galvanostat coulometer with a three-electrode cell system (working electrode, glassy carbon; counter electrode, platinum wire; reference electrode: 0.1 M Ag/AgNO₃ in MeCN). UV-vis spectra were recorded on a Cary 8454 UV-vis spectrophotometer (Agilent Technologies). Positive-ion mode electron-impact (EI) mass spectra were recorded on a Thermo Scientific DFS high resolution

magnetic sector MS. Gas chromatography (GC-FID) measurements (% conversion and % yield) were performed by using a HP 5890 Series II with a flame ionization detector and a 3396 Series II integrator. GC-MS analysis was performed by Agilent Technologies 7890B GC system with 5977A MS detector. Bruker EMX EPR spectrometer with a variable-temperature helium flow cryostat system was used to record X-band EPR spectra at 7 K. Low-resolution and high-resolution ESI-MS (positive-ion mode) measurements were recorded on a Finnigan LCQ quadrupole ion trap mass spectrometer and a Waters Micromass Q-Tof Premier quadrupole time-of-flight tandem mass spectrometer, respectively.

Synthesis and Characterization of Ru(II), Ru(III), Ru(IV) and Ru(VI) Porphyrins

Synthesis of [Ru^{II}(Por)(CO)] (Por = TDCPP and TDFPP)

A 100-mL two-necked round-bottom flask was charged with 1,2,4-trichlorobenzene (50 mL), followed by degassing with argon for 15 min. After that, H₂TDCPP or H₂TDFPP (300 mg) was added to the degassed solution under argon. The reaction system was then purged continuously with argon and heated to 160–165 °C. 12 portions of Ru₃(CO)₁₂ (25 mg each, totally 300 mg) were added to the reaction mixture (protected with argon flow) at a 15-min interval. After addition of the final portion, the mixture was allowed to stir for extra 1 h. The reaction mixture was then cooled to room temperature. [Ru^{II}(Por)(CO)] was obtained by purification of the product through column chromatography on neutral alumina: with *n*-hexane (as eluent) to remove 1,2,4-trichlorobenzene, CH₂Cl₂/hexane to remove unreacted porphyrin, and CH₂Cl₂/acetone to elute the desired product.

Synthesis of [Ru^{VI}(TDCPP)(O)₂]

To a 100-mL round-bottom flask containing $[Ru^{II}(Por)(CO)]$ (200 mg) was added CH_2Cl_2 (70 mL), followed by portionwise addition of *m*-CPBA (300 mg). After 5 min, the excess *m*-CPBA was removed by a short alumina column using CH_2Cl_2 as eluent. The fast-moving brown band was collected and concentrated to dryness under vacuum at room temperature, giving the desired product as a purple solid.

Synthesis of [Ru^{IV}(TDCPP)(Cl)₂]

To a 100-mL two-necked round-bottom flask was added $[Ru^{VI}(TDCPP)(O)_2]$ (200 mg). Under inert atmosphere, anhydrous CH₂Cl₂ (70 mL) and trimethylsilyl chloride (0.5 mL) were sequentially added via syringes. The reaction mixture was stirred for 2 h and then concentrated to a smaller volume, followed by filtration and washing with diethyl ether to afford the title product.

Characterization of [Ru^{II}(TDCPP)(CO)], [Ru^{IV}(TDCPP)(Cl)₂] and [Ru^{VI}(TDCPP)(O)₂]

These complexes were characterized as reported previously.⁵

Characterization of [Ru^{II}(TDFPP)(CO)]

This complex was characterized as reported previously.⁶

Synthesis of [Ru^{III}(TDFPP)(Cl)(THF)] (3)

A mixture of $[Ru^{II}(TDFPP)(CO)]$ with CCl₄ was allowed to reflux in air overnight. After removal of the solvent, the desired product was obtained as a dark red solid by recrystallization from anhydrous THF/diethyl ether. Yield: 80%. ¹H NMR (CDCl₃): δ -27.75 (H_β, bs, 8H), 4.36 (H_m', d, 4H), 4.61 (H_m, d, 4H), 6.09 (H_p, 4H), 15.5 (OCH₂*CH*₂, bs, 4H) (O*CH*₂CH₂ not observed); UV-vis (3.7 × 10⁻⁶ M, CH₂Cl₂): λ_{max} (log ε) 408 (5.32), 524 nm (4.31); ESI-MS (CH₂Cl₂): *m*/*z* 893.0 [M – THF]⁺, 858 [M – THF – Cl]⁺; Effective magnetic moment: 1.75 µ_B (*S* = 1/2).

Synthesis of $[Ru^{III}(TDCPP)(Ph)(OEt_2)]$ (1) and $[Ru^{III}(TDFPP)(Ph)(OH_2)]$ (2)

In a Schlenk flask, $[Ru^{IV}(TDCPP)Cl_2]$ or $[Ru^{II}(TDFPP)(Cl)(THF)]$ (0.189 mmol) was added, followed by drying under vacuum. Under inert atmosphere, anhydrous toluene (4 mL) was added via syringe. The reaction flask was then immersed into an acetone/N₂(l) bath. After that, 10 equiv of phenyllithium (1.6 M in diethyl ether) was slowly added into the mixture with vigorous stirring. The mixture was allowed to warm to room temperature, followed by stirring at room temperature for 30 min. Water (15 mL) was slowly added into the mixture via syringe under argon. The mixture was extracted with CH₂Cl₂ (30 mL × 4) until the organic layer became colorless. The combined organic layer was then evaporated to dryness and loaded into a neutral alumina-packed column. The brown band was collected by eluting with CH₂Cl₂/hexane. The solvent was dried under vacuum to give a black solid.

[**Ru**^{III}(**TDCPP**)(**Ph**)(**OEt**₂)] (1). Yield: 66%. ¹H NMR (CDCl₃): δ -102.50 (H_o, bs, 2H), -75.00 (H_p, bs, 2H), -30.71 (H_β, bs, 8H), 4.77-4.79 (H_{m'}, bs, 4H), 4.96-4.98 (H_m, bs, 4H), 5.59-5.63 (H_p, bs, 4H), 54.27 (H_m, bs, 2H); ESI-MS (CH₂Cl₂): m/z 1067 [M – OEt₂]⁺, 990 [M – OEt₂ – Ph]⁺; UV-vis (6.3 × 10⁻⁶ M, CH₂Cl₂): λ_{max} (log ε) 405 (5.10), 522 (4.11), 615 nm (sh, 3.79); Effective magnetic moment: 1.77 μ_B (*S* = 1/2).

[**Ru**^{III}(**TDFPP**)(**Ph**)(**OH**₂)] (2). Yield: 73%. ¹H NMR (CDCl₃): δ -103.40 (H_o, bs, 2H), -76.30 (H_p, bs, 2H), -30.57 (H_β, bs, 8H), 4.25-4.27 (H_{m'}, bs, 4H), 4.50-4.52 (H_m, bs, 4H), 5.74-5.78 (H_p, bs, 4H), 54.23 (H_m, bs, 2H); ESI-MS (CH₂Cl₂): m/z 935 [M – OH₂]⁺, 859 [M – OH₂ – Ph]⁺; UV-vis (6.0 × 10⁻⁶ M, CH₂Cl₂): λ_{max} (log ε) 410 (5.07), 521 (4.12); Effective magnetic moment: 1.78 μ_B (*S* = 1/2).

X-Ray Crystal Structure Determination

A diffraction-quality crystal of **1** was obtained by slow diffusion of diethyl ether and hexane (1:1 v/v) into a dichloromethane solution of **1**. Similarly, slow diffusion of diethyl ether into a dichloromethane solution of **2** gave a diffraction-quality crystal of **2**. A diffraction-quality crystal of **3** was obtained by layering diethyl ether on the top of a tetrahydrofuran solution of the crude product obtained by refluxing [Ru^{II}(TDFPP)(CO)] in CCl₄. Each of the crystals was quickly mounted in a glass fiber and measured at a temperature of 100 K. The X-ray diffraction data were collected on a Bruker Proteum X8 diffractometer with monochromated Cu-K α radiation. The Proteum2 program package was used for cell refinement and data reduction.⁷ All structures were solved by direct methods using SHELXS and refined by full-matrix least-squares on $|F^2|$ algorithm (SHELXL)⁸ using Olex2 program.⁹ Some solvent molecules in the crystal structure of **2** were omitted using SQUEEZE routing of PLATON program as they were highly disordered and could not be resolved unambiguously.

UV-vis Spectroelectrochemistry Measurement

Approximately 1.3 mL of CH_2Cl_2 solution containing 6.8×10^{-5} M of **2** and 0.1 M [^{*n*}Bu₄N]PF₆ was added to a batch-type UV cell designed for spectroelectrochemistry with 1 mm path length. After that, Pt gauze working electrode, Pt counter electrode and pseudo-reference electrode were connected to the same instrument used for cyclic voltammetry. The UV-vis spectra were recorded once a constant voltage (+0.5 V) was applied to the sample.

General Procedure for [Ru^{III}(Por)(Ph)(L)]-Catalyzed Epoxidation and C-H Oxidation

Catalyst $[Ru^{II}(Por)(Ph)(L)]$ (2 mol %) and *m*-CPBA/*n*-tetrabutylammonium periodate (0.167-0.525 mmol, depending on the substrate) were added to a Schlenk flask, which was then dried under vacuum and subsequently refilled with argon for three times. Under argon, alkene (0.150-0.167 mmol) was added before addition of freshly distilled CH₂Cl₂ (2 mL). The reaction was stirred at room temperature (different reaction times, depending on the substrate). After the completion of reaction, the reaction mixture was evaporated to dryness and re-dissolved with 50 mL of diethyl ether/hexane or ethyl acetate/hexane (1:1 v/v) to remove most of the salt and catalyst. The filtered solution was then concentrated to give the crude product. If necessary, column chromatography was used to further purify the product with ethyl acetate/hexane as an eluent. The following table presents different internal

1 1	•
Internal Standard	Entries in Table 2
Dimethyl fumarate	9, 14, 16-18
2-Benzylpyridine	3, 10, 7, 11, 15
Methyl 4-nitrobenzene	2, 4-7

standards used to avoid peak overlap(s) in the determination of yield.

References for Characterization of Organic Products

	F C O	O2N O		
ref 10	ref 11	ref 12	ref 11	ref 13
ref 10	Br ref 14	ref 10	Cl ref 15	1 9 1 1 1
Ph ref 10	C_4H_9 C_4H_9 ref 17	C_4H_9 ref 17	ref 18	ref 19
Ph O ref 20	Ph OH ref 16	Ph OAc ref 21	Ph O O O O O O O O O O O O O O O O O O O	of Contract of Con
o ref 22	ref 23	ref 24	ref 25	ref 26
ref 26	ref 27	ref 28	HO HO Tef 29	о 10 он ref 30

Hammett Plot

In a typical run, ethylbenzene and *para*-substituted ethylbenzene (e.g. CH₃, Cl, Br, NO₂) in equimolar amounts (0.07 mmol each) were added to a Schlenk tube containing 2 mol % of **1** (0.0028 mmol) in CH₂Cl₂ (2 mL). Upon well-mixing, 3.5 equiv of *m*-CPBA was charged to the tube. After 10 s, an aliquot (50 μ L) was quickly diluted by 20 times with CH₂Cl₂, and approximately 4 μ L of the diluted sample was immediately injected to GC-MS for detecting the ratio of acetophenones (the sampling time was determined by checking the % conversion of 4-ethyltoluene after 10 s, ensuring that % conversion was <5% and the reaction kinetics followed a pseudo-first-order rate law).

Kinetic Measurements

In a UV cell, 10 μ M of **1** (3 mL of CH₂Cl₂) was added with 3 mM of *m*-CPBA (10 μ L of CH₂Cl₂, 1 equiv to **1**) to generate the Ru^V-oxo species *in situ*. When the decrease in absorbance at 420 nm was stopped (formation of Ru^V-oxo was accomplished), 10 μ L of ethylbenzene was added to the mixture. Addition of ethylbenzene made the absorbance at 420 nm to increase as the Ru^V-oxo species was being reduced. In a similar manner, different amounts of ethylbenzene were added to the replicates containing **1** and *m*-CPBA. The different observed rate constants (k_{obs}) were obtained by plotting ln|A-A_∞| vs time (Figure S6–S15). After that, plotting k_{obs} vs concentration of ethylbenzene gave the second-order rate constant (k_2). The same method was applied to the other liquid substrates. For some solid substrates, they were first dissolved in CH₂Cl₂ to give stock solutions with known concentrations before adding to the *in situ* generated Ru^V-oxo species.

X-Band EPR Spectroscopy

In a vacuum-dried EPR tube, 0.6 mM of **1** in 500 μ L CH₂Cl₂ was added and then immersed into liquid nitrogen. After 10 s, the frozen solution was cooled to 7 K by liquid helium, followed by recording its EPR

spectrum. When the measurement was finished, the solution was allowed to warm to room temperature and 1.2 equiv of *m*-CPBA was subsequently added. Similarly, the solution was again frozen by liquid nitrogen and cooled to 7 K by liquid helium. The EPR spectrum of this solution was then recorded. In a similar manner, the solution was warmed to room temperature and added with 4 equiv of styrene. After that, this solution was also frozen to record its EPR spectrum. In addition, the respective background EPR spectra were also obtained by recording the EPR spectra of CH_2Cl_2 , *m*-CPBA in CH_2Cl_2 and styrene in CH_2Cl_2 .

ESI-MS

Complex 1 (0.5 mM, 50 μ L) was diluted by 125 times first and 250 μ L of the diluted sample was then analyzed by ESI-MS. The ESI-MS spectrum was recorded at a flow rate of 5 μ L/min, using positive-ion mode and spray voltage = 4.5 kV. After recording the ESI-MS spectrum, the residual solution was completely injected into a vial containing 0.9 equiv of *m*-CPBA, followed by analysis of the mixture immediately and continuously over 1.5 min. The solution was again injected back to a new vial containing 10 μ L of styrene. The mixture was then analyzed by ESI-MS.

Preparation of ¹⁸O-Labeled *m*-CPBA

A small vial containing 2% $H_2^{18}O_2(0.58 \text{ mmol})$ was placed in a 20-mL vial with CaH₂ (4.5 g). The $H_2^{18}O_2$ solution was concentrated to 30-40% according to the total volume. After that, the $H_2^{18}O_2$ solution was transferred to a 5-mL round-bottom flask using 2 mL of anhydrous 1,4-dioxane, followed by addition of NaOH (0.58 mmol). The reaction mixture was sonicated for 3 min until turbidity appeared. The flask was charged with a small amount of anhydrous MgSO₄ (0.01 mmol) and cooled to 0 °C. 3-Chlorobenzoyl chloride was injected to the reaction mixture under surface and allowed to stir for 30 min at 0 °C. After that, cold 20% H_2SO_4 was used to acidify the reaction mixture. The organic phase was extracted with CH₂Cl₂ and the combined organic phase was back extracted with water. A flaky white solid was obtained after removal of organic solvent under vacuum at room temperature (50 mg, 50% yield; when the solid was added to a solution of **1**, the pattern of UV-vis spectral change was the same as that obtained by treating **1** with *m*-CPBA-¹⁶O). The solid was used for resonance Raman spectroscopy without further purification.

Resonance Raman (RR) Spectroscopy

The RR experiments were done by employing an experimental setup and methods detailed previously³⁷ and only a brief description is provided here. RR spectra were measured using 416 nm excitation wavelength which is the first Stokes hydrogen Raman-shifted laser line produced from the third harmonic of Nd:YAG laser. The power of 416 nm is about 5 mW. The samples were dissolved in CH_2Cl_2 and MeCN solvents with an absorbance of ~1 at 416 nm in a 2 mm path-length fused silica cuvette throughout the data acquisition. The excitation laser beam was focused to about a 0.5 mm diameter spot size onto a 2 mm path-length

cuvette of sample. A backscattering geometry was employed for sample excitation and for collection of the Raman scattered light by reflective optics. The Raman signal detected by a liquid-nitrogen-cooled charged-coupled device (CCD) detector was acquired for 10 s before being read out to an interfaced personal computer, and 6 of these readouts were averaged to obtain the resonance Raman spectrum. The Raman bands of the MeCN solvent were employed to calibrate the resonance Raman spectra with an estimated accuracy of 5 cm⁻¹ in absolute frequency. The Raman spectrum of the sample was obtained by removing the Raman spectrum of the corresponding solvent with a proper scaling factor. For the sampling procedure, 1 mM of **1** in CH₂Cl₂ was used to record an initial spectrum. 1.2 equiv of ¹⁶O-labeled *m*-CPBA was then added to the solution that was just recorded, followed by recording another spectrum. In a similar manner, ¹⁸O-labeled *m*-CPBA was added to a replicate solution containing 1 mM of **1**. Due to limited solubility of **1** in MeCN, only 0.1 mM solution of **1** in MeCN was used to record the initial spectrum. After recording the initial spectrum, two spectra were also separately recorded in the presence of 10 μ L H₂¹⁶O and H₂¹⁸O (97% atom ¹⁸O).

Simulated and experimental RR spectra for oxidation of 1 by m-CPBA.

Computational Details

All calculations were performed through Gaussian 09 package.³⁸ All the structures were optimized at the M11L/MG3S//M11L/def2-SVP³⁹ level of density functional theory (DFT). The separated reactants were used as the zero reference. Vibrational analysis was performed for all the stationary points to characterize the transition state (one imaginary frequency), the corresponding reactant complex (no imaginary frequency), and product complex (no imaginary frequency). To further refine the energies, the solvent effect was included by the single point calculations for all the optimized gas-phase structures with self-consistent reactions field (SCRF) based on the SMD continuum solvation model⁴⁰ in which dichloromethane was the solvent as the experimental condition. The functional of M06 still was applied; time-dependent density functional theory (TD-DFT) calculation was carried out using B3LYP-GD3BJ/def2-SVP.⁴¹

The EPR *g*-tensors of $[Ru^{III}(TDCPP)(Ph)]$ and $[Ru^{V}(TDCPP)(O)(Ph)]$ were calculated using a literature method.⁴² The calculations were performed by employing the ORCA program⁴³ at the level of theory BP86/def2-TZVP⁴⁴ based on the optimized structures obtained by Gaussian 09 package.

The KIE was calculated with the transition state theory rate constants including one-dimensional tunneling effect (TSTW) by the Kinetic and Statistical Thermodynamical Package.⁴⁵ The Wigner tunneling corrected rate constant k_{TSTW} is defined as follows:

$$k_{TSTW} = \chi(T) \cdot \left[\sigma \times \frac{k_b T}{h} \times \left(\frac{RT}{P^0} \right)^{\Delta n} \times e^{-\Delta G^{*0}/k_b T} \right]$$

wherein $\chi(T)$ is the transmission coefficient, which is defined as

$$\chi(T) = 1 + \frac{h^2 \left| v^{\neq} \right|^2 \beta^2}{24}$$

The UV-vis spectra of $[Ru^{V}(TDCPP)(O)(Ph)]$ (²A), $[Ru^{VI}(TDCPP)(O)_{2}]$, and $[Ru^{II}(TDCPP)(Ph)]$ were calculated through TD-DFT. As shown in the following table, the calculated Soret band of $[Ru^{V}(TDCPP)(O)(Ph)]$ is red-shifted relative to that of $[Ru^{III}(TDCPP)(Ph)]$, which is consistent with the experimental observations (see Figure 3 in text).

	Calc λ_{max}/nm (log ϵ)	Expt λ_{max}/nm (log ϵ)
[Ru ^{VI} (TDCPP)(O) ₂]	397 (5.46)	$420(5.42)^{a}$
[Ru ^{III} (TDCPP)(Ph)]	386 (5.09)	405 (5.10)
[Ru ^V (TDCPP)(O)(Ph)]	413 (4.66)	416 (^b)

Calculated and Experimental λ_{max} (log $\epsilon)$ Values for Soret Bands

^a Data from Liu, C.-J.; Yu, W.-Y.; Che, C.-M.; Yeung, C.-H. J. Org. Chem. 1999, 64, 7365. ^b Not available.

References

- (1) Dauban, P.; Sanière, L.; Tarrade, A.; Dodd, R. H. J. Am. Chem. Soc. 2001, 123, 7707.
- (2) (a) Johnstone, R. A. W.; Nunes, L. P. G.; Pereira, M. M.; Rocha Gonsalves, A. M. d'A.; Serra, A. C. *Heterocycles* 1996,43, 1423. (b) Lv, H.; Yang, B.; Jing, J.; Yu, Y.; Zhang, J.; Zhang, J.-L. *Dalton Trans.* 2012, 41, 3116.
- (3) Wei, X.-J.; Yang, D.-T.; Wang, L.; Song, T.; Wu, L.-Z.; Liu, Q. Org. Lett. 2013, 15, 6054.
- (4) Tseng, C. C.; Paisley, S. D.; Goering, H. L. J. Org. Chem. 1986, 51, 2884.
- (5) Hu, W.-X.; Li, P.-R.; Jiang, G.; Che, C.-M.; Chen, J. Adv. Synth. Catal. 2010, 352, 3190.
- (6) Takagi, S.; Miyamoto, T. K.; Hamaguchi, M.; Sasaki, Y. Inorg. Chim. Acta 1990, 173, 215.
- (7) Proteum2, Bruker AXS, Madsion, Wisconsin, 1999.
- (8) Sheldrick, G. Acta Crystallogr. Section A 2008, 64, 112.
- (9) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.
- (10) Piccinini, A.; Kavanagh, S. A.; Connon, P. B.; Connon, S. J. Org. Lett. 2010, 12, 608.
- (11) Tse, M. K.; Bhor, S.; Klawonn, M.; Anikumar, G.; Jiao, H.; Spannenberg, A.; Döbler, C.; Mägerlein, W.; Hugl, H.; Beller, M. Chem.-Eur. J. 2006, 12, 1875.
- (12) Pedragosa-Moreau, S.; Morisseau, C.; Zylber, J.; Archelas, A.; Baratti, J.; Furstoss, R. J. Org. Chem. 1996, 61, 7402.
- (13) Imada, Y.; Iida, H.; Kitagawa, T.; Naota, T. Chem.-Eur. J. 2011, 17, 5908.
- (14) Matsumoto, K.; Kubo, T.; Katsuki, T. Chem.-Eur. J. 2009, 15, 6573.
- (15) Susanto, W.; Lam, Y. Tetrahedron. 2011, 67, 8353.
- (16) Schomaker, J. M.; Reddy Pulgam, V.; Borhan, B. J. Am. Chem. Soc. 2004, 126, 13600.
- (17) Brimeyer, M. O.; Mehrota, A.; Quici, S.; Nigam, A.; Regen, S. L. J. Org. Chem. 1980, 45, 4254.
- (18) Murphy, A.; Pace, A.; Stack, T. D. P. Org. Lett. 2004, 6, 3119.
- (19) Arai, K.; Lucarini, S.; Salter, M. M.; Ohta, K.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2007, 129, 8103.
- (20) Li, Y.; Liu, X.; Yang, Y.; Zhao, G. J. Org. Chem. 2007, 72, 288.
- (21) Chan, W.-K.; Wong, M.-K.; Che, C.-M. J. Org. Chem. 2005, 70, 4226.
- (22) Labra-Vázquez, P.; Galano, A.; Romero-Á vila, M.; Flores-Á lamo, M.; Iglesias-Arteaga, M. A.; *ARKIVOC* 2013, 4, 107.
- (23) Kumar, R. A.; Maheswari, C. U.; Ghantasala, S.; Jyothi, C.; Reddy, K. R. Adv. Synth. Catal. 2011, 353, 401.
- (24) Metallinos, C.; Zaifman, J.; Belle, L. V.; Dodge, L.; Pilkington, M. Organometallics 2009, 28, 4534.
- (25) Cunningham, A.; Mokal-Parekh, V.; Wilson, C.; Woodward, S. Org. Biomol. Chem. 2004, 2, 741.
- (26) Yuan, Y.; Shi, X. Synlett 2011, 4, 559.
- (27) Thirunavukkarasu, V. S.; Parthasarathy, K.; Cheng, C.-H. Angew. Chem., Int. Ed. 2008, 47, 9462.
- (28) van E. Hommes, N. J. R.; Clark, T. J. Mol. Model. 2005, 11, 175.
- (29) Russ, A. S.; Vinken, R.; Schuphan, I.; Schmidt, B. Chemosphere 2005, 60, 1624.
- (30) Rani, S.; Khan, S. A.; Ali, M. Nat. Prod. Res. 2010, 24, 1358.
- (31) Molander, G. A.; Hahn, G. J. Org. Chem. 1986, 51, 2596.
- (32) Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Shiro, M.; Kita, Y. Chem. Commun. 2005, 2205.
- (33) Iida, T.; Ogawa, S.; Miyata, S.; Gota, T.; Mano, N.; Goto, J.; Nambara, T. *Lipids* **2004**, *39*,873-880.
- (34) Brodsky, B. H.; Du Bois, J. J. Am. Chem. Soc. 2005, 127, 15391.
- (35) Kamata, K.; Yonehara, K.; Nakagawa, Y.; Uehara, K.; Mizuno, N. Nature Chem. 2010, 2, 478.
- (36) Zhao, J.; Larock, R. C. Org. Lett. 2005, 7, 4273.
- (37) (a) Chan, P. Y.; Kwok, W. M.; Lam, S. K.; Chiu, P.; Phillips, D. L. J. Am. Chem. Soc. 2005, 127, 8246. (b) Li, M. D.; Yeung, C. S.; Guan, X.; Ma, J.; Li, W.; Ma, C.; Phillips, D. L. Chem.-Eur. J. 2011, 17, 10935.
- (38) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J.

E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, revision C.01; Gaussian, Inc.: Wallingford, CT, 2011.

- (39) (a) Peverati, R.; Truhlar, D. G. J. Phys. Chem. Lett. 2012, 3, 117. (b) Zheng, J.; Xu, X.; Truhlar, D. G. Theor. Chem. Acc. 2011, 128, 295. (c) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
- (40) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
- (41) (a) Becke, A. D. *Phys. Rev. A* 1988, *38*, 3098. (b) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* 1988, *37*, 785. (c) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. *J. Chem. Phys.* 2010, *132*, 154104. (d) Grimme, S.; Ehrlich, S.; Goerigk, L. *J. Comput. Chem.* 2011, *32*, 1456.
- (42) Scheibel, M. G.; Askevold, B.; Heinemann, F. W.; Reijerse, E. J.; de Bruin, B.; Schneider, S. *Nature Chem.* **2012**, *4*, 552.
- (43) Neese, F. WIRES Comput. Mol. Sci., 2012, 2, 73.
- (44) (a) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. (b) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
- (45) Canneaux, S.; Bohr, F.; Henon, E. J. Comput. Chem. 2014, 35, 82.

complex	1	2	3
Chemical formula	$C_{54}H_{35}Cl_8N_4ORu \cdot C_4H_{10}O \cdot 0.5C_6H_{14}$	$C_{50}H_{27}F_8N_4ORu \cdot H_2O$	$C_{48}H_{28}ClF_8N_4ORu\cdot 0.5C_4H_8O$
crystal system	Monoclinic	Monoclinic	Orthorhombic
space group	$P2_1/n$	C2/c	$P2_{1}2_{1}2_{1}$
temperature (K)	100	100	100
a (Å)	12.5729(12)	20.0727(13)	11.4235(5)
b (Å)	21.6205(16)	12.7833(8)	20.7153(9)
c (Å)	21.910(2)	20.2135(13)	39.4855(17)
β (°)	95.011(4)	109.0865(17)	90
$V(Å^3)$	5932.9(9)	4901.6(5)	9343.9(7)
Ζ	4	4	8
radiation type	Cu Ka	Cu Kα	Cu Kα
$\mu (mm^{-1})$	5.81	3.21	3.89
crystal size (mm)	0.25 imes 0.06 imes 0.06	0.3 imes 0.2 imes 0.03	$0.25 \times 0.25 \times 0.15$
$(\sin \theta/\lambda)_{max}$ (Å ⁻¹)	0.597	0.599	0.597
no. of reflections	10195	4289	16366
no. of parameters	707	332	1157
no. of restraints	18	93	93
$R [F^2 > 2\sigma(F^2)]$	0.064	0.057	0.057
$wR(F^2)$	0.178	0.160	0.177
S	1.07	1.13	1.13
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \ (e \text{\AA}^{-3})$	1.56,-1.29	1.44, -0.44	1.20, -0.46

Table S1. Crystallographic Data for Complexes 1–3.

H =	catalyst (2 mo	
	(1.2 equiv) CH_2CI_2 , RT under <i>i</i>	Ar, overnight
entry	catalyst	yield (%) ^b
1	none	no reaction
2	[Ru ^{II} (TDCPP)(CO)]	no reaction
3	[Ru ^{III} (TDCPP)(Ph)(OEt ₂)]	75% ^c
4	[Ru ^{IV} (TDCPP)(CI) ₂]	Trace
5	[Ru ^{VI} (TDCPP)(O) ₂]	no reaction ^d
6	[Ru ^{VI} (TDCPP)(O) ₂]	3% ^e
7	[Ru ^{III} (TDFPP)(CI)(THF)]	no reaction

Table S2. Catalyst Screening for the Oxidation of 1-Decene with ["Bu₄N]IO₄."

^{*a*} Reaction conditions: catalyst (3.34 µmol), 1-decene (0.167 mmol) and oxidant (0.200 mmol) in CH₂Cl₂ (5 mL), RT, Ar atmosphere. ^{*b*} ¹H NMR yield: [epoxide]/{[alkene]+[epoxide]} × 100%. ^{*c*} 1.5 mol % of **1**. ^{*d*} 6 h. ^{*e*} 40 °C.

Table S3. Data Used to Plot the Hammett Correlation for 1-Catalyzed C-H Oxidation of *para*-Substituted Ethylbenzenes with *m*-CPBA.

n V C H Et	Х				
p - Λ - $C_6\Pi_4$ El	Me	Н	Cl	Br	NO ₂
Product areas A _X :A _H ^{<i>a</i>}	19334:5720	N/A	11747:18563	12638:25645	822:13714
$k_{ m rel}$	3.4	1	0.63	0.49	0.06
$\log(k_{\rm rel})$	0.53	0	-0.20	-0.31	-1.22
σ^{+b}	-0.311	0	+0.114	+0.150	+0.790

 a A_X: product area from *para*-substituted ethylbenzene; A_H: product area from ethylbenzene.

^b Values taken from: Brown, H. C.; Okamoto, Y. J. Am. Chem. Soc. **1958**, 80, 4979.

Substrate	$k_2 (M^{-1} s^{-1})$	Substrate	$k_2 (M^{-1} s^{-1})$
Methylcyclohexane	0.220±0.006	Methylcyclohexane- d_{14}	0.050±0.003
1-Phenylethanol	2.48 ± 0.08	1-Phenylethanol- d_{10}	0.78 ± 0.02
Ethylbenzene	1.99 ± 0.04	1-Decene	15.34±0.73
Xanthene	33.62±0.39		
Fluorene	9.33±0.09		
9,10-Dihydroanthracene (DHA)	33.82±0.09		

Table S4. Rate Constants (k_2) for the Oxidation of Hydrocarbons by '1 + *m*-CPBA (1 equiv)'.

By spacing with $S = 1/2$	g tensor			$\left[2 - (2 + 2 + 2)/2 \right]$	
Ku species with $5 = 1/2$	gx	$g_{\rm y}$	<i>g</i> _z	$g_{\rm iso} = (g_{\rm x} + g_{\rm y} + g_{\rm z})/3$	
[Ru ^V (TDCPP)(O)(Ph)] (experimental; this work)	2.038	1.983	1.890	1.970	
[Ru ^V (TDCPP)(O)(Ph)] (calculated; this work)	2.042	2.015	1.946	2.001	
$[^{n}\mathrm{Pr}_{4}\mathrm{N}][\mathrm{Ru}^{\mathrm{V}}(\mathrm{O}_{2}\mathrm{COCEt}_{2})_{2}(\mathrm{O})]^{a}$ (experimental)	2.076	1.977	1.910	1.988	
$[Ru^{V}(bda)(isoq)_{2}(O)]^{b}$ (experimental)	2.070	2.000	1.850-1.910	1.973-1.993	
[Ru ^V (bpy) ₂ (O)(OH)] ^{2+ c} (experimental)	2.065	2.004	1.868	1.979	
[Ru ^{III} (TDCPP)(Ph)] (calculated; this work)	2.831	2.253	2.037	2.374	
[Ru ^{III} (F ₂₀ -TPP)(OEt)] ^d (experimental)	2.53	2.12	1.89	2.18	
[Ru ^{III} (F ₂₀ -TPP)(OD)(X)] ^{<i>e</i>} (experimental)	2.55	2.55	2.05	2.38	
$[Ru^{III}(OEP)(PPh_3)(Br)]^f$ (experimental)	2.31	2.31	1.98	2.20	

Table S5. Comparison of the *g* Tensors for Examples of Ru Species with S = 1/2.

^a Ref: Dengel, A. C.; Griffith, W. P. Inorg. Chem. 1991, 30, 869.

^b bda = 2,2'-bipyridine-6,6'-dicarboxylate; isoq = isoquinoline; g_z obscured by the background signal of indium tin oxide; ref: Lebedev, D.; Pineda-Galvan, Y.; Tokimaru, Y.; Fedorov, A.; Kaeffer, N.; Copéret, C.; Pushkar, Y. J. Am. Chem. Soc. **2018**, 140, 451.

^{*c*} bpy = 2,2'-bipyridine; ref: Planas, N.; Vigara, L.; Cady, C.; Miro, P.; Huang, P.; Hammarstrom, L.; Styring, S.; Leidel, N.; Dau, H.; Haumann, M.; Gagliardi, L.; Cramer, C. J.; Llobet, A. *Inorg. Chem.* **2011**, *50*, 11134.

^d Ref: Wang, C.; Shalyaev, K. V.; Bonchio, M.; Carofiglio, T.; Groves, J. T. *Inorg. Chem.* **2006**, *45*, 4769.

^{*e*} OD = oxygen donor; X = OD or other ligands; $g_{\perp} = g_x = g_y = 2.550$, $g_{\parallel} = g_z = 2.050$; ref: Groves, J. T.; Bonchio, M.; Carofiglio, T.; Shalyaev, K., *J. Am. Chem. Soc.* **1996**, *118*, 8961.

 $f_{g_{\perp}} = g_x = g_y = 2.31$, $g_{\parallel} = g_z = 1.98$; ref: James, B. R.; Dolphin, D.; Leung, T. W.; Einstein, F. W. B.; Willis, A. C. *Can. J. Chem.* **1984**, *62*, 1238.

Figure S1. ESI-MS spectra of $[Ru^{III}(TDCPP)(Ph)(OEt_2)]$ (1) and $[Ru^{III}(TDFPP)(Ph)(OH_2)]$ (2): Simulated and experimental isotopic patterns for $[Ru(Por)(Ph)]^+$.

Figure S2. UV-vis spectral change of the electrochemical oxidation of **2** (20 s-intervals) at constant voltage (+0.5 V) in the presence of 0.1 M electrolyte ([$^{n}Bu_{4}N$]PF₆).

Figure S3. UV-vis spectral changes. Treatment of **1** with *m*-CPBA (1.2 equiv) in CH_2Cl_2 at -35 °C immediately changed the spectrum from (a) to (b); subsequent treatment of (b) with styrene (4 equiv) changed the spectrum to (c) via black curves after 10 min.

Figure S4. (a) Simulated and (b) observed isotopic pattern for the parent ion of [Ru(TDCPP)(O)(Ph)] (**A**). (c) Simulated isotope pattern for '95% [Ru(TDCPP)(Ph)(¹⁶O)] + 5% [Ru(TDCPP)(Ph)(¹⁸O)]'. (d) Observed isotope pattern for the signal at m/z 1082.8514 generated from reaction of **1** with *m*-CPBA in the presence of ¹⁸OH₂. Experimental details for (b): solvent CH₂Cl₂, **1** (0.2 mM, 230 µL), *m*-CPBA (4.6 mM, 10 µL; 1 equiv). Experimental details for (d): solvent CH₂Cl₂/MeCN (1:1), **1** (0.2 mM, 230 µL), *m*-CPBA (4.6 mM, 10 µL; 1 equiv), ¹⁸OH₂ (10 µL, large excess). Since the hydrophobic Ru-oxo species was neutral, water/oxo exchange could become sluggish/insignificant even if a polar mixed-solvent system was employed.

Figure S5. X-band EPR spectrum of 1 recorded at 40 K.

Figure S6a. Graphs showing k_{obs} of hydrocarbon oxidation by **1** vs concentration of hydrocarbons (298 K).

Figure S6b. Graphs showing k_{obs} of hydrocarbon oxidation by 1 vs concentration of hydrocarbons (298 K).

Figure S7. Graphs showing $\ln|A-A_{\infty}|$ at 420 nm vs time for various concentrations of ethylbenzene used (a to e: 0.024, 0.080, 0.120, 0.160, 0.240 M).

Figure S8. Graphs showing $\ln|A-A_{\infty}|$ at 420 nm vs time for various concentrations of xanthene used (a to e: 0.98 x 10⁻³, 1.47 x 10⁻³, 1.95 x 10⁻³, 2.92 x 10⁻³, 6.72 x 10⁻³ M).

Figure S9. Graphs showing $\ln|A-A_{\infty}|$ at 420 nm vs time for various concentrations of 9,10-dihydroanthracene used (a to d: 0.80 x 10⁻³, 1.05 x 10⁻³, 1.13 x 10⁻³, 1.75 x 10⁻³ M).

Figure S10. Graphs showing $\ln|A-A_{\infty}|$ at 420 nm vs time for various concentrations of fluorene used (a to d: 0.020, 0.032, 0.036, 0.042 M).

Figure S11. Graphs showing $\ln|A-A_{\infty}|$ at 420 nm vs time for various concentrations of methylcyclohexane used (a to d: 0.26, 0.52, 0.78, 1.04 M).

Figure S12. Graphs showing $\ln|A-A_{\infty}|$ at 420 nm vs time for various concentrations of methylcyclohexane- d_{14} used (a to d: 0.60, 1.19, 1.49, 2.98 M).

Figure S13. Graphs showing $\ln|A-A_{\infty}|$ at 420 nm vs time for various concentrations of 1-phenylethanol used (a to d: 0.008, 0.012, 0.016, 0.020 M).

Figure S14. Graphs showing $\ln|A-A_{\infty}|$ at 420 nm vs time for various concentrations of 1-phenylethanol- d_{10} used (a to d: 0.020, 0.024, 0.027, 0.031 M).

Figure S15. Graphs showing $\ln|A-A_{\infty}|$ at 420 nm vs time for various concentrations of 1-decene used (a to d: 0.77 x 10^{-3} , 1.02 x 10^{-3} , 1.27 x 10^{-3} , 1.51 x 10^{-3} M).

Figure S16. Free energy surface of hydroxylation of methylcyclohexane by $[Ru^{V}(TDCPP)(O)(Ph)]$ (²A).

Figure S17. TD-DFT simulated UV-vis spectra of [Ru^V(TDCPP)(O)(Ph)] (²A), [Ru^{VI}(TDCPP)(O)₂], and [Ru^{III}(TDCPP)(Ph)].

Figure S18. Graph showing the Brønsted-Evans-Polanyi relationship.

k₂ for MnO₄⁻: Gardner, K. A.; Kuehnert, L. L.; Mayer, J. M. Inorg. Chem. **1997**, *36*, 2069.

 k_2 for ^sBuOO•: Howard, J. A.; Ingold, K. U. *Can. J. Chem.* **1968**, *46*, 2661. The k_2 at 303 K was used, assuming the effect of small temperature change on the k_2 is negligible (see: Wang, K.; Mayer, J. M. *J. Am. Chem. Soc.* **1997**, *119*, 1470).

*k*₂ for ^{*i*}BuO•: Mulder, P.; Arends, I. W. C. E.; Clark, K. B.; Wayner, D. D. M. *J. Phys. Chem.* **1995**, *99*, 8182.

BDE of [MnO₃O-H]⁻: Gardner, K. A.; Kuehnert, L. L.; Mayer, J. M. Inorg. Chem. 1997, 36, 2069.

BDE of ^sBuOO-H and ^tBuO-H: Colussi, A. J. *In Chemical Kinetics of Small Organic Radicals*; Alfassi, Z. B., Ed.; CRC Press: Boca Raton, FL, 1988; p 33 (the BDE of ^sBuOO-H is taken as the same value as that of ^tBuOOH).

Cartesian Coordinates

 $[Ru^{V}(TDCPP)(O)(Ph)](^{2}A, S = 1/2)$

Center Number	A	Atomic Number	Atomic Type	x	Coordinates (Angs	stroms) Z
				0.020.62		0.05051
1	44	0		-0.03063	0.06646	-0.35251
2	1/	0		-4.99466	0.11408	2.104/2
3	17	0		0.03529	4.48/17	2.87546
4	17	0		4.41377	-0.04265	-3.26455
5	17	0		5.10182	0.09328	2.05822
6	17	0		0.00571	5.10972	-2.4547
7	7	0		-1.4731	-1.37322	-0.40104
8	7	0		1.43726	-1.41463	-0.30539
9	7	0		-1.42813	1.47076	-0.22519
10	7	0		1.43148	1.47464	-0.18634
11	17	0		-4.58747	0.05579	-3.24574
12	17	0		-0.00853	-4.12238	2.69569
13	17	0		-0.08906	-5.23179	-2.54248
14	6	0		1.2532	2.80068	-0.0322
15	6	0		2.76427	1.26069	-0.30388
16	6	0		-1.26822	-2.70584	-0.27508
17	6	0		0.14034	-0.4052	1.69614
18	6	0		2.52047	3.46954	-0.03245
19	1	0		2.66837	4.54762	0.08047
20	6	0		1.2189	-2.73664	-0.24094
21	6	0		4.86471	0.02326	-0.62048
22	6	0		-2.80231	-1.1793	-0.47687
23	6	0		2.75972	-1.2217	-0.43005
24	6	0		-0.0356	-3.34611	-0.16675
25	6	0		0.01546	3.4372	0.0555
26	6	0		-1.06809	-0.52038	2.38658
27	1	0		-2.03663	-0.46752	1.86724
28	6	0		-1.21969	2.80893	-0.05293
29	6	0		0.01966	4.9087	0.22369
30	6	0		2.47252	-3.43536	-0.29404
31	1	0		2.59586	-4.5219	-0.25662
32	6	0		3.39242	0.02527	-0.45192
33	6	0		-2.52999	-3.38732	-0.284
34	1	0		-2.66411	-4.47016	-0.20324
35	6	0		-3.48579	-2.4381	-0.42874
36	1	0		-4.5701	-2.57422	-0.48087
37	6	0		-3.43581	2.54867	-0.23267
38	1	0		-4.51758	2.7003	-0.29356
39	6	0		-4.90399	0.08877	-0.57987
40	6	0		-2.77718	1.2889	-0.33232
41	6	0		-0.03884	-5.26574	1.42078
42	6	0		-0.05233	-6.62002	1.72017
43	1	0		-0.04123	-6.9392	2.76919
44	6	0		3.46014	2.51188	-0.21749
45	1	0		4.54476	2.63844	-0.28486
46	6	0		-5.7223	0.10797	0.55129
47	6	0		5./4106	0.04287	0.46618
48	6	0		-2.47232	3.48801	-0.04756
49	1	0		-2.60215	4.56765	0.07276
50	6	0		-7.6985	0.11428	-0.79058

51	1	0	-8.79388	0.12518	-0.87187
52	6	0	-0.07851	-5.76159	-0.91181
53	6	0	7.11833	0.02123	0.30533
54	1	0	7.76491	0.03681	1.191
55	6	0	0.02003	5.77206	-0.8747
56	6	0	6.8166	-0.0417	-2.0799
57	1	0	7.22062	-0.07344	-3.09913
58	6	0	0.03463	5.49977	1.49017
59	6	0	0.03479	7.15112	-0.72686
60	1	0	0.03569	7.78805	-1.61954
61	6	0	1.32739	-0.4935	2.41848
62	1	0	2.3016	-0.41799	1.91643
63	6	0	-6.92666	0.09315	-1.93868
64	1	0	-7.38317	0.08744	-2.93591
65	6	0	1.31128	-0.66602	3.79495
66	1	0	2.26271	-0.72726	4.34426
67	6	0	-3.42746	0.06917	-0.47923
68	6	0	-5.54451	0.08006	-1.8222
69	6	0	-0.05329	-4.80282	0.10211
70	6	0	3.43344	-2.49005	-0.43401
71	1	0	4.51434	-2.636	-0.52211
72	6	0	5.44191	-0.0184	-1.89373
73	6	0	0.10617	-0.76601	4.4752
74	1	0	0.09364	-0.90998	5.56513
75	6	0	-7.10599	0.1217	0.46073
76	1	0	-7.70636	0.13697	1.3782
77	6	0	7.6465	-0.02236	-0.9732
78	1	0	8.73631	-0.04123	-1.1098
79	6	0	0.05006	7.69343	0.54652
80	1	0	0.06286	8.78474	0.67149
81	6	0	0.04978	6.87616	1.66291
82	1	0	0.06131	7.29172	2.6779
83	6	0	-1.08123	-0.68259	3.76746
84	1	0	-2.04586	-0.75708	4.29177
85	6	0	-0.08007	-7.53854	0.68484
86	1	0	-0.09132	-8.61315	0.91336
87	6	0	-0.09263	-7.12158	-0.63499
88	1	0	-0.11229	-7.84174	-1.46224
89	8	0	0.33696	-0.17941	-2.01614

$[Ru^{VI}(TDCPP)O_2] (S = 0)$

Center	Atomic	Atomic	Coordina	ates (Angstro	ms)
Number	Number	Туре	Х	Y	Ζ
1	44	0	0.02310	0.00020	0.00002
2	17	0	0.00443	4.78272	2.68112
3	17	0	4.79039	-0.00173	2.68148
4	17	0	0.00213	-4.78247	-2.68115
5	17	0	0.00158	-4.78261	2.68102
6	17	0	4.79034	-0.00110	-2.68131
7	7	0	-1.44941	1.45731	0.00001
8	7	0	-1.45042	-1.45643	-0.00002
9	7	0	1.45103	1.44116	0.00006
10	7	0	1.45031	-1.44203	0.00002
11	17	0	0.00503	4.78258	-2.68107

12	17	0	-4.77840	0.00133	2.68070
13	17	0	-4.77848	0.00161	-2.68079
14	6	0	2.78694	-1.23895	0.00005
15	6	0	1.23577	-2.77896	-0.00001
16	6	Ő	-2 77938	1 24306	-0.00002
17	6	0	2.11750	2 50111	-0.00002
1/	0	0	5.45775	-2.30111	0.00003
18	l	0	4.54303	-2.64022	0.00004
19	6	0	-2.78020	-1.24147	-0.00004
20	6	0	0.00201	-4.90031	-0.00007
21	6	0	-1.24400	2.78641	0.00002
22	6	0	-1.24570	-2.78561	-0.00003
23	6	0	-3.41376	0.00101	-0.00004
24	6	0	3.42574	-0.00103	0.00008
25	6	0	2,78763	1 23720	0.00008
26	6	Ő	4 90766	-0.001/13	0.00008
20	6	0	3 46407	-0.001+5	0.00005
27	0	0	-3.40407	-2.30230	-0.00003
28	l	0	-4.55039	-2.63407	-0.00006
29	6	0	-0.00206	-3.41788	-0.00004
30	6	0	-3.46249	2.50453	-0.00002
31	1	0	-4.54873	2.63664	-0.00003
32	6	0	-2.50708	3.46529	0.00001
33	1	0	-2.64398	4.55091	0.00001
34	6	0	2,49695	3,45530	0.00008
35	1	Ő	2 62993	4 54136	0.00007
36	6	0	0.00402	4 00041	0.00007
27	6	0	1 22740	4.90041	0.00002
20	0	0	1.25740	2.77630	1.10049
38	6	0	-5.62672	0.00165	1.19048
39	6	0	-7.01374	0.00209	1.20305
40	1	0	-7.54309	0.00221	2.16358
41	6	0	2.49490	-3.45683	0.00001
42	1	0	2.62717	-4.54299	-0.00001
43	6	0	0.00544	5.63068	1.19050
44	6	0	0.00212	-5.63058	1.19041
45	6	Ő	3 4 5 9 1 7	2 49893	0.00010
45 46	1	0	1 54455	2.47075	0.00010
40		0	4.54455	2.03733	0.00011
4/	0	0	0.00797	7.70109	-0.00003
48	l	0	0.00908	8.80042	-0.00007
49	6	0	-5.62675	0.00176	-1.19054
50	6	0	0.00289	-7.01757	1.20297
51	1	0	0.00284	-7.54705	2.16342
52	6	0	5.63808	-0.00152	-1.19042
53	6	0	0.00313	-7.01750	-1.20323
54	1	0	0.00328	-7.54693	-2.16371
55	6	0	5.63809	-0.00176	1,19056
56	6	Ő	7 02505	-0.00193	-1 20307
57	1	Ő	7.55459	0.00199	2 163/8
50		0	0.00724	-0.00199	-2.10340
30 50	0	0	0.00754	7.01701	-1.20313
59	l	0	0.00784	7.54705	-2.16361
60	6	0	-0.00001	3.41799	0.00004
61	6	0	0.00568	5.63063	-1.19050
62	6	0	-4.89661	0.00149	-0.00003
63	6	0	-2.50919	-3.46383	-0.00006
64	1	0	-2.64669	-4.54938	-0.00008
65	6	0	0.00234	-5.63052	-1.19059
66	6	Õ	0.00707	7 01767	1 20307
67	1	ñ	0.00736	7 5/715	2 16252
60	1	0	0.00730	7 70150	0.0001#
00	0	0	0.00333	-1.10139	-0.00013
99 70	I	U	0.003/6	-8.80032	-0.00018
70	6	0	7.70905	-0.00228	0.00006
71	1	0	8.80778	-0.00262	0.00005

72	6	0	7.02506	-0.00219	1.20320
73	1	0	7.55462	-0.00248	2.16360
74	6	0	-7.69786	0.00237	0.00000
75	1	0	-8.79660	0.00273	0.00001
76	6	0	-7.01377	0.00221	-1.20307
77	1	0	-7.54314	0.00244	-2.16359
78	8	0	-0.14097	-0.00123	-1.68337
79	8	0	-0.14102	-0.00127	1.68341

$[Ru^{III}(TDCPP)(Ph)] (S = 1/2)$

Center Number		Atomic Number	Atomic Type	Х	Coordinates (Ang Y	stroms) Z
1	44	0		-0.00503	0.02431	-0.23059
2	17	0		5.07764	0.07106	1.97677
3	17	0		-0.12778	-4.03626	2.68873
4	17	0		-4.5218	0.04473	-3.29413
5	17	0		-5.03737	0.37425	2.04216
6	17	0		-0.21198	-5.32689	-2.51553
7	7	0		1.48539	1.40591	-0.25596
8	7	0		-1.37381	1.49614	-0.28127
9	7	0		1.36319	-1.43587	-0.45022
10	7	0		-1.4939	-1.34706	-0.3946
11	17	0		4.45956	-0.34002	-3.34551
12	17	0		0.39313	4.42699	2.79654
13	17	0		-0.02661	5.12219	-2.50777
14	6	0		-1.34978	-2.6897	-0.29277
15	6	0		-2.82477	-1.11083	-0.48633
16	6	0		1.34159	2.74669	-0.12226
17	6	0		0.00143	-0.204	1.7339
18	6	0		-2.63389	-3.33167	-0.32583
19	1	0		-2.80555	-4.41123	-0.27134
20	6	0		-1.13092	2.82622	-0.12345
21	6	0		-4.886	0.21098	-0.63784
22	6	0		2.81466	1.17748	-0.40475
23	6	0		-2.72585	1.35766	-0.38409
24	6	0		0.1287	3.4163	-0.02079
25	6	0		-0.13506	-3.35736	-0.20202
26	6	0		1.213	-0.28442	2.42645
27	1	0		2.16961	-0.15603	1.89889
28	6	0		1.12261	-2.76868	-0.32742
29	6	0		-0.1733	-4.80274	0.1152
30	6	0		-2.35917	3.54694	-0.12326
31	1	0		-2.45933	4.63061	-0.00764
32	6	0		-3.41141	0.14937	-0.5073
33	6	0		2.62392	3.39215	-0.17264
34	1	0		2.79537	4.47023	-0.09426
35	6	0		3.53998	2.4166	-0.36186
36	1	0		4.62399	2.52168	-0.46853
37	6	0		3.34299	-2.56755	-0.49069
38	1	0		4.42106	-2.74727	-0.5473
39	6	0		4.87242	-0.13222	-0.69827
40	6	0		2.7137	-1.29037	-0.52671
41	6	0		0.29431	5.45754	1.42953
42	6	0		0.33915	6.83106	1.61884

4460 -3.55209 -2.34923 0.46936 4510 -4.63909 -2.44888 -0.54787 4660 5.73725 -0.0714 0.39678 4760 2.35121 -3.48008 -0.3447 4910 2.45248 -4.57483 -0.2639 5060 7.6579 -0.24216 -1.01165 5110 8.74982 -0.28463 -1.1389 5260 0.10895 5.76637 -0.92188 5360 -7.10943 0.35906 0.34994 5410 -7.72706 0.43517 1.2531 5560 -0.20847 -5.79571 -0.86317 5660 -0.20847 -5.79571 -0.86317 5710 -7.31535 0.1748 -3.04575 5860 -0.17008 -5.22471 1.44916 5960 -0.24049 -7.14502 -0.5431 6010 -0.26866 -7.89016 -1.34749 6160 -1.19344 -0.30885 -2.12587 6410 7.25642 -0.40233 -3.13671 6560 -1.7264 -0.60808 3.80487 6610 -1.7264 -0.60808 -3.80477 7360 0.75078 -0.71438 4.48036 741	43	1	0	0.43177	7.23115	2.63592
4510 -4.63909 -2.44888 -0.54787 4660 5.73725 -0.0714 0.39678 4760 -5.72882 0.30818 0.4713 4860 2.35121 -3.48808 -0.3447 4910 2.45248 -4.57483 -0.2639 5060 7.65879 -0.24216 -1.01165 5110 8.74982 -0.28463 -1.13389 5260 0.10895 5.76637 -0.92188 5360 -7.10943 0.35906 0.34994 5410 -7.72706 0.43517 1.2531 5560 -0.20847 -5.79571 -0.86317 560 -0.20847 -5.79571 -0.86317 5710 -7.31535 0.1748 -3.04575 5860 -0.17008 -5.22247 1.44916 5960 -0.20449 -7.14502 -0.5431 6010 -0.26866 -7.89016 -1.34749 6160 -1.17264 -0.60808 3.80487 6410 7.25642 -0.40233 -3.13671 6560 -1.17264 -0.60808 3.80487 6610 -3.35199 2.63388 -0.35949 7110 -4.42897 2.81887 0.16035 7060	44	6	0	-3.55209	-2.34923	-0.46936
4660 5.73725 -0.0714 0.39678 47 60 -5.72882 0.30818 0.4713 48 60 2.35121 -3.48808 -0.34471 49 10 2.45248 -4.57483 -0.2639 50 60 7.65879 -0.24216 -1.01165 51 10 8.74982 -0.28463 -1.13389 52 60 0.10895 5.76637 -0.92188 53 60 -7.10943 0.35906 0.34994 54 10 -7.72706 0.43517 1.2531 55 60 -0.20847 -5.79571 -0.68617 56 60 -0.20847 -5.79571 -0.68617 57 10 -7.31535 0.1748 -3.04575 58 60 -0.17008 -5.22247 1.44916 59 60 -0.26866 -7.89016 -1.34749 61 60 -1.19434 -0.36421 2.44035 62 10 -2.26847 -0.40233 -3.13671 64 10 7.25642 -0.40233 -3.13671 65 60 -1.17264 -0.60808 3.80487 66 10 -2.12208 -0.72743 4.37811 67 60 -3.35199 2.63388 -0.5742 72 60 -5.50268 0.16524 -1.89	45	1	0	-4.63909	-2.44888	-0.54787
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	6	0	5.73725	-0.0714	0.39678
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47	6	0	-5.72882	0.30818	0.4713
4910 2.45248 4.57483 -0.2639 5060 7.65879 -0.24216 -1.10165 5110 8.74982 -0.28463 -1.13389 5260 0.10895 5.76637 -0.92188 5360 -7.10943 0.35906 0.34994 5410 -7.72706 0.43517 1.2531 5560 -0.20847 -5.79571 0.086317 5660 -6.88067 0.2135 -2.03949 5710 -7.31535 0.1748 -3.04575 5860 -0.17008 -5.22247 1.44916 5960 -0.26866 -7.89016 -1.34749 6160 -1.19434 -0.36421 2.44035 6210 -2.16487 -0.29019 1.92822 6360 6.84116 -0.30885 -2.12887 6410 7.25642 -0.40233 -3.13671 6560 -1.17264 -0.60808 3.80487 7610 -2.12208 -0.72743 4.34781 6760 -3.35199 2.63388 -0.30973 7060 -3.35199 2.63388 -0.30977 7360 0.750268 0.16234 -1.8907 7360 -7.67627 0.31065 -0.91153 741 <td< td=""><td>48</td><td>6</td><td>0</td><td>2.35121</td><td>-3.48808</td><td>-0.3447</td></td<>	48	6	0	2.35121	-3.48808	-0.3447
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49	1	0	2.45248	-4.57483	-0.2639
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	6	0	7.65879	-0.24216	-1.01165
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51	1	0	8.74982	-0.28463	-1.13389
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	6	0	0.10895	5.76637	-0.92188
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53	6	0	-7.10943	0.35906	0.34994
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54	1	0	-7.72706	0.43517	1.2531
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	6	0	-0.20847	-5.79571	-0.86317
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56	6	0	-6.88067	0.2135	-2.03949
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	1	0	-7.31535	0.1748	-3.04575
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58	6	0	-0.17008	-5.22247	1.44916
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59	6	0	-0.24049	-7.14502	-0.5431
61 6 0 -1.19434 -0.36421 2.44035 62 1 0 -2.16487 -0.29019 1.92822 63 6 0 6.84116 -0.30885 -2.12587 64 1 0 7.25642 -0.40233 -3.13671 65 6 0 -1.17264 -0.60808 3.80487 66 1 0 -2.12208 -0.72743 4.34781 67 6 0 3.39973 -0.07498 -0.5472 68 6 0 5.46565 -0.25414 -1.95757 69 6 0 0.17593 4.88627 0.16035 70 6 0 -3.35199 2.63388 -0.3062 71 1 0 -4.42897 2.81887 -0.35974 72 6 0 -5.50268 0.16524 -1.8907 73 6 0 0.03445 -0.71888 4.48036 74 1 0 0.04777 -0.92902 5.55949 75 6 0 7.1586 -0.12417 0.25574 76 1 0 -7.67627 0.31065 -0.91153 78 1 0 -0.23606 -7.51851 0.78977 80 1 0 -0.20966 -6.56573 1.79348 82 1 0 -0.20966 -6.56573 1.79348 82 1 0 0.26593 7.66566 0.51758	60	1	0	-0.26866	-7.89016	-1.34749
6210 -2.16487 -0.29019 1.92822 63 60 6.84116 -0.30885 -2.12587 64 10 7.25642 -0.40233 -3.13671 65 60 -1.17264 -0.60808 3.80487 66 10 -2.12208 -0.72743 4.34781 67 60 3.39973 -0.07498 -0.5472 68 60 5.46565 -0.25414 -1.95757 69 60 0.17593 4.88627 0.16035 70 60 -3.35199 2.63388 -0.30062 71 10 -4.42897 2.81887 -0.35974 72 60 -5.50268 0.16524 -1.8907 73 60 0.03445 -0.71888 4.48036 74 10 0.04777 -0.92902 5.55949 75 60 7.1586 -0.12417 0.25574 76 10 7.76727 0.31065 -0.91153 78 10 -8.76905 0.34996 -1.01817 79 60 -0.23606 -7.51851 0.78977 80 10 -0.26073 -8.58473 1.05423 81 60 -0.20966 -6.56573 1.79348 82 10 -0.26073 -8.58473 1.05423 81 60 0.26593 7.66566 0.51758	61	6	0	-1.19434	-0.36421	2.44035
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62	1	0	-2.16487	-0.29019	1.92822
6410 7.25642 -0.40233 -3.13671 65 60 -1.17264 -0.60808 3.80487 66 10 -2.12208 -0.72743 4.34781 67 60 3.39973 -0.07498 -0.5472 68 60 5.46565 -0.25414 -1.95757 69 60 0.17593 4.88627 0.16035 70 60 -3.35199 2.63388 -0.30062 71 10 -4.42897 2.81887 -0.35974 72 60 -5.50268 0.16524 -1.8907 73 60 0.03445 -0.71888 4.48036 74 10 0.04777 -0.92902 5.55949 75 60 7.11586 -0.12417 0.25574 76 10 7.75078 -0.07371 1.1486 77 60 -7.67627 0.31065 -0.91153 78 10 -8.76905 0.34996 -1.01817 79 60 -0.20096 -6.56573 1.79348 82 10 -0.19716 -6.8504 2.85273 83 60 1.22474 -0.5545 3.78594 84 10 2.18727 -0.63529 4.31279 85 60 0.26593 7.66566 0.51758 86 10 0.09681 7.79187 -1.64134	63	6	0	6.84116	-0.30885	-2.12587
6560 -1.17264 -0.60808 3.80487 66 10 -2.12208 -0.72743 4.34781 67 60 3.39973 -0.07498 -0.5472 68 60 5.46565 -0.25414 -1.95757 69 60 0.17593 4.88627 0.16035 70 60 -3.35199 2.63388 -0.30622 71 10 -4.42897 2.81887 -0.35974 72 60 -5.50268 0.16524 -1.8907 73 60 0.03445 -0.71888 4.48036 74 10 0.04777 -0.92902 5.55949 75 60 7.11586 -0.12417 0.25574 76 10 7.75078 -0.07371 1.1486 77 60 -7.67627 0.31065 -0.91153 78 10 -8.76905 0.34996 -1.01817 79 60 -0.23606 -7.51851 0.78977 80 10 -0.26073 -8.58473 1.05423 81 60 -0.2096 -6.56573 1.79348 82 10 -0.26933 7.66566 0.51758 86 10 0.30082 8.75488 0.65774 87 60 0.15175 7.14293 -0.75888 88 10 0.09681 7.79187 -1.64134 <td>64</td> <td>1</td> <td>0</td> <td>7.25642</td> <td>-0.40233</td> <td>-3.13671</td>	64	1	0	7.25642	-0.40233	-3.13671
6610 -2.12208 -0.72743 4.34781 67 60 3.39973 -0.07498 -0.5472 68 60 5.46565 -0.25414 -1.95757 69 60 0.17593 4.88627 0.16035 70 60 -3.35199 2.63388 -0.30062 71 10 -4.42897 2.81887 -0.35974 72 60 -5.50268 0.16524 -1.8907 73 60 0.03445 -0.71888 4.48036 74 10 0.04777 -0.92902 5.5949 75 60 7.11586 -0.12417 0.25574 76 10 7.75078 -0.07371 1.1486 77 60 -7.67627 0.31065 -0.91153 78 10 -8.76905 0.34996 -1.01817 79 60 -0.226073 -8.58473 1.05423 81 60 -0.20096 -6.56573 1.79348 82 10 2.18727 -0.63529 4.31279 85 60 0.26933 7.66566 0.51758 86 10 0.30082 8.75488 0.65774 87 60 0.15175 7.14293 -0.75888 88 10 0.09681 7.79187 -1.64134	65	6	0	-1.17264	-0.60808	3.80487
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66	1	0	-2.12208	-0.72743	4.34781
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67	6	0	3.39973	-0.07498	-0.5472
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68	6	0	5.46565	-0.25414	-1.95757
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69	6	0	0.17593	4.88627	0.16035
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	6	0	-3.35199	2.63388	-0.30062
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71	1	0	-4.42897	2.81887	-0.35974
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72	6	0	-5.50268	0.16524	-1.8907
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73	6	0	0.03445	-0.71888	4.48036
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74	1	0	0.04777	-0.92902	5.55949
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75	6	0	7.11586	-0.12417	0.25574
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76	1	0	7.75078	-0.07371	1.1486
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77	6	0	-7.67627	0.31065	-0.91153
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78	1	0	-8.76905	0.34996	-1.01817
80 1 0 -0.26073 -8.58473 1.05423 81 6 0 -0.20096 -6.56573 1.79348 82 1 0 -0.19716 -6.8504 2.85273 83 6 0 1.22474 -0.5545 3.78594 84 1 0 2.18727 -0.63529 4.31279 85 6 0 0.26593 7.66566 0.51758 86 1 0 0.30082 8.75488 0.65774 87 6 0 0.15175 7.14293 -0.75888 88 1 0 0.09681 7.79187 -1.64134	79	6	0	-0.23606	-7.51851	0.78977
81 6 0 -0.20096 -6.56573 1.79348 82 1 0 -0.19716 -6.8504 2.85273 83 6 0 1.22474 -0.5545 3.78594 84 1 0 2.18727 -0.63529 4.31279 85 6 0 0.26593 7.66566 0.51758 86 1 0 0.30082 8.75488 0.65774 87 6 0 0.15175 7.14293 -0.75888 88 1 0 0.09681 7.79187 -1.64134	80	1	0	-0.26073	-8.58473	1.05423
82 1 0 -0.19716 -6.8504 2.85273 83 6 0 1.22474 -0.5545 3.78594 84 1 0 2.18727 -0.63529 4.31279 85 6 0 0.26593 7.66566 0.51758 86 1 0 0.30082 8.75488 0.65774 87 6 0 0.15175 7.14293 -0.75888 88 1 0 0.09681 7.79187 -1.64134	81	6	0	-0.20096	-6.56573	1.79348
83 6 0 1.22474 -0.5545 3.78594 84 1 0 2.18727 -0.63529 4.31279 85 6 0 0.26593 7.66566 0.51758 86 1 0 0.30082 8.75488 0.65774 87 6 0 0.15175 7.14293 -0.75888 88 1 0 0.09681 7.79187 -1.64134	82	1	0	-0.19716	-6.8504	2.85273
84 1 0 2.18727 -0.63529 4.31279 85 6 0 0.26593 7.66566 0.51758 86 1 0 0.30082 8.75488 0.65774 87 6 0 0.15175 7.14293 -0.75888 88 1 0 0.09681 7.79187 -1.64134	83	6	0	1.22474	-0.5545	3.78594
85 6 0 0.26593 7.66566 0.51758 86 1 0 0.30082 8.75488 0.65774 87 6 0 0.15175 7.14293 -0.75888 88 1 0 0.09681 7.79187 -1.64134	84	1	0	2.18727	-0.63529	4.31279
86 1 0 0.30082 8.75488 0.65774 87 6 0 0.15175 7.14293 -0.75888 88 1 0 0.09681 7.79187 -1.64134	85	6	0	0.26593	7.66566	0.51758
87 6 0 0.15175 7.14293 -0.75888 88 1 0 0.09681 7.79187 -1.64134	86	1	0	0.30082	8.75488	0.65774
88 1 0 0.09681 7.79187 -1.64134	87	6	0	0.15175	7.14293	-0.75888
	88	1	0	0.09681	7.79187	-1.64134

Ethylbenzene

Center Number		Atomic Number	Atomic Type	Х	Y	Z
1	6	0		-0.6815	-6.21441	9.78804
2	6	0		-1.92452	-6.31426	8.95291

3	1	0	0.16463	-6.73355	9.30582
4	1	0	-0.36503	-5.16662	9.94569
5	1	0	-0.81115	-6.67124	10.78701
6	1	0	-1.72832	-5.89368	7.94342
7	1	0	-2.15423	-7.38276	8.75471
8	6	0	-3.15942	-5.66664	9.50054
9	6	0	-3.17257	-4.94923	10.69339
10	6	0	-4.35915	-5.77684	8.79451
11	6	0	-4.34092	-4.36391	11.16361
12	1	0	-2.2498	-4.839	11.28058
13	6	0	-5.52489	-5.19612	9.25987
14	1	0	-4.37374	-6.33952	7.8477
15	6	0	-5.52171	-4.48348	10.45117
16	1	0	-4.32315	-3.80313	12.10913
17	1	0	-6.45467	-5.30104	8.68274
18	1	0	-6.44545	-4.01954	10.82394

1-Phenylethanol

Center		Atomic	Atomic	(Coordinates (Angs	troms)
Number		Number	Туре	Х	Ŷ	Ź
1	8	0		-2.74665	-0.00216	9.67014
2	6	0		-2.7892	-2.1917	10.43425
3	6	0		-3.59721	-1.08179	9.81833
4	1	0		-1.91208	-2.42307	9.80514
5	1	0		-2.42283	-1.89122	11.43283
6	1	0		-3.38821	-3.10989	10.5525
7	1	0		-3.24889	0.71849	9.28782
8	1	0		-3.96686	-1.43733	8.82113
9	6	0		-4.81091	-0.7491	10.65054
10	6	0		-4.73907	0.23306	11.63398
11	6	0		-6.00888	-1.43533	10.47452
12	6	0		-5.8422	0.52087	12.42346
13	1	0		-3.79424	0.77886	11.77327
14	6	0		-7.11052	-1.15298	11.26567
15	1	0		-6.07864	-2.20642	9.69045
16	6	0		-7.0298	-0.17185	12.24358
17	1	0		-5.77442	1.30006	13.19624
18	1	0		-8.05028	-1.70231	11.11208
19	1	0		-7.90409	0.05586	12.86941

Methylcyclohexane

Center		Atomic	Atomic	Co	oordinates (Ang	stroms)
Number		Number	Туре	А	Ŷ	L
1	6	0		-1.52553	-2.64348	12.51536
2	1	0		-1.96207	-1.68763	12.8593
3	1	0		-0.43625	-2.48727	12.40829
4	1	0		-1.66903	-3.37843	13.33238
5	6	0		-2.15547	-3.12263	11.23471
6	6	0		-1.52577	-4.41033	10.73753
7	6	0		-3.65684	-3.29226	11.36863
8	1	0		-1.98062	-2.34647	10.45005
9	6	0		-2.16115	-4.90884	9.46171

1 1 6 1 1 6 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1.6296 -0.43317 -4.29788 -4.12 -3.85938 -3.65567 -1.69575 -1.94985 -5.3884 -4.19797 -3.8663	-5.18563 -4.27312 -3.78817 -2.33867 -4.01566 -5.06708 -5.8616 -4.18722 -3.92494 -3.00832 -5.88093	11.53173 10.60377 10.09477 11.69543 12.1922 9.61109 9.14106 8.64173 10.23475 9.30744 10.3405
1 1 1	0 0 0	-3.8663 -4.11233	-5.88093 -5.39916	10.3405 8.65793
	$ \begin{array}{c} 1 \\ 1 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TS1 (S = 1/2)

Center		Atomic	Atomic	Coo	- ordinates (Ang	stroms)
Number		Number	Туре	Х	Ŷ	Ź
1	44	0		0.24283	0.02257	-0.05212
2	17	0		4.27205	-3.31098	-1.78327
3	17	0		3.13354	3.37001	-2.65374
4	17	0		-3.57721	2.62925	2.49451
5	17	0		-3.39716	3.36219	-2.82295
6	17	0		3.33311	4.06839	2.66002
7	7	0		0.47111	-1.96103	-0.14325
8	7	0		-1.71675	-0.1763	-0.54873
9	7	0		2.21489	0.24522	0.35302
10	7	0		0.01831	2.06993	-0.022
11	17	0		3.47429	-2.58448	3.48534
12	17	0		-1.84588	-2.82594	-3.94644
13	17	0		-3.19743	-4.39557	1.01299
14	6	0		1.00347	2.97851	0.04702
15	6	0		-1.15049	2.73342	-0.03758
16	6	0		-0.45378	-2.86812	-0.56351
17	6	0		0.71064	0.45374	-2.04083
18	6	0		0.44164	4.30069	0.06539
19	1	0		1.00854	5.2349	0.12138
20	6	0		-2.34533	-1.31091	-0.91618
21	6	0		-3.58152	3.05186	-0.15793
22	6	0		1.58667	-2.66017	0.20225
23	6	0		-2.64784	0.80635	-0.50829
24	6	0		-1.75235	-2.57574	-0.97092
25	6	0		2.36575	2.6799	0.13295
26	6	0		1.83988	-0.15964	-2.59554
27	1	0		2.4904	-0.80969	-1.98849
28	6	0		2.90746	1.41063	0.32064
29	6	0		3.30926	3.81162	-0.01239
30	6	0		-3.73362	-1.04553	-1.14648
31	I	0		-4.4/95/	-1./823	-1.45954
32	6	0		-2.40665	2.15109	-0.22143
33 24	0	0		0.09175	-4.18495	-0.46986
34 25	I	0		-0.42879	-5.1082	-0./4143
33 26	0	0		1.340/2	-4.05805	0.02972
30	1	0		2.00493	-4.03442	0.24093
37	1	0		4.414/2	-0.16/40	0.74908
30	1	0		3.01055	-0.75785	0.93809
<i>39</i> 40	6	0		3.91955	-0.74075	0.87219
40	6	0		-2 67719	-3 88589	-2 88913
42	6	0		-3 /3333	-4.91541	-2.00715
42	1	0		-3 48423	-5.0277	-4 52116
43	6	0		-0.90397	4 14575	0.04025
44 15	1	0		-1 67071	4 92592	0.05463
46	6	0		4 64881	-3 66495	-0 14549
40	6	0		-4 12044	3 66009	-1 29342
48	6	0		4 29623	1 14887	0 5548
49	1	0		5 08694	1 90423	0.58522
50	6	0		6.00493	-4,83725	1.43411
51	1	0		6.81752	-5.54295	1.65401
52	6	0		-3.26964	-4.5818	-0.69286
53	6	0		-5.22076	4.50164	-1.23063
54	1	0		-5.60588	4.95627	-2.15144
55	6	0		3.8144	4.52284	1.07703

56	6	0	-5.30138	4.17409	1.15105
57	1	0	-5.75283	4.36784	2.13164
58	6	0	3.72413	4.21526	-1.28581
59	6	0	4.69231	5.58566	0.91778
60	1	0	5.0662	6.11325	1.80325
61	6	0	-0.06298	1.26364	-2.87304
62	1	0	-0.96117	1.76947	-2.48671
63	6	0	5.32438	-4.22996	2.47417
64	1	0	5.57836	-4.43384	3.52128
65	6	0	0.26687	1.44711	-4.20794
66	1	Õ	-0.36399	2.08792	-4.8423
67	6	Ő	2,8097	-2.10691	0 57736
68	6	Ő	4 2976	-3 34371	2.18372
69	6	Ő	-2 57054	-3 68805	-1 50792
70	6	0	-3.92686	0.26818	-0.86563
70	1	0	-4 86349	0.83211	-0.90982
72	6	0	-1 19871	3 33603	1.06457
72	6	0	1 38836	0.82011	1.00437
73	1	0	1.58850	0.02911	5 70023
74	6	0	5 67801	4 55650	-5.79925
75 76	1	0	5.07801	-4.55059	0.11915
70	6	0	5 80580	-5.01954	-0.71042
78	1	0	-5.80589	5 4140	-0.00125
70	6	0	-0.07651	5 05501	0.3505
7 <i>3</i> 80	1	0	5.07051	5.95501	-0.3393
00 01	1	0	J.70044 4 50022	0.79740 5 27661	-0.49313
01	0	0	4.39932	5.27001	-1.4077
02 92	1	0	4.09703	0.01675	-2.46401
03 04	0	0	2.10027	0.01075	-3.934
04 05		0	5.05455	-0.48099	-4.54492
85	0	0	-4.10505	-5.77802	-2.58597
80 97	I	0	-4./050/	-0.59/15	-3.0041/
8/	0	0	-4.02885	-5.02073	-1.21138
88	1	0	-4.55948	-6.29373	-0.52/01
89	8	0	-0.23653	0.25511	1.66348
90	6	0	-0.27982	-1.86883	3.95813
91	6	0	-1.36904	-1.49509	3.01492
92	1	0	0.60757	-2.22609	3.40475
93	l	0	0.05611	-1.02134	4.58334
94	1	0	-0.58838	-2.68137	4.64788
95	1	0	-0.88343	-0.5822	2.32545
96	1	0	-1.52719	-2.24944	2.21626
97	6	0	-2.63771	-0.9678	3.51125
98	6	0	-2.75149	-0.3253	4.75133
99	6	0	-3.78996	-1.06305	2.71653
100	6	0	-3.96652	0.17415	5.18529
101	1	0	-1.86639	-0.2211	5.3942
102	6	0	-5.00206	-0.56333	3.15146
103	1	0	-3.72122	-1.56213	1.7376
104	6	0	-5.09908	0.05525	4.39118
105	1	0	-4.03256	0.66514	6.16681
106	1	0	-5.89186	-0.66128	2.51337
107	1	0	-6.06316	0.45219	4.73899

TS2 (S = 1/2)

Center	Atomic		Atomic	Coordinates (Angstroms)			
Number		Number	Туре	Х	Y	Z	
1	17	()	-2.71536	-4.64147	1.94782	

2	17	0	-4.33313	1.61328	2.60349
3	17	0 0	1 89024	4 04165	-2 84884
1	17	0	1.00024	4.04105	2.04004
	17	0	1.40123	2.05017	2.44915
5	17	0	-4.90337	2.03017	-2.70770
0	7	0	0.4/300	-1.84309	0.25138
/	7	0	1.58427	0.78220	0.35374
8	7	0	-2.09965	-0./6668	-0.303/9
9	/	0	-1.00844	1.9053	-0.15403
10	17	0	-1.30628	-4.12629	-3.21164
11	17	0	2.23311	-1.24836	4.03922
12	17	0	5.18543	-2.19598	-0.3335
13	6	0	-2.31164	2.23167	-0.18467
14	6	0	-0.29716	3.04478	-0.2263
15	6	0	1.68308	-2.16079	0.76641
16	6	0	-0.77969	0.26547	1.97148
17	6	0	-2.44963	3.65762	-0.27055
18	1	0	-3.3954	4.20578	-0.31351
19	6	0	2.65425	0.1133	0.82649
20	6	0	1.68712	4.49206	-0.21346
21	6	0	-0.18788	-3.01151	0.01599
22	6	0	1.94797	2.07944	0.21067
$\frac{-}{23}$	6	0	2.68107	-1.25397	1.10848
24	6	0 0	-3 37102	1 32054	-0 19058
25	6	0 0	-1 36057	-0.8252	2 62884
25	1	0	-1 62669	-1 74247	2.02004
20	6	0	3 25503	0.06355	0.31072
27	6	0	-3.23393	1 87605	0.03715
20	6	0	-4.73423	1.07003	-0.03713
29	0	0	5.7014 4.75972	1.00941	1 22075
30	I C	0	4.75872	0.73411	1.32975
31	6	0	1.09349	3.13/45	-0.10335
32	6	0	1.79255	-3.5791	0.89169
33	1	0	2.6605	-4.11272	1.29086
34	6	0	0.64566	-4.10854	0.39296
35	1	0	0.37439	-5.16582	0.31363
36	6	0	-3.83189	-2.19979	-0.65096
37	1	0	-4.36388	-3.13971	-0.82677
38	6	0	-2.03275	-4.48935	-0.64798
39	6	0	-2.41543	-2.06359	-0.48763
40	6	0	3.68134	-1.81752	3.31165
41	6	0	4.69291	-2.31547	4.11952
42	1	0	4.55248	-2.33633	5.20705
43	6	0	-1.19321	4.16341	-0.32239
44	1	0	-0.89761	5.2138	-0.40256
45	6	0	-2.60098	-5.27533	0.35733
46	6	0	1.86228	5.31972	0.89794
47	6	0	-4.35771	-0.95735	-0.51036
48	1	0 0	-5 41131	-0.66638	-0 55809
49	6	0	-2 99376	-7 0713	-1 16771
50	1	0	-3 3698/	-8 08354	-1 36000
51	6	0	1 00634	2 245	1 36866
52	6	0	4.99034	-2.245	0.70504
52	1	0	2.39302	0.39330	1 60029
55	1	0	2.3080	7.20363	1.09920
54	0	0	-3.32799	2.24040	-1.12203
55 57	0	U	2.01/90	0.28340	-1.5/821
50	1	U	2.91162	0.04433	-2.5/155
57	6	U	-5.27485	2.05564	1.24021
58	6	U	-6.8022	2.77032	-0.95688
59	1	0	-7.39071	3.0469	-1.84009
60	6	0	-0.4949	1.40407	2.72521

61	1	0	-0.0615	2.29662	2.25019
62	6	0	-2.4436	-6.32647	-2.19561
63	1	0	-2.37362	-6.72169	-3.21597
64	6	0	-0.74086	1.44168	4.0898
65	1	0	-0.49859	2.35012	4.6615
66	6	0	-1.51519	-3.12682	-0.39083
67	6	0	-1.97329	-5.05025	-1.92615
68	6	0	3.8056	-1.77057	1.91877
69	6	0	3.33038	2.2272	0.5592
70	1	0	3.89857	3.16148	0.51791
71	6	0	2.08009	5.01105	-1.44983
72	6	0	-1.29407	0.34274	4.73232
73	1	0	-1.49584	0.37484	5.81287
74	6	0	-3.07907	-6.55382	0.11289
75	1	0	-3.51668	-7.13169	0.93557
76	6	0	2.7706	7.0693	-0.44981
77	1	0	3.19434	8.07852	-0.54377
78	6	0	-7.30108	2.93161	0.32422
79	1	0	-8.30842	3.34691	0.46448
80	6	0	-6.54629	2.57758	1.42937
81	1	0	-6.9298	2.70116	2.4492
82	6	0	-1.601	-0.79116	3.99581
83	1	0	-2.04397	-1.66896	4.48993
84	6	0	5.85812	-2.778	3.53271
85	1	0	6.66418	-3.17429	4.16547
86	6	0	6.02156	-2.74552	2.1586
87	1	0	6.94046	-3.10866	1.68258
88	8	0	1.18247	1.17569	-3.9423
89	6	0	0.60798	-1.05687	-4.58701
90	6	0	1.39471	-0.1494	-3.68758
91	1	0	-0.4525	-0.75311	-4.58426
92	1	0	0.97325	-0.99366	-5.63148
93	1	0	0.65007	-2.11229	-4.26555
94	1	0	0.42118	1.42236	-3.40404
95	1	0	0.88196	-0.30192	-2.60467
96	6	0	2.83916	-0.43308	-3.50891
97	6	0	3.65475	0.55007	-2.93652
98	6	0	3.42466	-1.64476	-3.88394
99	6	0	5.01341	0.34287	-2.78987
100	1	0	3.19638	1.50184	-2.63106
101	6	0	4.78722	-1.84779	-3.73876
102	1	0	2.81173	-2.43963	-4.33032
103	6	0	5.58967	-0.85115	-3.20389
104	1	0	5.63928	1.13149	-2.34783
105	1	0	5.23274	-2.7993	-4.06217
106	1	0	6.67226	-1.01079	-3.09627
107	44	0	-0.24583	-0.00217	-0.02632
108	8	0	-0.0498	0.27469	-1.78037

TS3 (S = 1/2)

Center	Atomic	Atomic	Coordi	nates (Angstr	roms)
Number	Number	Type	X	Y	Z
1	44	0	0.03471	0.09333	0.07739
2	17	0	4.85926	-1.26587	-2.18084
3	17	0	0.98266	4.02165	-3.10929

4	17	0	-4.13314	1.3125	3.06714
5	17	0	-4.99022	1.31817	-2.22946
6	17	0	1.55047	5.25082	2.08224
7	7	0	1.04047	-1.63828	-0.01502
8	7	0	-1.72192	-0.90883	-0.12232
9	7	0	1.78093	1.09825	0.158
10	7	0	-0.99668	1.86648	0.01034
11	17	0	4.42634	-1.00719	3.1722
12	17	0	-0.55263	-3.16959	-3.6067
13	17	0	-1.71453	-5.42667	1.12505
14	6	0	-0.46085	3.08791	-0.12292
15	6	Ő	-2 32524	2 01252	0.15851
16	6	0	0 52362	-2 84033	-0 38722
17	6	0	0.02912	0 34192	-1 98312
18	6	0	1 50043	4 07040	0.08183
10	0	0	-1.30043	5 16056	-0.00105
20	1	0	-1.33373	2.10050	-0.1003
20	0	0	-1.6/012	-2.20062	-0.44399
21	0	0	-4.00819	1.33813	0.43647
22	0	0	2.5/40/	-1.81004	0.10013
23	0	0	-2.95092	-0.38007	0.04400
24	6	0	-0.81/34	-3.10184	-0.65828
25	6	0	0.90777	3.35791	-0.211
26	6	0	1.22879	0.10069	-2.66124
27	l	0	2.15021	-0.14006	-2.10814
28	6	0	1.93479	2.43255	-0.02998
29	6	0	1.29259	4.74863	-0.54302
30	6	0	-3.26309	-2.54127	-0.48144
31	1	0	-3.67618	-3.52737	-0.71391
32	6	0	-3.24904	0.96741	0.2308
33	6	0	1.56195	-3.82167	-0.40833
34	1	0	1.43002	-4.87791	-0.66191
35	6	0	2.70561	-3.19296	-0.03367
36	1	0	3.70526	-3.62603	0.06991
37	6	0	3.99683	1.60888	0.25958
38	1	0	5.07703	1.46795	0.3636
39	6	0	4.72935	-1.18064	0.5069
40	6	0	3.01445	0.56906	0.31355
41	6	0	-1.04293	-4.52925	-2.68147
42	6	0	-1.33452	-5.7204	-3.33008
43	1	0	-1.24396	-5.77366	-4.42169
44	6	0	-2.66045	3.41004	0.12256
45	1	0	-3.66782	3.82557	0.22384
46	6	0	5.53583	-1.42208	-0.61072
47	6	Ő	-5 55515	1 52955	-0.6234
48	6	Ő	3 32651	2 76438	0.02123
49	1	0	3 74452	3 76888	-0.09585
50	6	0	7 /3/92	-1 89366	0.76013
51	1	0	8 40207	2 17/00	0.85057
52	6	0	1 56113	-2.17499	0.83937
52	6	0	6 88044	-5.52071	-0.38232
55	0	0	-0.88044	1.88033	1 20109
54		0	-/.33/20	2.02475	-1.29108
55	0	0	1.39933	3.70440	0.42014
50 57	0	0	-0.49833	1.88/9/	1.95111
57	l	0	-6.85009	2.0255	2.98087
38 50	0	U	1.5458	5.15902	-1.8/808
39	6	0	1.94019	7.00757	0.09475
60	l	0	2.16992	1.12312	0.89298
61	6	0	-1.09635	0.6582	-2.74483
62	1	0	-2.06259	0.86316	-2.25827
63	6	0	6.67942	-1.65456	1.89426

64	1	0	7.11242	-1.73619	2.89854
65	6	0	-1.03448	0.7114	-4.12965
66	1	0	-1.94018	0.95475	-4.70526
67	6	0	3.30374	-0.79668	0.37414
68	6	0	5.34489	-1.30276	1.75474
69	6	0	-1.14321	-4.40032	-1.2906
70	6	0	-3.93804	-1.41553	-0.13696
71	1	0	-5.0204	-1.28443	-0.04248
72	6	0	-5.17766	1.52875	1.72554
73	6	0	0.16035	0.4569	-4.78816
74	1	0	0.21005	0.50042	-5.88583
75	6	0	6.87178	-1.77781	-0.49818
76	1	0	7.45881	-1.95716	-1.40667
77	6	0	-7.34266	2.06322	0.86868
78	1	0	-8.39029	2.34822	1.03633
79	6	0	1.97948	7.3731	-1.23963
80	1	0	2.24762	8.40284	-1.51312
81	6	0	1.68612	6.45599	-2.23374
82	1	0	1.71548	6.7321	-3.29448
83	6	0	1.29127	0.1493	-4.04723
84	1	0	2.24649	-0.05259	-4.55573
85	6	0	-1.74005	-6.81388	-2.58527
86	1	0	-1.97348	-7.7601	-3.09249
87	6	0	-1.85892	-6.72762	-1.20926
88	1	0	-2.18034	-7.58579	-0.60644
89	8	0	-0.38472	0.33823	1.82812
90	6	0	1.09406	0.373	4.54645
91	1	0	0.64518	1.3817	4.57429
92	1	0	2.01682	0.4339	3.93993
93	1	0	1.40389	0.12222	5.58456
94	6	0	0.14754	-0.64124	4.00984
95	6	0	0.71839	-2.01105	3.79827
96	6	0	-1.2257	-0.63457	4.61109
97	1	0	-0.07756	-0.22083	2.83939
98	6	0	-0.25405	-2.96758	3.15223
99	1	0	1.0277	-2.40547	4.79924
100	1	0	1.66168	-1.94654	3.21657
101	6	0	-2.17363	-1.60324	3.94244
102	1	0	-1.63277	0.39785	4.60153
103	1	0	-1.12611	-0.89678	5.69451
104	6	0	-1.58371	-2.99044	3.86512
105	1	0	0.18823	-3.98157	3.08924
106	1	0	-0.41883	-2.65044	2.10133
107	1	0	-3.14839	-1.61068	4.46867
108	1	0	-2.39309	-1.24024	2.91302
109	1	0	-1.45324	-3.40041	4.89248
110	1	0	-2.28609	-3.67901	3.35453