Supporting Information

Unexpected Alkene Isomerization During Iterative CrossCoupling to Form Hindered, Electron-Deficient Trienes

Abigail Feceu, Lauren E. Sangster, David B. C. Martin*
Department of Chemistry, University of California Riverside, Riverside, California 92521, United States

Materials and Methods:

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Inova 400 MHz or Bruker 700 MHz spectrometer unless otherwise indicated and were internally referenced to residual protio solvent signal (note: CDCl_{3} referenced at $\delta 7.26 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR and $\delta 77.1 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ NMR, respectively. Acetone- D_{6} referenced at $\delta 2.05 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR and $\delta 29.3 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ NMR, respectively). Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift ($\delta \mathrm{ppm}$), integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), and coupling constant (Hz). Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift and no special nomenclature is used for equivalent carbons. IR spectra were recorded on a Bruker Alpha FT-IR Spectrometer. High-resolution mass spectrometry data were recorded on an Agilent LCTOF instrument using direct injection of samples in dichloromethane into the electrospray source (ESI) with positive ionization.

All reactions were carried out under an inert atmosphere of nitrogen in oven dried or flame dried glassware with magnetic stirring, unless otherwise noted. Solvents were dried by passage through columns of activated alumina. All starting materials were prepared according to known literature procedures or used as obtained from commercial sources, unless otherwise indicated. Reactions were monitored by thin-layer chromatography (TLC) and carried out on 0.25 mm coated commercial silica gel plates (Analtech TLC Uniplates, F254 precoated glass plates) using UV light as the visualizing agent and KMnO_{4} and heat as a developing agent. Flash chromatography was performed on silica gel (Silicycle, SiliaFlash P60, 230-400 mesh).

Structure search:

To provide an estimate of the total number of natural products with the specified skeletons, a series of structure searches was performed using Reaxys ${ }^{\ominus}$ (www.reaxys.com) on February 21, 2018. A substructure search "on all atoms" was used with methyl groups explicitly drawn as " CH_{3} " groups. Other positions were left open and other bonds were available as either single or double bonds. Salts, mixtures and "isotopes" were excluded from the search. Results were filtered using the "Isolated from Natural Product" filter. For the eremophilane skeleton, the molecular weight was arbitrarily limited to $<375 \mathrm{~g} / \mathrm{mol}$ to filter out higher terpenes such as triterpenes with this substructure. The numbers provided are only estimates given the limitations of this methodology.

cis-dimethyldecalin (1)
17,481 natural products

eremophilane skeleton (2)
1322 natural products ($\mathrm{MW}<375$)

nardosinane skeleton (3)
174 natural products
(1682 natural products total)

Experimental Procedures:

General Procedure A: Suzuki Cross-Coupling to form Dienes:
To a flask containing $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ and $10 \mathrm{~mol} \%$ XPhos was added THF $(0.05 \mathrm{M})$. The resulting solution was stirred for 15 minutes and then added to a flask containing bromo MIDA boronate (14) (1 equiv), propenyl boronic acid (15) (1.2 equiv), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.55 equiv). The reaction was stirred for 24 hours at room temperature. The reactions were tracked by TLC (100% EtOAc). Upon completion, the crude reaction mixture was filtered through celite, concentrated, and then diluted with EtOAc. The organic layer was washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Volatiles were removed under reduced pressure to afford a crude yellow oil. The crude material was purified using silica gel chromatography with 100% EtOAc.

General Procedure B: Suzuki Cross-Coupling to form Trienes:

To a flask containing vinylbromide (1 equiv), diene MIDA boronate (13) (1.2 equiv), $5 \mathrm{~mol} \%$ $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $10 \mathrm{~mol} \%$ SPhos was added dioxane $(0.08 \mathrm{M})$. The resulting solution was sparged with nitrogen for 30 minutes at room temperature. Aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M})$ was then added and the reaction was stirred for 24 hours at room temperature. The reactions were tracked by TLC. Upon completion, the crude reaction mixture was filtered through celite, concentrated, and then diluted with EtOAc. The organic layer was washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Volatiles were removed under reduced pressure to afford a crude yellow oil. The crude material was purified using silica gel chromatography with $1: 5 \mathrm{EtOAc} /$ hexanes.

Modified procedure for MIDA boronate Z-14

Synthesis conducted according to literature procedure ${ }^{1}$ using E-diboronate $\boldsymbol{E}-\mathbf{1 7}(1 \mathrm{~g}, 3.24 \mathrm{mmol})$, substituting $\mathrm{K}_{3} \mathrm{PO}_{4}$ with anhydrous $\mathrm{Na}_{2} \mathrm{HPO}_{4}(4.27 \mathrm{~g}, 30.78 \mathrm{mmol})$ in the elimination step, to give the desired product $\mathbf{Z}-\mathbf{1 4}(0.685 \mathrm{~g}, 81 \%)$. Spectral data were consistent with literature values.

[^0]

MIDA boronate (E,Z-13 + Z,Z-13)

Prepared according to general procedure A using $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}(28 \mathrm{mg}, 0.127 \mathrm{mmol}), 10$ $\mathrm{mol} \%$ XPhos ($121 \mathrm{mg}, 0.254 \mathrm{mmol}$), Z-MIDA boronate ($\mathbf{Z}-14$) ($666 \mathrm{mg}, 2.54 \mathrm{mmol}, 1$ equiv), propenyl boronic acid (15) ($570 \mathrm{mg}, 6.64 \mathrm{mmol}, 2.61$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.94 \mathrm{~g}, 9.02 \mathrm{mmol}, 3.55$ equiv) in THF (51 mL). Purification afforded the product as a pale yellow solid ($524 \mathrm{mg}, 2.34$ $\mathrm{mmol}, 92 \%$) in a $1: 1$ ratio of isomers as determined by ${ }^{1} \mathrm{H}$ NMR. IR (film) 2998, 1758, 1739, 1639, $1450,983 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11(\mathrm{t}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.50(\mathrm{~m}, 2 \mathrm{H}), 5.82(\mathrm{dq}, J=13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dtt}, J=10.8,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=16.4,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{dd}, J=16.4,0.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.86(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.78(\mathrm{dt}, J=4.8,1.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 167.7, 146.3, 140.4, 134.8, 130.6, 130.1, 127.3, 61.7, 46.9, 18.4, 13.0; HRMS (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{BNO}_{4}(\mathrm{M}+\mathrm{H})^{+} 224.1050$, found 224.1059.

MIDA boronate (E,E-13 + Z,E-13)

Prepared according to general procedure A using $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}(4 \mathrm{mg}, 0.019 \mathrm{mmol}), 10 \mathrm{~mol} \%$ XPhos ($18 \mathrm{mg}, 0.038 \mathrm{mmol}$), E-MIDA boronate ($\mathbf{E}-14$) ($100 \mathrm{mg}, 0.382 \mathrm{mmol}, 1$ equiv), propenyl boronic acid (15) ($86 \mathrm{mg}, 0.996 \mathrm{mmol}, 2.61$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(442 \mathrm{mg}, 1.356 \mathrm{mmol}, 3.55$ equiv) in THF (8 mL). Purification afforded the product as a pale yellow solid ($40 \mathrm{mg}, 0.015 \mathrm{mmol}, 47 \%$) in a $1: 1$ ratio of isomers as determined by ${ }^{1} \mathrm{H}$ NMR. IR (film) $3058,2961,1762,1641,1449 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.01(\mathrm{dd}, J=17.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=17.5,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.13(\mathrm{dd}, J=14.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dt}, J=11.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dq}, J=14.7,7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.61(\mathrm{dq}, J=10.5,7 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=$ $16.1 \mathrm{~Hz}, 2 \mathrm{H}) 3.68(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{dd}, J=7,1.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (176 MHz , Acetone-d6) $\delta 168.9,168.9,144.70,138.8,132.75,131.9,129.1,128.6,62.3,47.2,18.23,12.8$.; HRMS (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{BNO}_{4}(\mathrm{M}+\mathrm{H})^{+} 224.1050$, found 224.1058.

2-methyl-3-penta-1,3-dien-1-yl)cyclohex-2-enone (E,E-9 + Z,E-9)
Prepared according to general procedure B using 3-bromo-2-methylcyclohex-2-enone (12) (46 mg , $0.244 \mathrm{mmol}, 1$ equiv), diene MIDA boronate ($\mathbf{E}, \mathbf{Z}-\mathbf{1 3}+\mathbf{Z}, \mathbf{Z}-\mathbf{1 3}$) ($66 \mathrm{mg}, 0.292 \mathrm{mmol}, 1.2$ equiv), $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}(2.7 \mathrm{mg}, 0.012 \mathrm{mmol}), 10 \mathrm{~mol} \%$ SPhos $(0.024 \mathrm{mmol}, 10 \mathrm{mg})$, and 3.05 mL of dioxane. After sparging with nitrogen for 30 minutes at room temperature, aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}$, $1.83 \mathrm{mmol}, 7.5$ equiv) was added. Purification afforded the product as a pale yellow oil (28 mg , $0.159 \mathrm{mmol}, 65 \%$) in a $39: 61$ ratio of isomers as determined by ${ }^{1} \mathrm{H}$ NMR. IR (film) 3053, 2957, $1652,1596,1264 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.93(\mathrm{dd}, J=15.4,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J$ $=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.58(\mathrm{~m}, 1 \mathrm{H}), 6.26-6.21(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{dt}, J=10.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dq}$, $J=15.4,7 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dq}, J=10.5,7.7 \mathrm{~Hz}), 2.57-2.39(\mathrm{~m}, 4 \mathrm{H}), 2.03-1.80(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.4,149.9,149.8,135.4,134.2,132.2,131.8,131.3,130.7,129.9$, $129.8,129.7,127.9,37.8,26.0,22.0,18.5,13.8,10.5 ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$ 177.1279, found 177.1285.

2-methyl-3-penta-1,3-dien-1-yl)cyclohex-2-enone (E,E-9 + Z,E-9)
Prepared according to general procedure B using 3-bromo-2-methylcyclohex-2-enone ${ }^{2}$ (12) (28 $\mathrm{mg}, 0.148 \mathrm{mmol}, 1$ equiv), diene MIDA boronate (E,E-13 + Z,E-13) ($40 \mathrm{mg}, 0.179 \mathrm{mmol}, 1.2$ equiv), $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}(1 / 7 \mathrm{mg}, 0.008 \mathrm{mmol}), 10 \mathrm{~mol} \%$ SPhos ($6 \mathrm{mg}, 0.015 \mathrm{mmol}$), and 1.86 mL of dioxane. After sparging with nitrogen for 30 minutes at room temperature, aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($3 \mathrm{M}, 1.12 \mathrm{mmol}, 7.5$ equiv) was added. Purification afforded the product as a pale yellow oil (15 $\mathrm{mg}, 0.08 \mathrm{mmol}, 56 \%)$ as a mixture of triene isomers. The characterization data matches that of the products of the reaction between the same vinyl bromide (12) and diene MIDA boronate (E,Z-13 + Z,Z-13).

[^1]

3-((1E)-penta-1,3-dien-1-yl)cyclohex-2-enone (20)

Prepared according to general procedure B using 3-bromocyclohex-2-enone ${ }^{2}$ (19) ($123 \mathrm{mg}, 0.703$ mmol, 1 equiv), diene MIDA boronate ($\mathbf{E}, \mathbf{Z}-\mathbf{1 3}+\mathbf{Z}, \mathbf{Z}-\mathbf{1 3})(189 \mathrm{mg}, 0.843 \mathrm{mmol}, 1.2$ equiv), 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}(8 \mathrm{mg}, 0.035 \mathrm{mmol}), 10 \mathrm{~mol} \% \mathrm{SPhos}(29 \mathrm{mg}, 0.070 \mathrm{mmol})$ and 9 mL of dioxane. After sparging with nitrogen for 30 minutes at room temperature, aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}, 5.27 \mathrm{mmol}$, 7.5 equiv) was added. Purification afforded the product as a pale yellow oil ($85 \mathrm{mg}, 0.521 \mathrm{mmol}$, 72%). IR (film) 3026, 2931, 2867, 1657, $986 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 6.95$ (dd, $J=$ $15.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=15.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22-6.07(\mathrm{~m}$, $1 \mathrm{H}), 6.02-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.75(\mathrm{dq}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}) 2.55-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.08-1.95(\mathrm{~m}, 2 \mathrm{H})$, 1.88 - $1.75(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.1,157.5,157.4,136.1,135.2,132.7$, $131.7,131.5,130.6,130.4,129.1,127.5,127.1,37.7,24.9,22.4,18.6,13.9$; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$163.1117, found 163.1119.

$E, Z-13+Z, Z-13$

21

E,Z-23 + Z,Z-23

3-((1Z)-penta-1,3-dien-1-yl)cyclohex-2-enol (23)

Prepared according to general procedure B using 3-bromocyclohex-2-enol ${ }^{3}$ (21) ($88 \mathrm{mg}, 0.288$ mmol, 1 equiv), 134 mg diene MIDA Boronate ($\mathbf{E}, \mathbf{Z}-\mathbf{1 3}+\mathbf{Z}, \mathbf{Z}-\mathbf{1 3}$) ($0.596 \mathrm{mmol}, 1.2$ equiv.), 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}(3 \mathrm{mg}, 0.144 \mathrm{mmol}), 10 \mathrm{~mol} \%$ SPhos ($12 \mathrm{mg}, 0.029 \mathrm{mmol}$), and 3.60 mL of dioxane After sparging with nitrogen for 30 minutes at room temperature, aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}$, $2.16 \mathrm{mmol}, 7.5$ equiv) was added. Purification afforded the product as a pale yellow oil (47 mg , $0.288 \mathrm{mmol}, 58 \%$). IR (film) 3333, 2933, 2861, 1646, $956 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.65-6.43(\mathrm{~m}, 2 \mathrm{H}), 6.28(\mathrm{t}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17-6.12(\mathrm{~m}, 1 \mathrm{H}), 5.95(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82$ $-5.68(\mathrm{~m}, 3 \mathrm{H}), 5.62(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.61-5.50(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H}), 2.28-2.10(\mathrm{~m}, 2 \mathrm{H})$, $1.89-1.55(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.1,131.9,131.5,131.0,130.4,129.8$, 129.6, 129.1, 128.6, 128.1, 126.2, 124.2, 67.2, 66.2, 35.3, 31.7, 30.7, 29.2, 20.6, 19.3, 18.4, 13.1; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$164.1201, found 164.1196.

[^2]

2-methyl-3-((1Z)-penta-1,3-dien-1-yl)cyclohex-2-enol (24)

Prepared according to general procedure B using 3-bromo-2-methylcyclohex-2-enol ${ }^{3}$ ($\mathbf{2 2}$) (90 mg , 0.470 mmol , 1 equiv.), 126 mg diene MIDA boronate ($\mathbf{E}, \mathbf{Z}-\mathbf{1 3}+\mathbf{Z}, \mathbf{Z}-\mathbf{1 3}$) ($0.564 \mathrm{mmol}, 1.2$ equiv.), $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}(5.3 \mathrm{mg}, 0.024 \mathrm{mmol}), 10 \mathrm{~mol} \% \mathrm{SPhos}(19 \mathrm{mg}, 0.047 \mathrm{mmol})$, and 5.89 mL of dioxane. After sparging with nitrogen for 30 minutes at room temperature, aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}$, $3.53 \mathrm{mmol}, 7.5$ equiv) was added. Purification afforded the product as a pale yellow oil (38 mg , $0.213 \mathrm{mmol}, 45 \%$). IR (film) 3433, 3054, 2933, 2852, $1659 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.30(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{t}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.87(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.68(\mathrm{~m}, 2 \mathrm{H}), 5.59-5.49(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 2.57-2.43$ $(\mathrm{m}, 2 \mathrm{H}), 2.12-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.60(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.0,132.7$, $131.3,130.7,130.3,129.4,128.8,128.2,127.1,126.4,124.7,124.0,70.0,69.4,36.7,32.1,31.6$, 30.3, 20.5, 20.0, 18.4, 17.5; HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 178.1358$, found 178.1353.

MIDA boronate Z-25

To a Schlenk flask containing $\operatorname{Pd}(\mathrm{OAc})_{2}(8.6 \mathrm{mg}, 10 \mathrm{~mol} \%)$, XPhos ($36.2 \mathrm{mg}, 20 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (436 mg , 3.5 equiv), bromo MIDA boronate (14) (100 mg , 1 equiv), was added DMSO (7.6 mL , $0.05 \mathrm{M})$. The resulting solution was stirred for 15 minutes and then added to a flask containing vinyl boronic acid (15) ($133 \mu \mathrm{~L}, 2$ equiv), and the reaction was stirred for 24 hours at room temperature. The reactions were tracked by TLC ($100 \% \mathrm{EtOAc}$). Upon completion, the crude reaction mixture was filtered through celite, concentrated, and then diluted with EtOAc. The organic layer was washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Volatiles were removed under reduced pressure to afford a crude yellow oil. The crude material was purified using silica gel chromatography with $100 \% \mathrm{Et}_{2} \mathrm{O}$, then $1.5 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$, then 50% acetone/hexanes to give a light yellow oil ($15.2 \mathrm{mg}, 0.073 \mathrm{mmol}, 19 \%$). Spectral data were consistent with literature values. ${ }^{1}$

(E)-3-(buta-1,3-dien-1-yl)cyclohex-2-enone (26)

Prepared according to general procedure B using 3-bromocyclohex-2-enone ${ }^{2}$ (19) (10 mg, 0.058 $\mathrm{mmol}, 1$ equiv), diene MIDA boronate ($\mathbf{Z - 2 5}$) ($14 \mathrm{mg}, 0.069 \mathrm{mmol}, 1.2$ equiv), $10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ ($1.3 \mathrm{mg}, 0.006 \mathrm{mmol}$), $20 \mathrm{~mol} \%$ SPhos ($4.7 \mathrm{mg}, 0.070 \mathrm{mmol}$) and $723 \mu \mathrm{~L}$ of dioxane. After sparging with nitrogen for 30 minutes at room temperature, aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}, 0.4335 \mathrm{mmol}$, 7.5 equiv) was added. Purification afforded the product as a pale yellow oil ($3.8 \mathrm{mg}, 44 \%$). IR (film) 2929, 2852, 1667, 1590, $1250 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.70-6.55(\mathrm{~m}, 1 \mathrm{H})$, $6.44(\mathrm{dt}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 2 \mathrm{H})$; HRMS (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$149.0961, found 149.0959.

$\stackrel{\leftrightarrow}{\infty}$

${ }^{13} \mathrm{CNM}$ 然 $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^3]

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

E,Z-23 + Z,Z-23

$$
\mathrm{E}, \mathrm{Z}-23+\mathrm{Z}, \mathrm{Z}-23
$$

${ }^{13} \mathrm{CNMR}$ ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

E,Z-24 + Z,Z-24
 M M M

[^0]: ${ }^{1}$ Woerly, E. M.; Struble, J. R.; Palyam, N.; O’Hara, S. P.; Burke, M. D. Tetrahedron 2011, 67, 4333-4343.

[^1]: ${ }^{2}$ Piers, E.; Grierson, J. R.; Lau, C. K.; Nagakura, I. Can. J. Chem. 1982, 60, 210-222.

[^2]: ${ }^{3}$ Denmark, S. E.; Habermas, K. L.; Hite, G. A.; Jones, T. K. Tetrahedron 1986, 42, 2821-2829.

[^3]: E,E-9 + Z,E-9

