Supporting Information

Incorporation of a "Two-Tone" Luminescent Silver Complex into Biocompatible Agar Hydrogel composite for Eradication of *ESKAPE* Pathogens in a Skin and Soft Tissue Infection Model

Miguel N. Pinto, Jorge Martinez-Gonzalez, Indranil Chakraborty, and Pradip K. Mascharak*

Department of Chemistry and Biochemistry, University of California, Santa Cruz. Santa Cruz CA 95064, USA. E-mail: pradip@ucsc.edu

Table of Contents:

1.	Table S1 Cry	stal data and structure refinement parameters for 1 and 2	p. 2
Ζ.	IR characteriz	ration	2
	1. 	Figure S1 Infrared spectrum of I	p. 3
_	11.	Figure S2 Infrared spectrum of 2	p. 4
3.	Figure S3 Int	ermolecular π - π stacking interactions in 1	p. 5
4.	Figure S4 Int	ramolecular π - π stacking interactions in 2	р. б
5.	¹ H-NMR cha	racterization	
	i.	Figure S5 ¹ H-NMR of 1	p. 7
	ii.	Figure S6 ¹ H-NMR of 2	p. 8
6.	Electronic ab	sorption spectra	
	i.	Figure S7 Absorption spectrum of 1	p. 9
	ii.	Figure S8 Absorption spectrum of 2	p. 10
7.	Powder X-ray	diffraction analysis	1
	i.	Figure S9 PXRD pattern of 1	p. 11
	ii.	Figure S10 PXRD pattern of 2	p. 12
8.	Flame Atomi	c Absorption	1
	i.	Figure S11 FAAS	p. 13
9.	Sensitivity pa	tterns	1
	i.	Figure S12 Sensitivity patterns for S. aureus	p. 14
	ii.	Figure S13 Sensitivity patterns for <i>P. aeruginosa</i> 1	p. 15
	iii	Figure S14 Sensitivity patterns for <i>P. aeruginosa</i> 2	p 16
10	ESI-MS data		P
10.	i	Figure S15 ESI-MS of 1	p 17
	 ii	Figure S16 ESI-MS of 2	n 18
11	Agar gel nic	hires	p. 10
	i i gan ger pre	Figure S17 Zones of inhibition of <i>A haumannii</i> with Amnicillin	n 19
	ii	Figure S18 Zones of inhibition of A baumannii with AgNO ₂	p. 19 n 10
	11.	i igaie 516 Zones of minorition of 71. Dummanna with Agroos	P. 17

	1	2. 4H ₂ O
Formula	$C_{48}H_{48}Ag_2N_{10}O_{10}S_2$	$C_{50}H_{56}Ag_2N_8O_{14}S_4F_6$
$D_{calc.}$ / g cm ⁻³	1.675	1.536
μ/mm^{-1}	0.98	0.84
Formula Weight	1204.82	1450.94
Color	Yellow	Colorless
Shape	Block	Block
T/K	298(2)	298(2)
Crystal System	Triclinic	Monoclinic
Space Group	P-1	P21/c
a/Å	8.9171(6)	16.2215(11)
b/Å	9.6937(7)	9.3087(6)
c/Å	14.7140(11)	20.8579(14)
$\alpha / ^{\circ}$	88.179(2)	90
$\beta / ^{\circ}$	86.588(2)	97.828(2)
$\gamma^{\prime \circ}$	70.239(2)	90
$V/Å^3$	1194.76(15)	3120.2(4)
Ζ	2	2
Wavelength/Å	0.71073	0.71073
Radiation type	Μο-Κα	Μο-Κα
$2\theta_{min}/^{\circ}$	6.20	6.00
$2\theta_{max}/^{\circ}$	56.60	50.20
Measured Refl.	16927	40812
Independent Refl	. 5884	5520
Reflections Used	4984	3181
R _{int}	0.020	0.131
Parameters	327	381
^a GooF	1.060	1.070
$^{c}wR_{2}$	0.087	0.196
${}^{b}R_{I}$	0.034	0.076

Table S1 Crystal data and structure refinement parameters for 1 and $2.4H_2O$

^aGOF = $[\Sigma[A(F_o^2 - F_c^2)^2]/(N_o - N_v)]^{1/2}$ (N_o = number of observations, N_v = number of variables). ^bR₁ = $\Sigma ||F_o| - |F_c||/\Sigma |F_o|$. ^cwR₂ = $[(\Sigma A(F_o^2 - F_c^2)^2/\Sigma |F_o|^2)]^{1/2}$

Figure S1 Infrared spectrum (KBr) of [Ag₂(DSX)₂(NO₃)₂] (1)

Figure S2 Infrared spectrum (KBr) of Ag₂(DSX)₂](CF₃SO₃)₂ (2)

Figure S3 Intermolecular π - π stacking interactions in **1**

Figure S4 Intramolecular π - π stacking interactions in 2

Figure S5 ¹H-NMR (CDCl₃) spectrum of $[Ag_2(DSX)_2(NO_3)_2]$ (1)

Figure S6 ¹H-NMR (CDCl₃) spectrum of Ag₂(DSX)₂](CF₃SO₃)₂ (2)

Figure S7 Electronic absorption spectrum of [Ag₂(DSX)₂(NO₃)₂] (1) in CH₂Cl₂

Figure S8 Electronic absorption spectrum of Ag₂(DSX)₂](CF₃SO₃)₂ (2) in CH₂Cl₂

Figure S9 Powder X-ray diffraction patterns for complex 1.

Figure S10 Powder X-ray diffraction patterns for complex 2.

Figure S11 Leaching of Ag⁺ from the silver-agar composite material in water analyzed by flame atomic absorption spectrophotometry

\frown					÷	
_	1	- 5	1 1	1)	1.1	0
\$ 2-	1.2	л.	\mathcal{L}	×	er,	\sim
<u> </u>	~~	~~				

Itmp/Pau		Not Specified	
Cefazolin	<=2 mcg/mL	Susceptible ¹	
Clindamycin	<=0.5 mcg/mL	Susceptible 1	
Daptomycin	<=1 mcg/mL	Susceptible ²	
Erythromycin	<=0.5 mcg/mL	Susceptible ³	
Linezolid	2 mcg/mL	Susceptible 2	
Minocycline	<=1 mcg/mL	Susceptible 2	
Oxacillin	0.5 mcg/mL	Susceptible ³	
Rifampin	<=0.5 mcg/mL	Susceptible 2	
Tetracycline	<=0.5 mcg/mL	Susceptible ²	
Trimethoprim/Sulfamethoxazole	<=0.5/9.5 m	Susceptible ³	
Vancomycin	1 mcg/mL	Susceptible 2	
HIGH risk of C. diff infection			
2 Low risk of C. diff infection			
MODERATE risk of C. diff infection			

Figure S12 Sensitivity pattern for S. aureus clinical isolate obtained from UCSD Health

scontibility			
sceptionity	Pseud	Pseudomonas aeruginosa Not Specified	
Amikacin	>32 mcg/mL	Resistant 1	
Aztreonam	>16 mcg/mL	Resistant ¹	
Cefepime	>16 mcg/mL	Resistant ²	
Ceftazidime	>16 mcg/mL	Resistant ²	
Ciprofloxacin	>2 mcg/mL	Resistant ²	
Colistin	1 mcg/mL	Susceptible 1	
Doripenem	>2 mcg/mL	Resistant ²	
Gentamicin	>8 mcg/mL	Resistant ¹	
Meropenem	>8 mcg/mL	Resistant ²	
Piperacillin/Tazobactam	>64 mcg/mL	Resistant ³	
Tobramycin	>8 mcg/mL	Resistant ¹	
	1.18.41	2	

Susceptibility

Figure S13 Sensitivity pattern for *P. aeruginosa* 1 (*P*1) clinical isolate obtained from UCSD Health

	Ph.D.	San Diego CA 92121	
eptibility			
	Pseudomonas aeruginosa (mucoid) Not Specified		
Amikacin	>32 mcg/mL	Resistant ¹	
Aztreonam	>16 mcg/mL	Resistant 1	
Cefepime	>16 mcg/mL	Resistant ²	
Ceftazidime	>16 mcg/mL	Resistant ²	
Ciprofloxacin	2 mcg/mL	Intermediate 2	
Doripenem	>2 mcg/mL	Resistant 2	
Gentamicin	>8 mcg/mL	Resistant 1	
Meropenem	>8 mcg/mL	Resistant ²	
Piperacillin/Tazobactam	>64 mcg/mL	Resistant ³	
Tobramycin	8 mcg/mL	Intermediate 1	
Meropenem Piperacillin/Tazobactam Tobramycin	>8 mcg/mL >64 mcg/mL 8 mcg/mL	Resistant ² Resistant ³ Intermediate ¹	

Figure S14 Sensitivity pattern for *P. aeruginosa* 2 (*P*2) clinical isolate obtained from UCSD Health

Figure S15. ESI-MS of complex 1

Figure S16. ESI-MS of complex 2

Figure S 17. Zones of inhibition upon incubation of *A. baumannii* with (a) complex1-agar disk and (b) ampicillin disk

Figure S 18. Zones of inhibition produced by the agar composites containing (a) AgNO₃, and (b) [Ag₂(DSX)₂(NO₃)₂] (1) on SSTI model inoculated with *A. baumannii*