
Supporting Information 

Computational Prediction and Analysis for 

Tyrosine Post-Translational Modifications 

via Elastic Net 

Man Cao†, Guodong Chen†, Lina Wang‡, Pingping Wen‡, Shaoping Shi†,* 

† Department of Mathematics and Numerical Simulation and High-Performance 

Computing Laboratory, School of Sciences, Nanchang University, Nanchang 330031, 

China  

‡ 
College of Chemistry, Nanchang University, Nanchang 330031, China 

* 
To whom correspondence should be addressed: shishaoping@ncu.edu.cn 

 

 

 

 

 

 

 

 

mailto:shishaoping@ncu.edu.cn


Table of Content 

1. Supplemental Illustration 

2. Supplementary Figures 

Figure S1. Heat map indicates that position distribution of BE scores for amino acid composition. 

Figure S2. Comparisons of AAC in positive and negative datasets. The vertical axis represents the 

log2 ratio of amino acid frequencies surrounding nitrotyrosine, sulfotyrosine and phosphotyrosine 

and non-nitrotyrosine and non-sulfotyrosine and non-phosphotyrosine sites. The horizontal axis 

represents the 20 amino acids sorted in descending order by the mean log2 ratio tyrosine 

post-translational modification sequence. 

Figure S3. The LOO validation and 2-, 4-, 6-, 8- and 10-fold cross-validations were performed on 

each data set. 

Figure S4. Comparison ROC curves of Tyrpred with other tools in prediction of tyrosine nitration, 

sulfation, and kinase-specific phosphorylation models, respectively. Each curve represents the 

average sensitivities and specificities for different thresholds over 10-fold cross-validation.  

3. Supplementary Tables 

Table S1. The statistics of tyrosine nitration datasets in this study. 

Table S2. The statistics of tyrosine sulfation datasets in this study. 

Table S3. The statistics of kinase-specific tyrosine phosphorylation datasets in this study. 

Table S4. Comparison of model performance before and after dimension reduction in tyrosine 

single-kinase phosphorylation. 

Table S5. Comparison of model performance before and after dimension reduction in tyrosine 

Kinase-group phosphorylation. 



Table S6. The tyrosine PTM optimization parameter with elastic net. 

Table S7. The comparison elastic net with other feature selection methods. 

Table S8. Comparison of the prediction performance of independent test between our method and 

other tools in single kinase. 

Table S9. Comparison of the prediction performance of independent test between our method and 

other tools in kinase family. 

 

1. Supplemental Illustration 

AAC 

Amino acid composition feature is the most popular coding method and widely used 

for prediction PTMs sites, which reflects protein sequences amino acid occurrence 

frequencies information. In this work, we calculated the amino acid frequencies in the 

sequence surrounding the query site (the site itself is not counted). There are 20 types 

of amino acids, and thus 20 frequencies are calculated, the sum of which is 1. For a 

protein sequence fragment n, let 𝑝𝑛(𝑖) represents the occurrence times of the 𝑖-th 

amino acid in the protein sequence fragment n. Thus, the occurrence frequencies 

𝑓𝑛(𝑖) is calculated by 

𝑓𝑛(𝑖) =
𝑝𝑛(𝑖)

2∗𝐿
                        

Where 𝐿 represents the number of up-stream or down-stream amino acids flanking 

each side of the target tyrosine. 

BE 

The BE method can reflect the type and position information of the amino acid 



residues in protein sequence. BE is used an orthogonal binary coding scheme to 

transform each amino acid into a 20-dimensional binary vector. Herein, we added a 

vector ‘O’ to represent other specific amino acid (e.g., B, Z, and X). Thus, there are 21 

amino acids ordered as ACDEFGHIKLMNPQRSTVWYO. Briefly, each amino acid 

is represented by a 21-dimensional binary vector. For example, amino acid A 

expressed as 100000000000000000000, Y as 000000000000000000010, and so on. 

Therefore, if the length of a protein sequence is n, the dimension of the numeric 

vector is 21*n. For example, in this tyrosine nitration work, the length of a protein 

sequence is 15 and the final dimension of binary encoding vector is 21*15=315. 

K-spaced 

Additionally, K-spaced could reflect the characteristics of the residues surrounding 

modification sites, and it has been successfully used for predicting phosphorylation 

sites. Therefore, we took into account K-spaced amino acid pair compositions of the 

tyrosine modification sequence to convert these training sets into numerical series. 

The K-spaced feature encoding were considered the amino acid pairs that separated 

by K other amino acids within a protein sequence fragment (k is a natural numbers). 

Generally, we would add a vector ‘O’ when the residues are not enough or to 

represent other specific amino acid (e.g., B, Z, and X). Therefore, there are 441 

possible amino acid pair types, (e.g. AA, AC, AD ... AO ... OO). For instance, for k=0, 

there are 441 0-spaced residue pairs, a feature vector can be defined as  

(𝑁𝐴𝐴, 𝑁𝐴𝐶 , 𝑁𝐴𝐷 , ⋯ , 𝑁𝑂𝑂)441 

The value of each feature denotes the number of occurrences of the corresponding 



residue pair in the fragment. In this work, 𝑘 = 0,1,2,3,4 were jointly considered, so 

the total dimension of the proposed feature vector is 441*5=2205. 

PWAA 

To avoid losing the sequence-order information, we presented a PWAA to extract the 

sequence order information of amino acid residues around nitrotyrosine sites, sulfated 

tyrosine sites and kinase-specific tyrosine phosphorylation sites. Given an amino acid 

residue𝑎𝑖  (𝑖 = 1,2,⋯ ,20), we can express the position information of amino acid 𝑎𝑖 

in the protein sequence fragment   with 2 ∗ 𝐿 + 1 amino acids by the following 

formula: 

𝐶𝑖 =
1

𝐿(𝐿+1)
∑ 𝑋𝑖,𝑗 (𝑗 +

|𝑗|

𝐿
)𝐿

𝑗=−𝐿               

Where 𝐿 denotes the number of upstream residues or downstream residues from the 

central site in the protein sequence fragment  , 𝑋𝑖,𝑗 = 1 if 𝑎𝑖 is the j-th position 

residue in protein sequence fragment  , otherwise 𝑋𝑖,𝑗 = 0  (𝑗 = −𝐿,⋯ ,0,⋯ , 𝐿). In 

general, residue 𝑎𝑖 is closer to the central site (0 position), the absolute value of 𝐶𝑖 

is smaller. 

EBGW 

In the previous work, we found that prediction model of tyrosine sulfation achieved a 

better performance only by using the EBGW encode feature vector. Based on that, we 

adopted this encoding scheme of the amino acid sequence considering the 

hydrophobicity and charged character of amino acid residues. The encoding method 

based on grouped weight is effective in representing the protein physicochemical 

properties information from protein sequences, which divides the 20 amino acid 



residues into four different classes on the basis of their hydrophobicity and charged 

character. The four groups as follows: 

{
 

 
𝑇𝑕𝑒 𝑕𝑦𝑑𝑟𝑜𝑝𝑕𝑜𝑏𝑖𝑐 𝑔𝑟𝑜𝑢𝑝: 𝐶1 = *𝐴, 𝐹, 𝐺, 𝐼, 𝐿, 𝑀,  , 𝑉,𝑊+

𝑇𝑕𝑒 𝑝𝑜𝑙𝑎𝑟 𝑔𝑟𝑜𝑢𝑝: 𝐶2 = *𝐶,𝑁, 𝑄, 𝑆, 𝑇, 𝑌+

𝑇𝑕𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑙𝑦 𝑐𝑕𝑎𝑟𝑔𝑒𝑑 𝑔𝑟𝑜𝑢𝑝: 𝐶3 = *𝐾, 𝐻, 𝑅+

𝑇𝑕𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑐𝑕𝑎𝑟𝑔𝑒𝑑 𝑔𝑟𝑜𝑢𝑝: 𝐶4 = *𝐷, 𝐸+

 

So we can divide the amino acid residues into the following disjoint groups: 𝐶1 + 𝐶2 

versus 𝐶3 + 𝐶4, 𝐶1 + 𝐶3 versus 𝐶2 + 𝐶4, and 𝐶1 + 𝐶4 versus 𝐶2 + 𝐶3. 

For a given protein 𝑝, we calculate three binary sequences: 

𝐻1(𝑝𝑗) = {
1     𝑖𝑓 𝑝𝑗 ∈ 𝐶1 + 𝐶2
0    𝑖𝑓 𝑝𝑗 ∈ 𝐶3 + 𝐶4

 

𝐻2(𝑝𝑗) = {
1     𝑖𝑓 𝑝𝑗 ∈ 𝐶1 + 𝐶3
0    𝑖𝑓 𝑝𝑗 ∈ 𝐶2 + 𝐶4

 

𝐻3(𝑝𝑗) = {
1     𝑖𝑓 𝑝𝑗 ∈ 𝐶1 + 𝐶4
0    𝑖𝑓 𝑝𝑗 ∈ 𝐶2 + 𝐶3

 

We divide each binary sequence into 𝐽 sub-sequences increasing in length. For 

example, for 𝐻1, the feature value of the 𝑗-th sub-sequence is defined as: 

𝑋1(𝑗) =
   (𝑗)

𝐷(𝑗)
        𝑗 = 1,2,⋯ , 𝐽       

 𝐷(𝑗) = 𝐼𝑛𝑡 (
𝑗∗𝐿

 
)                 

Where the function 𝑆𝑢𝑚(𝑗) gives the number of 1 in the 𝑗-th sub-sequence, 𝐷(𝑗) 

denotes the length of the 𝑗-th sub-sequence, the 𝐼𝑛𝑡() rounds a number to the 

nearest integer and 𝐿 is the length of the protein 𝑝. So, we create 𝐽 features for 𝐻1, 

𝐻2, 𝐻3 respectively and then we concatenate these three vectors. That is to say, we 

can transform a protein sequence into a 3 𝐽-dimension vector  

 = ,𝑋1, 𝑋2, 𝑋3]=[ 𝑋1(1),⋯ , 𝑋1(𝐽), 𝑋2(1),⋯ , 𝑋2(𝐽), 𝑋3(1),⋯ , 𝑋3(𝐽)] 



We name X as the EBGW string of protein sequence 𝑝. Preliminary tests indicated 

that 𝐽 = 5 was the appropriate number of sub-sequences for predicting tyrosine 

modification sites. 

SVM probability estimates 

Chang and Lin
1
 discussed the LIBSVM implementation for extending SVM to give 

probability estimates. Given 𝑘 classes of data, for any 𝑥, the goal is to estimate 

𝑝𝑖 =  (𝑦 = 𝑖|𝑥), 𝑖 = 1…𝑘. 

Following the setting of the one-against-one (i.e., pairwise) approach for multiclass 

classification, they first estimate pairwise class probabilities 

𝑟𝑖𝑗 =  (𝑦 = 𝑖|𝑦 = 𝑖 𝑜𝑟 𝑗, 𝑥) 

using an improved implementation of Platt: If 𝑓 is the decision value at 𝑥, then we 

assume 

𝑟𝑖𝑗 ≈
1

1 + 𝑒𝐴𝑓̂+𝐵
 

where 𝐴 and 𝐵 are estimated by minimizing the negative log likelihood of training 

data. 

In addition, Wu et al.
2
 used their approaches to acquire 𝑝𝑖from all these 𝑟𝑖𝑗’s. It 

solves the following optimization problem: 

min
𝑝

1

2
∑ ∑(𝑟𝑗𝑖𝑝𝑖 − 𝑟𝑖𝑗𝑝𝑗)

2

𝑗:𝑗≠𝑖

𝑘

𝑖=1

   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝑝𝑖 = 1,

𝑘

𝑖=1

 𝑝𝑖 ≥ 0, ∀𝑖 
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2. Supplementary Figures  

 

Figure S1. Heat map indicated that position distribution of BE scores for amino acid composition. 

 

Figure S2. Comparisons of AAC in positive and negative datasets. The vertical axis represents the 

log2 ratio of amino acid frequencies surrounding nitrotyrosine, sulfotyrosine and phosphotyrosine 



and non-nitrotyrosine and non-sulfotyrosine and non- phosphotyrosine sites. The horizontal axis 

represents the 20 amino acids sorted in descending order by the mean log2 ratio tyrosine 

post-translational modification sequence. 

 

Figure S3. The LOO validation and 2-, 4-, 6-, 8- and 10-fold cross-validations were 

performed on each data set. 

 

Figure S4. ROC curves of Tyrpred comparison with other tools in prediction of tyrosine nitration, 



sulfation, and kinase-specific phosphorylation models, respectively. Each curve represents the 

average sensitivities and specificities for different thresholds over 10-fold cross-validation.  

3. Supplementary Tables 

Table S1. The statistics of tyrosine nitration datasets in this study. 

Tyrosine eliminate homology eliminate homology Training 

 

Testing 

 modification before (sites) after(sites) dataset(sites) dataset(sites) 

 

positive negative positive negative positive negative positive negative 

Nitration 1155 8842 1114 8061 1038 1038 76 76 

 

Table S2. The statistics of tyrosine sulfation datasets in this study. 

Tyrosine eliminate homology eliminate homology Training 

 

Testing 

 modification before (sites) after(sites) dataset(sites) dataset(sites) 

 

positive negative positive negative positive negative positive negative 

Sulfation 189(365) 1388 90(155) 675 75(132) 132 15(23) 23 

 

Table S3. The statistics of kinase-specific tyrosine phosphorylation datasets in this 

study. 

kinase-specific eliminate homology eliminate homology Training 

 

Testing 

 phosphorylation before (sites) after(sites) dataset(sites) dataset(sites) 

 

positive negative positive negative positive negative positive negative 

Single-kinase -- -- -- -- -- -- -- -- 

Abl 191 1512 177 1421 149 149 28 28 

Lck 120 716 113 689 96 96 17 17 

EGFR 105 846 93 765 79 79 14 14 

FYN 184 1467 168 1391 141 141 27 27 

INSR 78 459 68 378 57 57 11 11 

JAK2 69 462 62 384 52 52 10 10 

LYN 112 653 113 606 96 96 17 17 

Src 660 5291 568 4768 482 482 86 86 

Syk 76 432 62 406 52 52 10 10 

Kinase-family -- -- -- -- -- -- -- -- 

Abl 221 1565 187 1459 158 158 29 29 

EGFR 128 1069 113 971 96 96 17 17 

InsR 103 596 83 480 70 70 13 13 

JakA 110 671 94 596 79 79 15 15 

Src 1171 7317 862 6526 732 732 130 130 



Syk 110 556 89 485 75 75 14 14 

Kinase-group -- -- -- -- -- -- -- -- 

TK 2318 12136 1504 10322 1278 1278 226 226 

Table S4. Comparison of model performance before and after dimension reduction in 

tyrosine single-kinase phosphorylation. 

Single 

  

Before 

 

After 

    kinase Dim Acc(%) Sn(%) Sp(%) Mcc(%) Dim Acc(%) Sn(%) Sp(%) Mcc(%) 

Abl 2581 71.33 70.00 72.67 43.85 169 95.50 97.17 93.83 91.32 

FYN 2581 70.88 73.81 67.95 46.27 144 97.17 96.48 97.86 94.43 

InsR 2581 68.33 63.33 73.33 42.82 72 98.33 98.33 98.33 96.90 

JAK2 2581 61.00 68.00 54.00 24.90 78 96.00 98.00 94.00 92.66 

Lck 2581 71.00 59.00 83.00 44.57 135 97.00 98.00 96.00 94.09 

LYN 2581 66.00 59.00 73.00 36.00 127 97.50 99.00 96.00 95.14 

Src 2581 73.96 75.00 72.92 47.93 276 88.00 88.51 87.48 76.18 

Syk 2581 79.57 69.14 90.00 61.68 31 96.00 98.00 94.00 92.66 

Table S5. Comparison of model performance before and after dimension reduction in 

tyrosine Kinase-group phosphorylation. 

Kinase 

 

     Before 

 

After 

 

 

  group Dim Acc(%) Sn(%) Sp(%) Mcc(%) Dim Acc(%) Sn(%) Sp(%) Mcc(%) 

Abl 2581 78.13 81.25 75.00 56.36 218 95.94 97.50 94.38 92.13 

EGFR 2581 71.50 70.00 73.00 42.62 131 97.00 97.00 97.00 94.27 

InsR 2581 76.43 67.14 85.71 55.13 119 98.57 98.57 97.14 97.32 

JakA 2581 65.09 55.36 74.82 32.88 121 96.70 97.14 96.25 93.91 

Syk 2581 82.08 76.67 87.50 65.81 62 98.12 98.75 97.50 96.46 

Table S6. The tyrosine PTM optimization parameter with elastic net. 

Modification type  1  2 dim 

Nitration 0.10 0.12 470 

Sulfation 0.10 0.24 144 

Single-kinase -- -- -- 

Abl 0.10 0.25 169 

Lck 0.50 0.20 135 

EGFR 0.10 0.20 72 

FYN 0.20 0.25 144 

InsR 0.30 0.20 72 

JAK2 0.50 0.16 78 

LYN 0.40 0.20 127 

Src 0.30 0.12 276 

Syk 0.10 0.16 31 

Kinase-family -- -- -- 



Abl 0.30 0.24 218 

EGFR 0.20 0.24 131 

InsR 0.40 0.24 119 

JakA 0.50 0.20 121 

Src 0.10 0.15 497 

Syk 0.10 0.20 62 

Kinase-group -- -- -- 

TK 0.10 0.10 396 

Table S7. The comparison elastic net with other feature selection methods.  

Modification Method 

 

the performance of prediction 

type 

 

Acc(%) Sn(%) Sp(%) Mcc(%) 

Nitration IG 70.07 70.89 69.25 40.22 

 

F-score 72.05 71.86 72.24 44.20 

 

mRMR 72.10 72.63 71.57 44.27 

 

Elastic net 79.67 79.76 79.57 59.40 

Sulfation IG 82.92 81.59 84.26 66.88 

 

F-score 84.21 84.36 84.05 69.06 

 

mRMR 89.82 90.97 88.67 80.50 

 

Elastic net 94.82 94.15 95.49 90.12 

Src IG 78.26 78.65 77.88 56.76 

 

F-score 79.29 78.39 80.20 58.83 

 

mRMR 79.36 78.94 79.78 58.96 

 

Elastic net 85.78 86.46 85.10 71.66 

 

Table S8. Comparison of the prediction performance of independent test between our 

method and other tools in single kinase. 

Single-Kinase Method stringency the performance of prediction 

   

Acc(%) Sn(%) Sp(%) MCC(%) 

Abl PSEA High 88.89 77.78 100.00 79.77 

  

Medium 87.03 77.78 96.30 75.38 

  

Low 90.74 88.89 92.59 81.53 

 

Our work -- 85.19 92.59 77.78 71.16 

EGFR GPS High 75.00 92.86 57.14 53.53 

  

Medium 57.14 92.86 21.43 20.41 

  

Low 53.57 92.86 14.29 11.55 

 

Our work -- 92.86 92.86 92.86 85.71 

FYN PSEA High 83.33 77.78 88.89 67.08 

  

Medium 83.33 77.78 88.89 67.08 

  

Low 81.48 81.48 81.48 62.96 

 

GPS High 81.48 70.37 92.59 64.58 



  

Medium 79.63 77.78 78.57 59.30 

  

Low 77.78 81.48 74.07 55.71 

 

Our work -- 81.48 88.89 74.07 63.67 

InsR GPS High 86.36 72.72 100.00 75.59 

  

Medium 86.36 81.81 90.91 73.03 

  

Low 86.36 90.91 81.81 73.03 

 

Our work -- 86.36 81.82 90.91 73.03 

JAK2 GPS High 59.09 27.27 90.91 23.57 

  

Medium 63.64 36.36 90.91 32.54 

  

Low 40.91 63.64 18.18 20.41 

 

Our work -- 85.00 80.00 90.00 70.35 

 

PSEA High 76.47 58.82 94.12 56.58 

  

Medium 79.41 64.71 94.12 61.55 

  

Low 82.35 70.59 94.12 66.58 

Lck GPS High 85.29 70.59 100.00 73.85 

  

Medium 85.29 76.47 94.12 71.71 

  

Low 91.18 88.24 94.12 82.50 

 

Our work -- 85.29 82.35 88.24 70.71 

LYN PSEA High 67.65 35.29 100.00 46.29 

  

Medium 70.59 41.18 100.00 50.91 

  

Low 67.65 41.18 94.12 41.60 

 

GPS High 79.41 64.71 94.12 61.55 

  

Medium 76.47 70.59 82.35 53.31 

  

Low 73.53 76.47 70.59 47.14 

 

Our work -- 85.29 94.12 76.47 71.71 

Syk GPS High 75.00 70.00 80.00 50.25 

  

Medium 75.00 80.00 70.00 50.25 

  

Low 75.00 80.00 70.00 50.25 

 

Our work -- 85.00 90.00 80.00 70.35 

Src PSEA High 73.53 58.82 88.24 49.24 

  

Medium 71.76 60.00 83.53 44.79 

  

Low 72.94 62.35 83.53 46.95 

 

GPS High 72.94 52.94 92.94 50.06 

  

Medium 72.35 60.00 84.71 46.14 

  

Low 72.35 70.59 74.12 44.73 

 

Musite High 66.47 35.29 97.65 42.14 

  

Medium 72.35 52.94 91.76 48.51 

  

Low 70.59 56.47 84.71 42.92 

 

Our work -- 85.88 83.53 88.24 71.84 

Table S9. Comparison of the prediction performance of independent test between our 

method and other tools in kinase family. 

Kinase-family Method stringency the performance of prediction 



   

Acc(%) Sn(%) Sp(%) MCC(%) 

Abl PSEA High 78.57 67.86 89.29 58.50 

  

Medium 78.57 71.43 85.71 57.74 

  

Low 80.36 78.57 82.14 60.75 

 

Our work -- 89.29 92.86 85.71 78.77 

Src PSEA High 75.38 76.15 74.62 50.78 

  

Medium 75.38 77.69 73.08 50.82 

  

Low 74.23 81.54 66.92 50.00 

 

GPS High 80.00 73.08 86.92 60.58 

  

Medium 80.77 84.12 76.92 61.72 

  

Low 77.69 90.77 64.62 57.38 

 

Musite High 50.77 61.18 94.12 58.56 

  

Medium 53.46 74.12 89.41 64.29 

  

Low 55.77 90.59 80.00 70.99 

 

Our work -- 82.69 83.08 82.31 65.39 

EGFR GPS High 64.71 58.82 70.59 29.62 

  

Medium 73.53 82.35 64.71 47.81 

  

Low 67.65 88.24 47.06 38.73 

 

Our work -- 91.18 94.12 88.24 82.50 

InsR GPS High 61.54 38.46 84.62 26.01 

  

Medium 61.54 46.15 76.92 24.25 

  

Low 61.54 46.15 76.92 24.25 

 

Our work -- 88.46 84.62 92.31 77.15 

JakA PSEA High 56.67 20.00 93.33 19.61 

  

Medium 60.00 26.67 93.33 26.83 

  

Low 60.00 33.33 86.67 23.64 

 

GPS High 70.00 50.00 80.00 40.82 

  

Medium 66.67 50.00 73.33 33.63 

  

Low 66.67 73.33 50.00 33.63 

 

Our work -- 80.00 86.67 73.33 60.54 

Syk PSEA High 92.86 92.86 92.86 85.71 

  

Medium 92.86 92.86 92.86 85.71 

  

Low 82.14 92.86 71.43 65.81 

 

GPS High 78.57 85.71 71.43 57.74 

  

Medium 71.43 85.71 57.14 44.72 

  

Low 64.29 92.86 35.71 34.82 

 

Our work -- 82.14 92.86 71.43 65.81 

 


