Supporting Information

Electronic Devices Based on Oxide Thin Films Fabricated by Fibers-to-film Process

You Meng,^{a,b} Ao Liu,^{a,b} Zidong Guo,^{a,b} Guoxia Liu,^{a,b*} Byoungchul Shin,^c Yong-Young Noh,^d Elvira Fortunato,^e Rodrigo Martins^e and Fukai Shan^{a,b*}

^aCollege of Physics, Qingdao University, Qingdao 266071, China
^bCollege of Electronic & Information Engineering, Qingdao University, Qingdao 266071, China
^cElectronic Ceramics Center, Dong-Eui University, Busan 614-714, Korea
^dDepartment of Energy and Materials Engineering, Dongguk University, Seoul 100-715, Korea
^eDepartment of Materials Science/CENIMAT-I3N, Faculty of Sciences and Technology, New
University of Lisbon and CEMOP-UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal

Corresponding author

* To whom correspondence should be addressed.

*E-mail: gxliu@qdu.edu.cn; fukaishan@yahoo.com

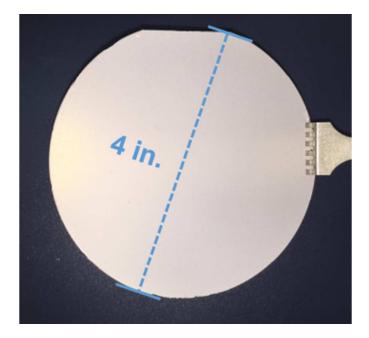
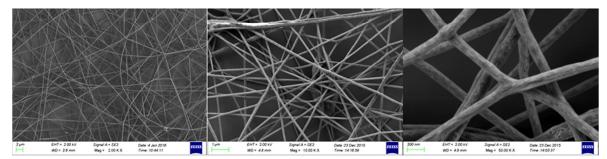
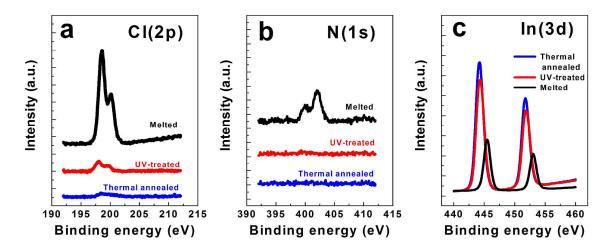



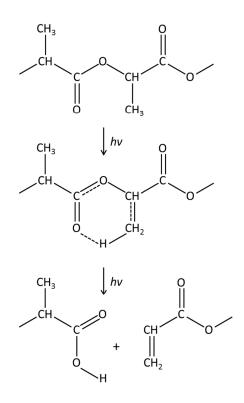
Figure S1. Photograph of as-spun In³⁺/PLA nanofibers based on a 4 in. SiO₂/Si wafer.

^{*}Corresponding author: gxliu@qdu.edu.cn; fukaishan@yahoo.com

a. Electrospinning


b. Melting

1 µm EHT = 0.200 kV Signal A = InLens Date id Jan 2016	200 mm EHT = 0.200 kV Signel A = InLens Date 4 Jan 2015	200 nm EHT = 0.200 kV Signel A = InLens Date -4 Jan 2015
WD = 1.8 mm Mag = 10.00 K X Time :10:58:22	₩D = 1.8 mm Meg = 20.00 K X Time:10.56.51	WD = 1.8 mm Meg = 50.00 K X Time :11.05.18


c. UV treatment & annealing

1µm EH7= WD+	200 AV Signal A + InCens 7 mm Mag + 10 00 K X	Date of Jan 2016 Time (11:15:11	7105	200 mm	EHT = 0.200 kV WD = 1.7 mm	Signal A = InCens Mag = 20.00 K.X	Date :4 Jan 2016 Time :11:17:22	7105	100 mm	EHT = 0.200 kV WD = 1.7 mm	Signaf A = InCena Mag = 50 00 K X	Date -4 Jan 2016 Time : 11:10:51	71155

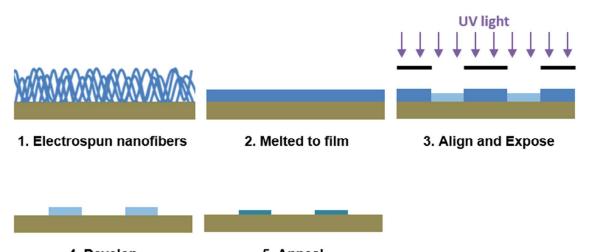

Figure S2. The morphological characteristics of (a) as-spun In^{3+}/PLA nanofibers, (b) melted In_2O_3 thin films, and (c) melted In_2O_3 thin films after UV treatment and thermally annealing at 350 °C.

Figure S3. XPS (a) Cl(2p), (b) N(1s), and (c) In(3d) peak analysis of In_2O_3 thin films after being melted, after UV treatment, and after UV treatment followed by thermally annealing at 350 °C.

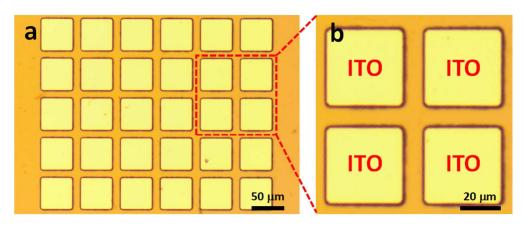


Figure S4. Norrish II type photochemical reaction in PLA. As a result of the photon-induced molecule excitation, the hydrogen atom of methyl group interacts with the oxygen atom of carbonyl, and the cyclic six-member intermediate is formed. The secondary bonds of cyclic six-member intermediate possess a dissociation energy of 0.5~10 kcal/mol, which is much lower than 200 kcal/mol of covalent intermolecular bonds. Therefore, these weak secondary bonds can be easily split by UV irradiation.

4. Develop 5. Anneal

Figure S5. Flow diagram of the photoresist-free photolithography process.

Figure S6. (a) Optical image and **(b)** the corresponding enlarged image of InSnO (ITO) thin films patterned by photoresist-free lithography.

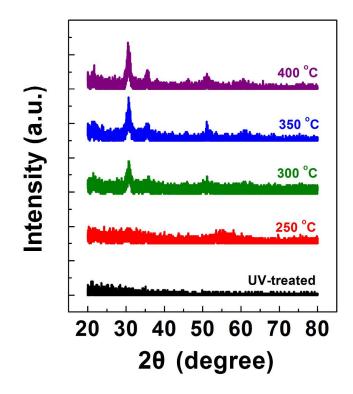
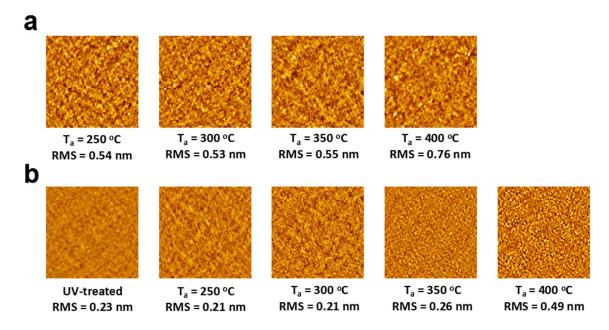
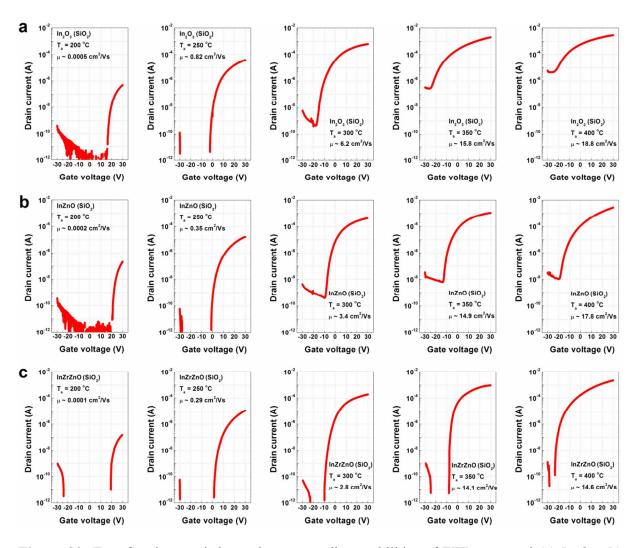




Figure S7. XRD patterns of FTF-processed In_2O_3 thin films (thickness: 100 nm) annealed at various temperatures (T_a).

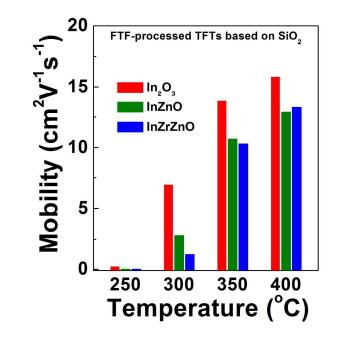

Figure S8. AFM images $(1 \times 1 \mu m)$ of In₂O₃ thin films (thickness: 20 nm) annealed at various T_a (a) without and (b) with UV treatment.

Figure S9. Transfer characteristics and corresponding mobilities of FTF-processed (a) In_2O_3 , (b) InZnO and (c) InZrZnO TFTs based on SiO₂ dielectric layers annealed at various T_a . The thicknesses of the channel layers are 20 nm; source-drain voltage (V_D) is 30 V. The channel length and width for all the devices are 100 µm and 1000 µm, respectively.

Metal oxide	Т _а (°С)	Mobility (cm²V ⁻¹ s ⁻¹)	I _{on} /I _{off}	V _{TH} (V)			
In ₂ O ₃	200	Inactive (μ ~ 0.0005)*					
	250	0.82	~ 107	~ 13			
	300	6.2	~ 10 ⁶	~ 0			
	350	15.8	~104	~ -1			
	400	18.8	~ 10 ³	~ -8			
InZnO	200	Inactive (µ~0.0002)*					
	250	0.35	~ 107	~ 15			
	300	3.4	~ 107	~ 3			
	350	14.9	~ 10 ⁶	~ -2			
	400	17.8	~ 10 ⁵	~ -5			
InZrZnO	200	Inactiv					
	250	0.29	~ 107	~ 17			
	300	2.8	~ 10 ⁸	~ 3			
	350	14.1	~ 10 ⁹	~ 0			
	400	14.6	~ 10 ⁸	~ -5			

Table S1 Electrical parameters of FTF-processed In_2O_3 , InZnO and InZrZnO TFTs based on SiO_2 dielectric layers annealed at various T_a .

Figure S10. Mobility distribution of FTF-processed TFTs based on SiO_2 dielectric layers annealed at various T_a .

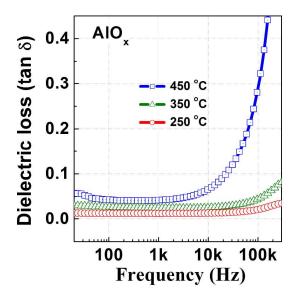


Figure S11. Dielectric losses (tan δ) of the FTF-processed AlO_x dielectric layers as functions of frequency measured at room temperature.

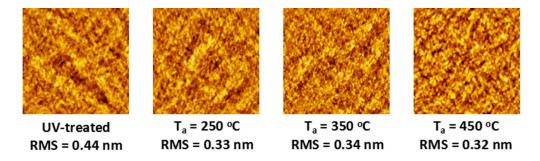


Figure S12. AFM images $(1 \times 1 \mu m)$ of FTF-processed AlO_x thin films annealed at various T_a.

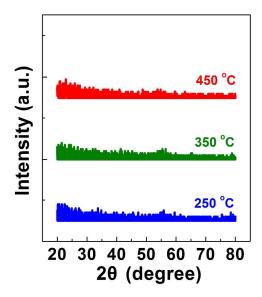


Figure S13. XRD patterns of FTF-processed AlO_x dielectric layers annealed at various T_a.

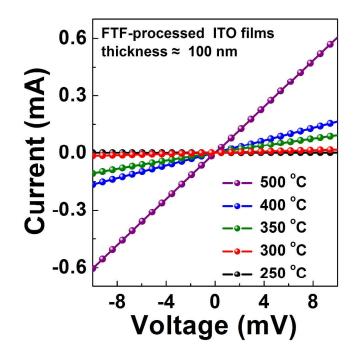
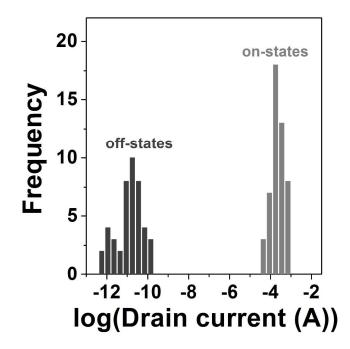
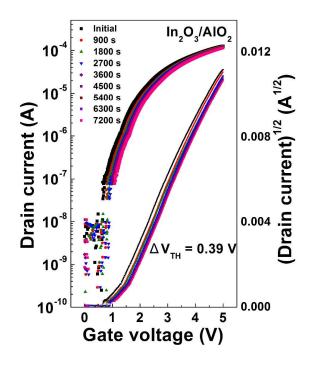
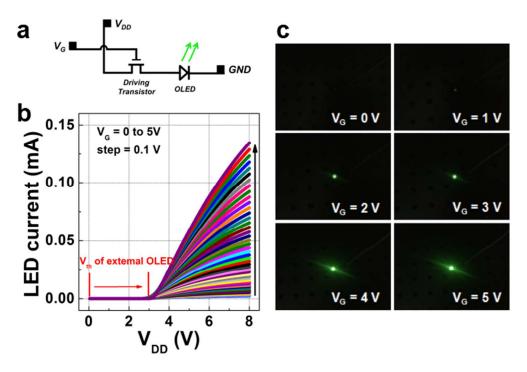


Figure S14. I-V characteristics of FTF-processed ITO films (In:Sn = 90:10, thickness: 100 nm) annealed at various T_a .

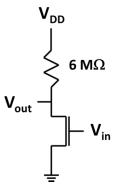

Figure S15. Histogram of on-state current and off-state current of 49 fully-FTF-processed In_2O_3/AIO_x TFTs.

Figure S16. Transfer characteristics of fully-FTF-processed In_2O_3/AlO_x TFTs under PBS test for 7200 s.

Figure S17. (a) Schematic diagram of one-transistor pixel circuit driven by fully FTF-processed In_2O_3/AIO_x TFTs. **(b)** Output characteristic of single pixel circuit, where the current flow through the LED (I_{LED}) is measured by sweeping the supply voltage (V_{DD}) while V_G ranging from 0 to 5 V with 0.1 V step. **(c)** Photographs of LED with various light intensities modulated by fully-FTF-processed In_2O_3/AIO_x TFTs (V_{DD} = 6 V).

Figure S18. The circuit schematic of the resistor-loaded inverter based on fully-FTF-processed In_2O_3/AlO_x TFTs.

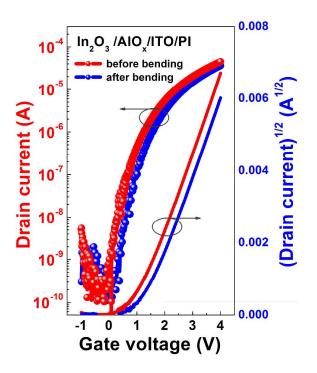


Figure S19. Transfer curves of the flexible In_2O_3/AIO_x TFTs before and after 100 cycles bending.