Supporting Information

Diaziridyl Ether of Bisphenol A

Seohyun Kang, Hyun Kyung Moon, and Hyo Jae Yoon*

Department of Chemistry, Korea University, Seoul, 02841, Korea

Corresponding author: email: hyoon@korea.ac.kr

Table of Contents

1.	Synthetic Scheme (Scheme S1-2)	83
2.	Photos and Optical properties of DGEBA and DzEBAs	\$5
3.	¹ H NMR Spectroscopic Analysis for the Kinetics of Ring Opening Polymerization	on
	(ROP) (Figure S2-26)	S6
4.	Differential Scanning Calorimetry (DSC) Analysis	
	(Table S1-2, Figure S27-33)	-831
5.	Single Lap Shear Strength Test (Figure S34-38)	S41
6.	Examples of aziridine-based crosslinkers	-S46
7.	¹ H and ¹³ C NMR, HRMS and chiral HPLC Spectra	S47

Scheme S1. Synthetic scheme for the preparation of 2,2'-(((propane-2,2-diylbis(4,1-phenylene))bis(oxy))bis(methylene))bis(1-benzylaziridine) (**S1**).

Scheme S2. Synthetic scheme for the preparation of 2,2'-(((propane-2,2-diylbis(4,1-phenylene))bis(oxy))bis(methylene))bis(1-tosylaziridine) (**S2**).

Figure S1. (a) Photos of three types of resins (Bn-DzEBA, DGEBA, and Ts-DzEBA) (b) UVvis absorbance spectra of Bn-DzEBA, DGEBA, and Ts-DzEBA in EtOH solution. The both DzEBAs exhibited two significant absorbance peaks for the wavelength range 200 - 250 nm resulting from phenyl rings. The optical properties of DzEBAs can be easily tuned by choosing different *N*-substituents.

Figure S2. (a) Reaction scheme of Bn-DzEBA and dodecanedioic acid (DDDA). (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S3. (a) Reaction scheme of DGEBA and DDDA (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S4. (a) Reaction scheme of Ts-DzEBA and DDDA. (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S5. (a) Reaction scheme of Bn-DzEBA and terephthalic acid (TPA). (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S6. (a) Reaction scheme of DGEBA and TPA. (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S7. (a) Reaction scheme of Ts-DzEBA and TPA. (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S8. (a) Reaction scheme of Bn-DzEBA and ethylenediamine (EDA). (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S9. (a) Reaction scheme of DGEBA and EDA. (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S10. (a) Reaction scheme of Ts-DzEBA and EDA. (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S11. (a) Reaction scheme of Bn-DzEBA and *p*-phenylenediamine (PDA). (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S12. (a) Reaction scheme of DGEBA and PDA. (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S13. (a) Reaction scheme of Ts-DzEBA and PDA. (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S14. (a) Reaction scheme of Bn-DzEBA and ethylenediol (EDO). (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S15. (a) Reaction scheme of DGEBA and EDO. (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S16. (a) Reaction scheme of Ts-DzEBA and EDO. (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S17. (a) Reaction scheme of Bn-DzEBA and hydroquinone (HQ). (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S18. (a) Reaction scheme of DGEBA and HQ. (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S19. (a) Reaction scheme of Ts-DzEBA and HQ. (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S20. (a) Reaction scheme of Bn-DzEBA and 1,3-propanedithiol (PDT). (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S21. (a) Reaction scheme DGEBA and PDT. (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S22. (a) Reaction scheme of Ts-DzEBA and PDT. (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S23. (a) Reaction scheme of Bn-DzEBA and 1,4-benzenedithiol (BDT). (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S24. (a) Reaction scheme of DGEBA and BDT. (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S25. (a) Reaction scheme of Ts-DzEBA and BDT. (b) ¹H NMR spectra measured at different reaction times. (c) The corresponding plot of conversion ratio against reaction time.

Figure S26. Dependence of ring-opening polymerization (ROP) of Bn-DzEBA in the presence of DDDA on reaction temperature.

	Curing agent	Structure	Melting Point (°C)
Amine	<i>p</i> -Phenylenediamine (PDA) $H_2N \longrightarrow NH_2$		267
	1,12-Diaminododecane (DAD)	H_2N H_2 H_2 H_2	67-69
Acid	Terephthalic acid (TA)	ноос-С-соон	300
	Dodecanedioic acid (DDDA)	но↓	127-129
Alcohol	Hydroquinone (HQ)	но-Он	172
	1,12-dodecanediol (DDD)	но∽∽бу∽он	79-81
Thiol	1,4-benzenedithiol (BDT)	нѕ{	92-97

Table S1. The structures and properties of curing agents used for DSC study

Sample Designation	β (K/min)	<i>T_i</i> (°C)	<i>T_p</i> (°C)	E _a (kJ/mol)	Standard error	$\Delta H (J/g)$
	2	69.4	75.5		0.8	8.6
	5	71.6	82.4	-		9.6
Ts-DzEBA / PDA	10	76.3	87.9	113.4		15.1
	15	79.9	92.7			17.8
	20	84.3	96.3	-		20.1
	2	92.3	100.6			265.0
	5	102.8	113.8		0.2	259.7
PDA	10	110.7	125.0	78.4		345.7
	15	114.0	129.9			274.9
	20	122.7	134.9			386.3
	2	74.1	89.2	58.2	0.1	323.3
	5	83.6	105.4			358.9
DGEBA	10	92.5	117.8			396.3
	15	100.0	126.5			413.8
	20	104.6	133.1			425.0
	2	73.0	92.1			30.0
Dr DrEDA /	5	77.1	96.8			43.6
DDDA	10	91.2	103.8	121.4	2.5	25.7
	15	86.4	105.0			27.7
	20	89.7	113.4			21.1

Table S2. Curing characteristics of the resin-curing agent formulations we tested.

	5	41.1	53.7	60.6	0.5	17.9
Bn-DzEBA /	10	50.9	63.6			16.2
BD1	15	46.6	67.9			34.0
	20	52.3	74.0			46.8
	2	120.9	131.4			110.0
	5	130.5	145.0			77.8
BDT	10	134.3	152.2	91.5	0.7	42.2
	15	147.1	162.6			98.3
	20	140.6	165.4			136.2

Figure S27. Typical DSC thermogram of Bn-DzEBA cured with *p*-phenylenediamine (PDA)

Figure S28. Typical DSC thermogram of Bn-DzEBA cured with 1,12-diaminododecane (DAD).

Figure S29. Typical DSC thermograms of Bn-DzEBA, DGEBA, and Ts-DzEBA cured with terephthalic acid (TPA).

S36

Figure S30. Typical DSC thermograms of DGEBA and Ts-DzEBA cured with dodecanedioic acid (DDDA).

Figure S31. Typical DSC thermograms of Bn-DzEBA, DGEBA and Ts-DzEBA cured with hydroquinone (HQ).

Figure S32. Typical DSC thermograms of Bn-DzEBA, DGEBA and Ts-DzEBA cured with 1,12-dodecanediol (DDD).

S39

Figure S33. Typical DSC thermograms of Bn-DzEBA, DGEBA and Ts-DzEBA cured with 1,4benzenedithiol (BDT).

Figure S34. Typical shear strength-strain curves for Bn-DzEBA and poly(acrylic acid) (PA) at two different curing temperatures (curing time = 3 h).

Figure S35. Typical shear strength-strain curves for Ts-DzEBA and triethylenetetramine (TETA) at two different curing temperatures (curing time = 3 h).

Figure S36. Typical shear strength-strain curves for Bn-DzEBA and poly(acrylic acid) (PA) at various curing times (curing temperature = 80 °C).

Figure S37. Typical shear strength-strain curves for DGEBA and triethylenetetramine (TETA) at various curing times (curing temperature = 80 °C).

Figure S38. Typical shear strength-strain curves for Ts-DzEBA and triethylenetetramine (TETA) at various times (curing temperature = 80 °C).

Figure S39. Examples of aziridine-based crosslinkers commercially available.

PZE-1000 (PZ-33)

<¹H and ¹³C NMR, HRMS and chiral HPLC Spectra>

1) 2,2'-(((propane-2,2-diylbis(4,1-phenylene))bis(oxy))bis(methylene))bis(1-benzylaziridine)

(S1)

¹H NMR spectrum

¹³C NMR spectrum

MS spectrum

Chiral HPLC spectrum

01 1 000

Chiral resolution of Bn-DzEBA on OD column; isopropylalcohol:hexane (15:85, v/v) as a mobile phase at a flow rate of 0.8 mL/min; detection at 220nm.

PeakTable

PDA Ch1 220nm 4nm							
Peak# Ret. Time		Area Height		Area %	Height %		
1	15.085	24939902	562946	25.316	29.717		
2	17.404	48747651	938602	49.482	49.547		
3	19.970	24827727	392815	25.202	20.736		
Total		98515281	1894363	100.000	100.000		

2) *N*,*N*-(((propane-2,2-diylbis(4,1-phenylene))bis(oxy))bis(2-hydroxypropane-3,1-diyl))bis(4-methylbenzenesulfonamide) (S7)

¹H NMR spectrum

¹³C NMR spectrum

MS spectrum

3) 2,2'-(((propane-2,2-diylbis(4,1-phenylene))bis(oxy))bis(methylene))bis(1-tosylaziridine)

(S2)

¹H NMR spectrum

¹³C NMR spectrum

MS spectrum

Chiral HPLC spectrum

Chiral resolution of Bn-DzEBA on OD column; isopropylalcohol:hexane (40:60, v/v) as a mobile phase at a flow rate of 1 mL/min; detection at 220nm.

PeakTable

	PDA Ch1 2	20nm 4nm				
1	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	34.823	9489285	78666	24.971	29.901
	2	40.300	19085345	130348	50.223	49.546
	3	46.798	9426674	54071	24.806	20.553
	Total		38001305	263085	100.000	100.000