Supporting Information

## Total Synthesis of the Marine Macrolide Amphidinolide F

Laurent Ferrié, * Johan Fenneteau and Bruno Figadère*

## Table of Contents

Table of Contents ..... 2
General ..... 3
Experimental Procedures ..... 3
Compound 9 ..... 3
Compound 10 ..... 3
Compound 11 ..... 4
Compound 12 ..... 5
Compound 13 ..... 5
Compound 14 ..... 6
Compound 15b ..... 6
Compound 16 ..... 7
Compound 17 ..... 7
Compound 5 ..... 8
Compound 19 ..... 8
Compound 20 ..... 9
Compound 21 ..... 9
Compound 22 ..... 10
Compound 23 ..... 10
Compound 24 ..... 11
Compound 25 ..... 12
Compound 26 ..... 12
Compound 6 ..... 13
Compound 27 ..... 13
Compound 7 ..... 14
Compound 29 ..... 14
Compound 30 ..... 15
Compound 31 ..... 16
Amphidinolide F (1) ..... 17
Table S1. ..... 18
Table S2. ..... 19
References ..... 20
Copy of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra ..... 21

## General

All the reactions were performed under inert atmosphere ( $\mathrm{N}_{2}$ or Ar). THF was distilled over sodium/benzophenone mixture. $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were purified by filtration over activated molecular sieves. MeOH was purified by filtration over activated alumina. DMF was purchased as anhydrous grade from Acros Organics and used as received. Analytical thin layer chromatography (TLC) was performed on silica gel $60 \mathrm{~F}_{254}(0.25 \mathrm{~mm})$ plates purchased form Merck. Compounds were visualized by exposure to a UV lamp ( $\lambda=254$ and 365 nm ), an aqueous solution of $\mathrm{KMnO}_{4} / \mathrm{K}_{2} \mathrm{CO}_{3}$ or an acidic solution of vanillin in EtOH and followed by gentle heating. Flash chromatographies were performed using Merck (230-400 mesh) silica gel.

Melting points were performed on a Buchi melting point B-540. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded by using a Brucker Advance $300(300 \mathrm{MHz})$ or a Brucker Advance $400(400 \mathrm{MHz})$ spectrometers in the solvent indicated. For some of the compounds, an optimized sequence for $1 \mathrm{D}{ }^{13} \mathrm{C}$ spectra, called UDEFT, ${ }^{[1]}$ was used. Amphidinolide F spectra were recorded on 800 MHz cryocool spectrometer from ICSN at Gif-sur-Yvette, France. Chemical shifts ( $\delta$ ) are given in ppm and the coupling constants $(J)$ in Hz . The solvent signals were used as reference $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}}=77.16 \mathrm{ppm}\right.$, residual $\mathrm{CHCl}_{3}$ in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26$ ppm . Multiplicities are described by the following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint. $=$ quintet, sext. = sextet, sept. = septet, $\mathrm{m}=$ multiplet, br = broad. Infrared spectra were recorded by using a Brucker IRTF Vector 22 spectrometer and wavenumbers $(v)$ were given in $\mathrm{cm}^{-1}$. High-resolution mass spectra were obtained on a Waters LCT Premier (ESI-TOF) spectrometer. Optical rotations ([a]D ) were measured with an Optical Activity poIAAr 32 polarimeter.

## Experimental Procedures

## Compound 9



To a solution of compound $8^{[2]}(5.87 \mathrm{~g}, 50.6 \mathrm{mmol}, 1$ equiv.) in DMF ( 30 mL ), was added imidazole ( $7.22 \mathrm{~g}, 106.2 \mathrm{mmol}, 2$ equiv.), followed by TBDPSCI ( $14.6 \mathrm{~g}, 53.1 \mathrm{mmol}, 1.05$ equiv.). After 16 h at rt , the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}(\mathrm{x} 2)$, washed with brine ( x 3 ), dried over $\mathrm{MgSO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified on a silica gel column chromatography ( $15 \%$ AcOEt in petroleum ether) to afford compound 9 as white crystals. $\mathbf{M p}=71-73^{\circ} \mathrm{C} .[\alpha]^{20} \mathrm{D}=-27^{\circ},\left(c 2.93, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=2960,1775,1174,111,746,703 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathbf{N M R}(300 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta 7.74-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.34(\mathrm{~m}, 6 \mathrm{H}), 4.60(\mathrm{ddt}, J=7.8,5.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=11.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J$ $=11.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.68 (ddd, $J=17.8,9.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.51 (ddd, $J=17.8,9.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.29 (dddd, $J=12.0,9.7,7.5,6.8$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 2.21 (dddd, $J=12.8,9.7,6.8,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 177.53,135.77$ (2C), 135.67 (2C), 133.10, 132.70, 130.05 (2C), 127.97 (4C), 80.09, 65.62, 28.69, 26.89 (3C), 23.79, 19.34. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{SiNa}$ [M $+\mathrm{Na}^{+}: 377.1549$, found 377.1555 .

## Compound 10



To a solution of compound $9\left(8.14 \mathrm{~g}, 23.0 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added DIBALH $(41.4 \mathrm{~mL}, 41.4$ mmol, 1.8 equiv, 1.0 M in hexanes). After 30 min at $-78^{\circ} \mathrm{C}, \mathrm{Ac}_{2} \mathrm{O}(11.7 \mathrm{~mL}, 115 \mathrm{mmol}, 5$ equiv) and DMAP ( $8.35 \mathrm{~g}, 69 \mathrm{mmol}, 3$ equiv) were added in this order and the reaction mixture was allowed to warm slowly to $0^{\circ} \mathrm{C}$ and was stirred then for 30 min at this temperature. The reaction mixture was then poured slowly into a stirred saturated solution of potassium sodium tartrate, stirred 30 min at rt , diluted with water, extracted with $\mathrm{Et}_{2} \mathrm{O}(\mathrm{x} 3)$, washed with a diluted solution of $\mathrm{NaHCO}_{3}$ and finally with a brine

## SUPPORTING INFORMATION

solution. The organic layer was then dried over solid $\mathrm{NaHCO}_{3}$, concentrated and the residue was filtered over a small plug of silica gel eluting with $\mathrm{Et}_{2} \mathrm{O}$ to afford after concentration acetylated lactol 10 ( $9.16 \mathrm{~g}, 100 \%$ ) as a $1: 1$ mixture of anomers. IR (neat): $v=$ 2930, 1748, 1235, 1112, 1090, $704 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.32(\mathrm{~m}, 6 \mathrm{H}), 6.34(\mathrm{~d}, \mathrm{~J}=4.1$ $\mathrm{Hz}, 0.5 \mathrm{H}, 1$ diastereomer), $6.28(\mathrm{t}, J=1.9 \mathrm{~Hz}, 0.5 \mathrm{H}, 1$ diastereomer), 4.37 (dq, $J=7.4,4.3 \mathrm{~Hz}, 0.5 \mathrm{H}, 1$ diastereomer), 4.24 (ddt, $J$ $=8.5,6.0,5.0 \mathrm{~Hz}, 0.5 \mathrm{H}, 1$ diastereomer), 3.77 (dd, $J=10.8,5.0 \mathrm{~Hz}, 0.5 \mathrm{H}, 1$ diastereomer), 3.71 (dd, $J=10.8,5.3 \mathrm{~Hz}, 0.5 \mathrm{H}, 1$ diastereomer), 3.68 (dd, $J=11.2,4.3 \mathrm{~Hz}, 0.5 \mathrm{H}, 1$ diastereomer), 3.65 (dd, $J=11.2,4.3 \mathrm{~Hz}, 0.5 \mathrm{H}, 1$ diastereomer), 2.25-1.85 (m, 4 H ), 2.04 ( $\mathrm{s}, 1.5 \mathrm{H}, 1$ diastereomer), 1.91 (s, $1.5 \mathrm{H}, 1$ diastereomer), 1.07 ( $\mathrm{s}, 4.5 \mathrm{H}, 1$ diastereomer), $1.05(\mathrm{~s}, 4.5 \mathrm{H}, 1$ diastereomer). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.74,170.67,135.75,133.59,133.42,129.82,127.82,99.74,99.04,82.32,80.70,66.60,65.77$, 32.70, 31.97, 26.95, 25.32, 24.85, 21.55, 19.40. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}: 421.1811\right.$, found 421.1807.

Compound 11


To a solution of (S)-phenylalanine ( $33.0 \mathrm{~g}, 200 \mathrm{mmol}, 1$ equiv.) in $\mathrm{MeOH}\left(250 \mathrm{~mL}\right.$ ) at $0^{\circ} \mathrm{C}$ in a reaction flask equipped with a bubble outlet was added dropwise $\mathrm{SOCl}_{2}(30 \mathrm{~mL}, 413 \mathrm{mmol}, 2.06$ equiv.). After stirring overnight at rt , the reaction mixture was concentrated to dryness. To the residue was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and slowly $30 \%$ aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(200 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred about 10 min until the residue is fully dissolved. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 x)$ and the combined organic phases were dried over $\mathrm{NaHCO}_{3} / \mathrm{K}_{2} \mathrm{CO}_{3}$ mixture, filtered, and concentrated to give crude (S)-phenylalanine methyl ester l-1.

To a solution of freshly prepared $\mathrm{PhMgBr}\left(400 \mathrm{~mL}, \approx 2 \mathrm{mmol}, \approx 4\right.$ equiv., $\approx 2.0 \mathrm{M}$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ in a 3-neck flask equipped with a condenser was added dropwise a solution of above crude ( $S$ )-phenylalanine methylester $\mathrm{I}-1 \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O}(150 \mathrm{~mL})$ over 1 h and the reaction mixture was refluxed overnight. The reaction mixture was pourred slowly into saturated $\mathrm{NH}_{4} \mathrm{Cl}(300 \mathrm{~mL})$ with ice. And the whole mixture was filtered onto celite, and washed with AcOEt. The aqueous layer was washed with AcOEt ( $\times 3$ ) and the combined organic layers were dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was dissolved in a small amount of AcOEt and petroleum ether was added in order to precipitate the amino-alcool $\mathbf{I}-\mathbf{2}$. The beige solid was collected by filtration (36.4 $\mathrm{g}, 55 \%, 2$ steps $)$. Characterization data were in agreement with literature. ${ }^{[3]}{ }^{1} \mathrm{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.61(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.23(\mathrm{td}, \mathrm{J}=6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.49(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 4.19(\mathrm{dd}, \mathrm{J}=$ $10.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.66 (dd, J=13.8, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.45 (dd, J = 13.8, 10.8 Hz, 1H).

To a solution of compound $\mathrm{I}-2\left(36.4 \mathrm{~g}, 120 \mathrm{mmol}, 1\right.$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}\left(42 \mathrm{~mL}, 300 \mathrm{mmol}, 2.5\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$ thiophosgene ( $10.1 \mathrm{~mL}, 132 \mathrm{mmol}, 1.1$ equiv.). After 1 h at $0^{\circ} \mathrm{C}$, the reaction mixture was warmed to rt , hydrolysed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with AcOEt, dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated. The residue was roughly purified on a large and short silica gel column ( $25-30 \%$ gradient AcOEt in petroleum ether). The solid residue was then triturated in a small amount of $\mathrm{Et}_{2} \mathrm{O}$ to precipitate pure oxazolidinethione $\mathrm{I}-3$, which was filtered and collected as a white solid ( $37.8 \mathrm{~g}, 90 \%$ ). Characterization data were in agreement with literature. ${ }^{[4]} \mathrm{mp}=128-130^{\circ} \mathrm{C}$. $[\alpha]^{20}{ }_{\mathrm{D}}=-384$ (c $0.331, \mathrm{CHCl}_{3}$ ). IR (neat): $\mathrm{v}=3200$ (br), 1493, 1162, 1147, 972, 697, $686 \mathrm{~cm}-1 .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.54$ (dd, $J=8.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.48-7.30(\mathrm{~m}, 11 \mathrm{H})$, 7.14 (dd, $J=7.2,1.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.95 ( brs, $1 \mathrm{H}, \mathrm{NH}$ ), 4.85 (dd, $J=11.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.68 (dd, $J=13.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.21 (dd, $J=$ $13.8,11.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 187.9,141.0,138.2,136.1,129.2,128.8,128.7,128.4,127.5,126.6,126.0,95.5$, 65.4, 38.9. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NOS}\left[\mathrm{M}+\mathrm{H}^{+}: 346.1268\right.$, found 346.1266 .

To pure oxazolidinethione $\mathrm{I}-3\left(11.40 \mathrm{~g}, 33.0 \mathrm{mmol}, 1\right.$ equiv.) and DMAP ( $200 \mathrm{mg}, 1.65 \mathrm{mmol}, 0.05$ equiv.) was added $\mathrm{Et}_{3} \mathrm{~N}$ ( $13.8 \mathrm{~mL}, 99.0 \mathrm{mmol}, 3$ equiv.) followed by $\mathrm{Ac}_{2} \mathrm{O}(10 \mathrm{~mL}, 99.0 \mathrm{mmol}, 3$ equiv.). The reaction mixture was stirred 2 h at rt , water was added ( 30 mL ) and the reaction mixture was stirred 30 min at rt . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(\mathrm{x} 3)$, and the combined ethereal layers were washed with water, saturated $\mathrm{NaHCO}_{3}(\mathrm{x} 2)$, dried over $\mathrm{MgSO}_{4}$, filtered on a pad of silica gel ( 3 cm , washing with $\mathrm{Et}_{2} \mathrm{O}$ ) to give compound 11 as a sticky and vitreous colourless solid ( $12.8 \mathrm{~g}, 100 \%$ ). Characterization data were in accordance with literature ${ }^{[4]}[\alpha]^{20}{ }_{\mathrm{D}}=-306\left(c 0.225, \mathrm{CHCl}_{3}\right)$. IR (neat): v=1757, 1376, 1355, 1324, 1227, 1204, 1165, 1155, 962, $763,732,698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{dd}, \mathrm{J}=8.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.11$ (dd, J = 4.9, $1.8 \mathrm{~Hz}, 3 \mathrm{H}), 6.74(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{dd}, J=7.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=14.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74$ (dd, $J=14.1,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 184.10,170.51,140.73,137.04,136.18,129.14$ (2C), 129.01 (3C), 128.45 (2C), 128.39, 128.34 (2C), 126.69, 126.59 (2C), 125.93 (2C), 92.73, 77.16, $65.22,36.50,25.96$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 410.1191$, found 410.1196 .

## SUPPORTING INFORMATION

Compound 12


To a solution of oxazolidinethione $11\left(3.1 \mathrm{~g}, 8.0 \mathrm{mmol}, 1.59\right.$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(31 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{TiCl}_{4}(880 \mu \mathrm{~L}$, $8.0 \mathrm{mmol}, 1.59$ equiv.) over 1 min . The solution turned bright orange and $i \mathrm{Pr}_{2} \mathrm{NEt}(1.39 \mathrm{~mL}, 8.0 \mathrm{mmol}, 1.59$ equiv.) was dropwise added over 10 min . The dark red titanium enolate was then cooled down to $-20^{\circ} \mathrm{C}$ and a solution of lactol acetate $10(2.0 \mathrm{~g}, 5.02$ mmol, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 10 mL ) was added. After 1 h at this temperature, the reaction mixture was poured carefully onto a $10 \%$ $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ( 100 mL ). The mixture was then filtered over Celite to remove titanium oxide, washed with ether and the organic layer was collected. The aqueous layer was extracted with ether, and the combined organic phases were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated to give a crude oil.

The crude mixture was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and $\mathrm{MeOH}(30 \mathrm{~mL})$ and. $\mathrm{MeONa}(1.83 \mathrm{~mL}, 8.0 \mathrm{mmol}, 25 \%$ in MeOH ) was then added at $0^{\circ} \mathrm{C}$ and after 30 min the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and diluted with AcOEt ( 60 mL ). The organic phases were separated; the aqueous layer was extracted with AcOEt and the combined organic layers were washed twice with brine. The organic phase was then dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was triturated with $\mathrm{Et}_{2} \mathrm{O}$ / petroleum ether to precipitate deacylated oxazolidethione I-3. The solid was then filtered on a small sintered glass and washed with some small amounts of ether ( $2.15 \mathrm{~g}, 78 \%$ of recovered oxazolidinethione l-3). The filtrate was concentrated and purified on a silica gel column chromatography (AcOEt:Petroleum ether, from 8:92 to 15:85) to afford THF 12 as colorless oil ( $1.78 \mathrm{~g}, 86 \%$, $\mathrm{dr} \geq 95: 5$ as judged by ${ }^{1} \mathrm{H} \mathrm{NMR}$ ). $[\alpha]^{20}{ }_{\mathrm{D}}=-6.7\left(c 2.67, \mathrm{CHCl}_{3}\right.$ ). IR (neat): $v=2930,1740,1428,1112$, $1076,703 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.29(\mathrm{~m}, 6 \mathrm{H}), 4.38(\mathrm{tt}, \mathrm{J}=7.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{tt}, \mathrm{J}=$ $6.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=15.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=15.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.08$ $\left.(\mathrm{m}, 1 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{dq}, \mathrm{J}=11.7,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}, \mathrm{CDCl})_{3}\right) \delta$ $171.33,77.16,77.13,76.62,51.98,40.00,30.99,29.98$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 435.1968$, found 435.1971.

## Compound 13



To a solution of THF 12 ( $7.1 \mathrm{~g}, 17.3 \mathrm{mmol}$, 1 equiv.) in THF ( 100 mL ) was added glacial acetic acid ( $2.6 \mathrm{~mL}, 44.8 \mathrm{mmol}, 2.6$ equiv.) followed by TBAF ( $22.5 \mathrm{~mL}, 22.5 \mathrm{mmol}, 1.3$ equiv., 1.0 M in THF). After 16 h stirring at rt , the reaction mixture was quenched with saturated $\mathrm{NaHCO}_{3}$, extracted with AcOEt, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was purified on a silica gel column chromatography (AcOEt: Petroleum ether, from 50:50 to 100:0) to give alcohol l-5 as colorless oil ( 3.16 g , $100 \%$ ). $[\alpha]^{20}{ }_{\mathrm{D}}=-150.0\left(c 0.72, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=3400,2917,1738,1439,1203,1066 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.35$ (quint, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.11 (tdd, $J=7.1,6.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{dd}, J=11.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (dd, $J=11.6,6.0 \mathrm{~Hz}$, 1 H ), 2.60 (dd, $J=15.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.46 (dd, $J=15.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.33 (brs, $1 \mathrm{H}, \mathrm{OH}$ ), $2.21-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.90(\mathrm{~m}, 1 \mathrm{H})$, $1.80-1.53(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 171.80,79.50,75.51,64.89,51.79,40.49,31.99,27.38$. HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}: 197.0790\right.$, found 197.0796.

To a solution of alcohol I-5 ( $3.0 \mathrm{~g}, 17.3 \mathrm{mmol}, 1$ equiv.) in a mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{CCl}_{4} / \mathrm{MeCN}\left(50 / 30 / 30 \mathrm{~mL}\right.$ ) was added $\mathrm{RuCl}_{3}$ hydrate ( $35 \mathrm{mg}, 0.17 \mathrm{mmol}, 0.01$ equiv.) followed by $\mathrm{H}_{5} \mathrm{IO}_{6}(9.9 \mathrm{~g}, 43.3 \mathrm{mmol}, 2.5$ equiv.) in five portions over 30 min . after vigorous stirring for 4 h , the reaction mixture was partitioned by dilution with a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ : $\mathrm{iPrOH}(80: 20,40 \mathrm{~mL})$ and extracted 4 times with this mixture of solvants. Combined organic layers were washed with water ( 10 mL ), with a sodium thiosulfate solution ( 10 mL ) and they were dried over $\mathrm{MgSO}_{4}$, filtered, concentrated to give crude carboxylic acid 13 ( $2.91 \mathrm{~g}, 89 \%$ ). The residue was sufficiently pure and was used directly in the next step without further purification. $[\alpha]^{20}{ }_{\mathrm{D}}=+3.7\left(c 1.08, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=3700-2300$ (br), 2950, 1734, 1439, 1202, $1069 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.94$ (brs, 1H), $4.69-4.47$ (m, 2H), 3.69 (s, 3H), 2.68 (dd, $J=15.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.51 (dd, $J=15.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.28-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.55$ (m, 1H). ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 171.32, 77.12, 76.60, 51.97, 39.99, 30.97, 29.96. HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}^{+}$: 211.0582, found 211.0582 .

Compound 14


To a solution of crude acid 13 ( $2.91 \mathrm{~g}, 15.4 \mathrm{mmol}, 1$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ in a reaction flask equipped with a bubbler outlet, was added oxalyl chloride ( $2.64 \mathrm{~mL}, 30.8 \mathrm{mmol}$, 2 equiv.) followed by 2 drops of DMF. Some gas evolution was observed and the reaction mixture was stirred 90 min at rt . Some dry toluene was added ( 10 mL ) and the reaction mixture was concentrated to dryness to give crude acyl chloride $\mathrm{I}-6$. The crude residue was diluted in a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and a mixture of $p$-toluenethiol ( 2.9 g , 23.1 mmol , 1.5 equiv.) and anhydrous pyridine ( $3.7 \mathrm{~mL}, 46.2 \mathrm{mmol}$, 3 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added via syringe at $0{ }^{\circ} \mathrm{C}$. After 30 min at rt , the reaction mixture was quenched with HCl 1 N , extracted 3 times with $\mathrm{Et}_{2} \mathrm{O}$, washed with brine and the combined ethereal phases were dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was ultimately purified by a column chromatography on silica gel (from $15 \%$ to $20 \% \mathrm{Et}_{2} \mathrm{O}$ in Petroleum Ether) to afford thioester 14 as an oil ( $3.90 \mathrm{~g}, 86 \%$ ). [ $\left.\alpha\right]^{20} \mathrm{D}=$ +93.8 (c 1.95, $\mathrm{CHCl}_{3}$ ). IR (neat): $v=2950,1736,1695,1436,1059,903,809 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=8.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{dd}, J=15.5,6.7 \mathrm{~Hz}$, 1 H ), $2.55(\mathrm{dd}, \mathrm{J}=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{dq}, J=11.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 202.69,171.15,139.56,134.65,130.08,123.94,83.78,77.56,51.87,40.15,30.85,30.62,21.39$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 317.0823$, found 317.0818 .

## Compound 15b



To a solution of $\mathrm{Pd}_{2} \mathrm{dba}_{3}(120 \mathrm{mg}, 130 \mu \mathrm{~mol}, 0.0025$ equiv, $0.5 \mathrm{~mol} \%[\mathrm{Pd}])$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ was added $\mathrm{PCy}_{3}(1.5 \mathrm{~mL}$, $1.04 \mathrm{mmol}, 0.02$ equiv, $20 \%$ in toluene). The reaction mixture was stirred for 15 min at $0{ }^{\circ} \mathrm{C}$, then propargyl alcohol ( 3.04 mL , $52.17 \mathrm{mmol}, 1$ equiv.) was added followed by tributyltin hydride ( $16.2 \mathrm{~mL}, 60 \mathrm{mmol}, 1.15$ equiv.) and the stirring was continued for 3 h at $0^{\circ} \mathrm{C}$. After concentration the residue was purified on a silica gel column (gradient 8 to $15 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to give by order of elution 2-(tributylstannyl)prop-2-en-1-ol ( $4.35 \mathrm{~g}, 12.5 \mathrm{mmol}, 24 \%$ ) and ( $E$ )-3-(tributylstannyl)prop-2-en-1-ol I-7 (11.55 g, $33.3 \mathrm{mmol}, 64 \%$ ). Spectral data of $(E)$-3-(tributylstannyl)prop-2-en-1-ol I-7 were in accordance with the literature. ${ }^{[5]}{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.26-6.13\left(\mathrm{~m},{ }^{3} \mathrm{~S}_{\mathrm{Sn}-\mathrm{H}}=68.5 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{Sn}-\mathrm{H}}=38.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.19(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 1.52$ (quint, $J=7.5 \mathrm{~Hz}$, 6 H ), 1.33 (sext, $J=7.3 \mathrm{~Hz}, 6 \mathrm{H}$ ), 1.00-0.80 (m, 15H).

To a solution of DMSO ( $2.84 \mathrm{~mL}, 40.0 \mathrm{mmol}, 2$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added oxalyl chloride ( $2.23 \mathrm{~mL}, 26 \mathrm{mmol}, 1.3$ equiv) dropwise at $-78{ }^{\circ} \mathrm{C}$. After 30 min at this temperature, ( $E$ )-3-(tributylstannyl)prop-2-en-1-ol $\mathrm{I}-7(6.94 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ was added, followed by $\mathrm{Et}_{3} \mathrm{~N}\left(11.1 \mathrm{~mL}, 80 \mathrm{mmol}, 4\right.$ equiv.). The reaction mixture was allowed to warm slowly to $0{ }^{\circ} \mathrm{C}$ and was then quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$. the reaction mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was then purified on a silica gel column chromatography ( $2 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford ( $E$ )-3(tributylstannyl)acrylaldehyde $\mathbf{I - 8}(5.42 \mathrm{~g}, 79 \%)$. Characterization data were in agreement with the literature ${ }^{[6]} \mathbf{I R}$ (neat): $v=2957$, $1690,1463,1071,665 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.40(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79\left(\mathrm{~d}, J=19.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{sn}_{\mathrm{n}-\mathrm{H}}}=52.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 6.62 (dd, $\left.J=19.2,7.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{sn}-\mathrm{H}}=48.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.52$ (quint, $J=7.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{Sn}-\mathrm{H}}=53.0 \mathrm{~Hz}, 6 \mathrm{H}$ ), $1.32($ sext, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) 1.00(\mathrm{t}, J$ $\left.=8.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{Sn}-\mathrm{H}}=51.4 \mathrm{~Hz}, 6 \mathrm{H}\right), 0.91(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.80\left({ }^{4} \mathrm{~J}_{\mathrm{Sn}-\mathrm{H}}=70.1 \mathrm{~Hz}\right), 163.38,147.76$, $29.23\left({ }^{3} J_{\mathrm{Sn}-\mathrm{C}}=21.3 \mathrm{~Hz}\right), 27.34\left({ }^{2} J_{\mathrm{Sn}-\mathrm{C}}=55.5 \mathrm{~Hz}\right), 13.76,9.95\left({ }^{1} J_{\mathrm{Sn}-\mathrm{C}}=336 \mathrm{~Hz}\right)$.

To a solution of $\mathrm{AcSH}\left(5.9 \mathrm{~mL}, 83.1 \mathrm{mmol}, 1.5\right.$ equiv) in DMF ( 50 mL ) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $11.5 \mathrm{~g}, 83.1 \mathrm{mmol}, 1.5$ equiv.) followed by $i-\operatorname{PrBr}\left(8.32 \mathrm{~mL}, 88.6 \mathrm{mmol}, 1.6\right.$ equiv.) and the reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was slightly cooled down and EtONa ( $5.64 \mathrm{~g}, 83.1 \mathrm{mmol}, 1.5$ equiv) was added. After 30 min at $100{ }^{\circ} \mathrm{C}$, the reaction mixture was then slightly cooled down and 2-chlorophenyltetrazole ( $10 \mathrm{~g}, 55.4 \mathrm{mmol}, 1.0$ equiv.) was added. After 1 h at $100^{\circ} \mathrm{C}$, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with $\mathrm{Et}_{2} \mathrm{O}(x 3)$, washed with brine ( x 3 ), dried over $\mathrm{MgSO}_{4}$, filtered and concentrated to give crude thioether I-9. The residue was dissolved in EtOH ( 200 mL ), and ammonium dimolybdate ( $1.1 \mathrm{~g}, 3.24$ mmol, 0.06 equiv.) was added, followed by $\mathrm{H}_{2} \mathrm{O}_{2}$ ( $19.2 \mathrm{~mL}, 220 \mathrm{mmol}, 4$ equiv.). After 16 h stirring at $40^{\circ} \mathrm{C}$, the reaction mixture was diluted with water ( 200 mL ) and extracted with a $50: 50 \mathrm{AcOEt}^{2} \mathrm{Et}_{2} \mathrm{O}$ mixture ( x 3 ). The combined organic layers were washed with water ( 2 x ), washed with thiosulfate solution, dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated. The residue was recrystallized from EtOH to afford white crystals of sulfone $\mathbf{I - 1 0}(13.4 \mathrm{~g}, 95 \%)$. Spectral data were in agreement with those reported. ${ }^{[7]} \mathbf{M p}=66-$ $68{ }^{\circ} \mathrm{C}$. IR (neat): $v=1592,1496,1460,1334,1263,1173,1145,1057,1042,763,733,714,692,674 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR (300 MHz,

## SUPPORTING INFORMATION

$\left.\mathrm{CDCl}_{3}\right) \delta 7.77-7.49(\mathrm{~m}, 5 \mathrm{H}), 4.00(\mathrm{sept}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 152.69,133.21$, 131.52, 129.68, 125.46, 56.94, 15.10. HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right.$: 253.0759 , found 253.0756.

To a solution of sulfone $\mathbf{I}-10(5.06 \mathrm{~g}, 20.1 \mathrm{mmol}, 1.05$ equiv.) and aldehyde $\mathrm{I}-8(6.6 \mathrm{~g}, 19.1 \mathrm{mmol}, 1.0$ equiv.) in toluene ( 100 mL ) at $-78^{\circ} \mathrm{C}$ was added dropwise KHMDS ( $40.2 \mathrm{~mL}, 20.1 \mathrm{mmol}, 1.05$ equiv., 0.5 M in toluene) over 20 min . After 20 min at $78{ }^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm at rt , quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was further purified on a silica gel column chromatography ( $100 \%$ petroleum ether) to afford stannane 15b as a clear oil ( $4.0 \mathrm{~g}, 61 \%$ ). IR (neat): $v=2926,1463,1377,1341,991,868,691,664,639 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.74\left(\mathrm{dd}, J=18.6,10.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{Sn}_{n}}=60.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.06\left(\mathrm{~d}, J=18.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{Sn}_{n}}=74 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.85(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, 1 H ), $1.80(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.32(\mathrm{sext}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.46,134.52,130.34,128.90,29.30\left({ }^{3} J_{S_{n-C}}=19.7 \mathrm{~Hz}\right), 27.45\left({ }^{2} J_{\mathrm{Sn}-\mathrm{C}}=53.4 \mathrm{~Hz}\right), 26.06,18.53,13.86,9.70\left({ }^{1} J_{\mathrm{Sn}-\mathrm{C}}=328\right.$, 343 Hz ). HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{OSn}[\mathrm{M}-\mathrm{Bu}+\mathrm{MeOH}]^{+}: 347.1397$, found 347.1377

## Compound 16



To a solution of thioester 14 ( $3.7 \mathrm{~g}, 12.6 \mathrm{mmol}, 1$ equiv.) and stannane $\mathbf{1 5 b}(5.65 \mathrm{~g}, 16.38 \mathrm{mmol}, 1.3$ equiv.) in THF ( 50 mL ) was added in one portion copper diphenylphosphinate ${ }^{[8]}$ (CuDPP) ( $5.3 \mathrm{~g}, 18.9 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{Pd}_{2} \mathrm{dba}_{3}(230 \mathrm{mg}, 0.126 \mathrm{mmol}$, 0.02 equiv), trifurylphosphine ( $350.8 \mathrm{mg}, 0.756 \mathrm{mmol}, 0.12$ equiv). The reaction mixture was then heated for 2 h in a preheated oil bath at $50^{\circ} \mathrm{C}$. Reaction mixture turned dark brown and was cooled down to rt and diluted with petroleum ether ( 50 mL ). The reaction mixture was then filtered on a pad of silica gel and the filter cake was washed copiously with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated and the residue was triturated with small amounts of $\mathrm{Et}_{2} \mathrm{O}$, filtered on cotton and the filtrate concentrated again. The residue was finally purified on a silica gel column chromatography (from 10 to $15 \%$ AcOEt in petroleum ether) to afford dienone 16 ( $2.22 \mathrm{~g}, 70 \%$ ). Unreacted thioester 14 was also recovered ( $232 \mathrm{mg}, 6 \%$ ). $[\alpha]^{20}{ }_{\mathrm{D}}=+58.1$ (c 1.17, $\mathrm{CHCl}_{3}$ ). $\mathbf{I R}$ (neat): $v=2950,1736$, $1679,1628,1581,1437,1354,1312,1281,1199,1058,994,884 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{dd}, J=15.1,11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.40(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ (quint, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.68$ (dd, $J=15.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.50 (dd, $J=15.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.26 (dtd, $J=12.5,8.0,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.96$ (dtd, $J=$ $12.4,7.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{dq}, \mathrm{J}=11.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.26,171.45$, $149.20,140.67,124.70,121.80,82.87,76.74,51.82,40.28,31.26,29.55,26.89,19.26$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right.$: 253.1440, found 253.1433 .

## Compound 17



To a solution of dienone 16 in $\mathrm{MeOH}(50 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{CeCl}_{3}$ [the hydrate was flame-dried under vaccum] ( 2.2 g , $246.5 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(20 \mathrm{~mL})$. After 15 min at $-78{ }^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}$ was added and the reaction mixture was quenched after 5 min (a longer reaction time provided ester reduction side reaction) with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction mixture was extracted with a petroleum ether: $\mathrm{Et}_{2} \mathrm{O}$ mixture ( $50: 50, \mathrm{x} 2$ ), washed with brine, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was purified on a silica gel chromatography to give alcohol 17 as colorless oil ( $1.60 \mathrm{~g}, 72 \%$, dr $\geq 90: 10$ as judged on ${ }^{1} \mathrm{H}$ NMR). $[\alpha]^{18}{ }_{\mathrm{D}}=+20.0\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=3400(\mathrm{br}), 2969,1738,1660,1438,1058,989,961 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $6.51(\mathrm{dd}, J=15.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=15.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (quint, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{dd}, J=15.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ (brs, $1 \mathrm{H}, \mathrm{OH}$ ), 2.46 (dd, $J=15.4,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.21-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.44(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.67$, 136.65, 129.49, 128.13, 124.49, 82.40, 75.57, 75.49, 51.80, 40.41, 32.06, 27.97, 26.13, 18.47. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 377.1416$, found 377.1409.

Compound 5


To a solution of alcohol $\mathbf{1 7}(1.6 \mathrm{~g}, 6.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added N -methyl morpholine ( $1.04 \mathrm{~mL}, 9.45 \mathrm{mmol}$, 1.5 equiv.) followed by TMSCI ( $1.193 \mathrm{~mL}, 9.45 \mathrm{mmol}, 1.5$ equiv.). The reaction mixture was stirred 30 min at rt and was then quenched by water and diluted with pentane $(30 \mathrm{~mL})$. The two phases were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x2). The combined organic layers were washed with brine, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was no further purified and silyl ether $\mathbf{I}-11$ was collected as colorless oil ( $2.03 \mathrm{~g}, 99 \%$ ). $[\alpha]^{30}{ }_{\mathrm{D}}=+16.3$ (c 1.47, $\mathrm{CHCl}_{3}$ ). IR (neat): $v=2954$, $1740,1659,1437,1249,1060,990,960,839,751 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.42(\mathrm{t}, \mathrm{J}=15.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, \mathrm{~J}=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=15.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30$ (quint, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (s, 3H), $2.62(\mathrm{dd}, J=15.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{ddd}, J=11.5,7.8,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.76(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{dq}, \mathrm{J}=11.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 171.85$, $135.43,129.60,127.94,124.75,82.46,75.70$ (2C), $51.67,40.65,32.11,27.49,26.09,18.40,0.44$ (3C). HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}: 349.1811$, found 349.1804.

To a solution of methyl ester $\mathrm{I}-11\left(1.99 \mathrm{~g}, 6.10 \mathrm{mmol}\right.$, 1 equiv.) in hexanes ( 60 mL ) at $-78{ }^{\circ} \mathrm{C}$ was added dropwise DIBAL-H ( $6.85 \mathrm{~mL}, 6.85 \mathrm{mmol}$, 1.1 equiv., 1.0 M in hexanes). After 1 h at $-78^{\circ} \mathrm{C}$, the reaction mixture was poured into a $25 \%$ solution of potassium sodium tartrate ( 30 mL ) under stirring. After 30 min stirring the two layers were separated, the organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x3). The combined organic layers were washed with a $5 \% \mathrm{NaHCO}_{3}$ solution (x2). The ethereal solution was dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was purified on a silica gel column chromatography ( $15-20 \% \mathrm{Et}_{2} \mathrm{O}$ gradient in petroleum ether) to give aldehyde 5 as colorless oil ( $1.558 \mathrm{~g}, 86 \%$ ). [ $\alpha]^{20}{ }_{\mathrm{D}}=+6.67$ (c 2.70, $\mathrm{CHCl}_{3}$ ) IR (neat): $v=2958$, 1726, 1659, 1380, 1249, 1118, 1080, 988, 968, 839, $751 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.79(\mathrm{t}, \mathrm{J}=2.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}$, $J=15.1,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=15.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36$ (quint, $J=8.2,7.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, \mathrm{J}=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (ddd, $J=16.2,7.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{ddd}, J=16.2,5.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (dddd, $J=$ $11.8,8.0,5.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{dq}, \mathrm{J}=11.4,8.3 \mathrm{~Hz}, 1 \mathrm{H})$, 0.11 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 201.51, 135.65, 129.57, 128.07, 124.68, 82.57, 75.81, 74.38, 49.63, 32.43, 27.61, 26.11, 18.41, 0.48 (3C). HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{NaSi}[\mathrm{M}+\mathrm{MeOH}+\mathrm{Na}]^{+}: 351.1968$, found 351.1960.

## Compound 19



18


I-12


19

To a solution of 2-butyn-1-ol 18 ( $14 \mathrm{~g}, 200 \mathrm{mmol}$ ) and quinoline ( $0.23 \mathrm{~mL}, 2 \mathrm{mmol}, 0.01$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{BaSO}_{4}\left(2.13 \mathrm{~g}, 1 \mathrm{mmol}, 0.005\right.$ equiv.). Then $\mathrm{H}_{2}$ was bubbled into the solution during 36 h . After completion of the reaction (monitoring by ${ }^{1} \mathrm{H} N \mathrm{NR}$ ), the reaction was filtered over Celite pad and the solvent was carefully concentrated at atmospheric pressure. The resulting crude mixture was distillated at atmospheric pressure to afford (Z)-alcohol I-12 (11.8 g, $163 \mathrm{mmol}, 81 \%$ ) as a pale yellow oil. $\mathbf{B p}=119-120^{\circ} \mathrm{C}$ (literature: $\left.119-121^{\circ} \mathrm{C}\right) .{ }^{[9]} \mathbf{I R}$ (neat): $v=3021,1025,968 \mathrm{~cm}^{-1} .{ }^{12} \mathrm{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.68-5.61(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 129.34, 127.45, 58.46, 13.16. MS (GC-EI): 72.1 (M+, 35), $57.10\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 100\right), 55\left(\mathrm{M}^{+}-\mathrm{HO}, 71\right)$.

To a cooled ( $-20^{\circ} \mathrm{C}$ ) solution of (Z)-alcohol $\mathrm{I}-12\left(5.12 \mathrm{~g}, 71.125 \mathrm{mmol}\right.$, 1 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(175 \mathrm{~mL})$ was added molecular sieves ( 2.66 g ), L-(+)-DIPT ( $2.08 \mathrm{~mL}, 9.95 \mathrm{mmol}, 0.14$ equiv.) and $\mathrm{Ti}(\mathrm{OiPr})_{4}(2.1 \mathrm{~mL}, 7.11 \mathrm{mmol}, 0.1$ equiv.). The mixture was stirred at this temperature for 30 minutes. Then cumyl hydroperoxide ( $25.5 \mathrm{~mL}, 142.25 \mathrm{mmol}, 2$ equiv. $80 \%$ ) was added dropwise over 15 minutes. The reaction mixture was maintained at $-20^{\circ} \mathrm{C}$ during 48 h in a freezer. After this time a solution of citric acid ( 1 eq in $\mathrm{Et}_{2} \mathrm{O} /$ acetone $1: 1$ ) was added, and the resulting mixture was allowed to warm at room temperature during 30 minutes. The crude mixture was then filtered on Celite, concentrated and purified on silica gel ( $\mathrm{Et}_{2} \mathrm{O} /$ petroleum ether- $50 \%$ to $100 \%$ ) to furnish epoxide 19 ( $4.935 \mathrm{~g}, 56.07 \mathrm{mmol}, 79 \%$ ) Enantiomeric excess was determined on tosyl derivative 20. $[\alpha]^{20}{ }_{\mathrm{D}}=-8.7\left(c=4.0, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=3320,1033,987,938,782 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.84(\mathrm{dd}, \mathrm{J}=12.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=12.2,6.4$ $\mathrm{Hz}, 1 \mathrm{H}$ ), $3.20-3.07$ ( $\mathrm{m}, 2 \mathrm{H}$ ), 2.07 (brs, $1 \mathrm{H}, \mathrm{OH}$ ), 1.31 (d, $J=5.6 \mathrm{~Hz}, 3 \mathrm{H}$ ). ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 60.82,56.86,52.93$, 13.46. ${ }^{[10]}$

## SUPPORTING INFORMATION

Compound 20


19



JF 1-103 enantioenriched sample


To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of epoxide $19(3.37 \mathrm{~g}, 38.31 \mathrm{mmol}, 1$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added triethylamine ( $11.7 \mathrm{~mL}, 84.12$ mmol, 1.5 equiv.), dimethyaminopyridinDMAP ( $3.39 \mathrm{~g}, 28.04 \mathrm{mmol}, 0.5$ equiv.) and tosyl chloride ( $12.78 \mathrm{~g}, 67.30 \mathrm{mmol}, 1.2$ equiv.). The solution was allowed to warm to room temperature, after 1.5 h the reaction was hydrolyzed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phase was washed by saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, water $(50 \mathrm{~mL})$, brine ( 50 mL ), dried over $\mathrm{MgSO}_{4}$, filtered and concentrated under reduced pressure. The crude material was purified on silica gel column chromatography ( $\mathrm{Et}_{2} \mathrm{O} /$ petroleum ether $30 \%$ to $40 \%$ ) to yield tosylate 20 ( $7.139 \mathrm{~g}, 29.5 \mathrm{mmol}, 77 \%$ ). Enantiomeric ratio was determined to be $93: 7$ by chiral HLPC [4.6 X 250 mm , Chiralcel AD column, hexane/ i-PrOH 90:10,1.0 mL. $\mathrm{min}^{-1}$, retention times: 14.17 min (major) and 17.74 min (minor)]. $[\alpha]^{20}{ }_{\mathrm{D}}=-18.2\left(c=6.6, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=1598,1360,1174$, $956,784,663 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.35 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.16 (dd, $J=11.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (dd, $J=$ $11.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.16-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.24,132.88,130.05,128.08,68.04$, 53.07, 52.33, 21.77, 13.22. HRMS (ESI): m/z: calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 265.0505$, found 265.0502 .

## Compound 21




To a cooled ( $-78^{\circ} \mathrm{C}$ ) solution of trimethylacetylene ( $8.36 \mathrm{~mL}, 58.75 \mathrm{mmol}$, 2 equiv.) in $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ was added dropwise $n-$ BuLi ( $23 \mathrm{~mL}, 58.75 \mathrm{mmol}$, 2 equiv., 2.5 M in hexanes) and the solution was allowed to warm at $0^{\circ} \mathrm{C}$ for 20 minutes. At $-78^{\circ} \mathrm{C}$ trimethylaluminium ( $29.3 \mathrm{~mL}, 58.75 \mathrm{mmol}, 2$ equiv. 2 M in hexane) was added dropwise, the mixture was allowed to warm at $0^{\circ} \mathrm{C}$ during 20 minutes. At $-78{ }^{\circ} \mathrm{C}$ a solution of epoxide $20\left(7.109 \mathrm{~g}, 29.37 \mathrm{mmol}, 1\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added via cannula and boron trifluoride diethyl etherate ( $7.25 \mathrm{~mL}, 58.75 \mathrm{mmol}, 2$ equiv.) was then added dropwise. The mixture was allowed to warm at room temperature during 1.5 h . The resulting mixture was poured into a cooled $\left(0^{\circ} \mathrm{C}\right)$ aqueous solution of sodium potassium tartrate ( $150 \mathrm{~mL}, 10 \%$ ) and the stirring was maintained during 20 minutes. The mixture was extracted with ethyl acetate, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vaccuo to afford crude compound l-13.

Crude $\mathrm{I}-12$ was dissolved into anhydrous THF ( 150 mL ) and cooled at $0^{\circ} \mathrm{C}$. Sodium hydride ( $2.35 \mathrm{~g}, 58.75 \mathrm{mmol}, 2$ equiv., $60 \%$ in mineral oil) was added by portions, and the solution was allowed to warm to room temperature. After consumption of the starting material, indicated by TLC, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated at reduced pressure. The crude residue was then purified on silica gel ( $\mathrm{Et}_{2} \mathrm{O} / \mathrm{petroleum}^{2}$ ether $0 \%$ to $5 \%$ ) to afford epoxide 21 ( $4.83 \mathrm{~g}, 28.75 \mathrm{mmol}, 98 \%$ on two steps) as a clear oil. $[\alpha]^{20}{ }_{\mathrm{D}}=+12.2$ ( $c=5.0, \mathrm{CHCl}_{3}$ ). IR (neat): $v=2170$, $1249,890,840,760 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.99(\mathrm{ddd}, J=4.9,3.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=5.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ (dd, $J=5.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{qd}, J=7.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 106.30, $86.57,54.55,45.80,29.24,16.93,0.23 \mathrm{ppm}$. HRMS (ESI): m/z: calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 169.1049$, found 169.1043.

## SUPPORTING INFORMATION

Compound 22


To a cooled $\left(-30^{\circ} \mathrm{C}\right)$ solution of $\mathrm{Cul}\left(958 \mathrm{mg}, 5.04 \mathrm{mmol}, 0.15\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added dropwise a solution of (Z)propenylmagnesium bromide ( $45.6 \mathrm{~mL}, 50.44 \mathrm{mmol}, \mathrm{C}=1.10 \mathrm{M}$ in THF, 1.5 equiv.) [Prepared from Mg turning and ( $Z$ )-1bromopropene in THF]. After 20 minutes at this temperature epoxide 21 ( $5.64 \mathrm{~g}, 33.63 \mathrm{mmol}, 1$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added via cannula. The reaction mixture was stirred for 1 h at $-30^{\circ} \mathrm{C}$, hydrolysed by aqueous $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{3}(2 / 1)$ solution, extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vaccuo. The crude residue was purified on silica gel ( $\mathrm{Et} 2 \mathrm{O} /$ petroleum ether$10 \%$ ) to yield alcohol $22(5.369 \mathrm{~g}, 25.56 \mathrm{mmol}, 76 \%)$ as colorless oil. $\left[\mathrm{d}^{20}{ }_{\mathrm{D}}=+23.3\left(c=1.3, \mathrm{CHCl}_{3}\right)\right.$. $\mathbf{I R}$ (neat): $v=2163,1249$, 991, 837, 759, $697 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.69-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.51-5.39(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{tdd}, J=7.0,6.0,4.4 \mathrm{~Hz}$, 1 H ), 2.63 ( $\mathrm{qd}, J=7.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.66(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.16(\mathrm{~d}, \mathrm{~J}=0.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 127.08,126.05,107.54,87.76,74.11,33.47,32.92,17.54,13.14,0.29$. HRMS (ESI): m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{OSiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 233.1332, found 233.1329.

## Compound 23



To a cooled ( $0{ }^{\circ} \mathrm{C}$ ) solution of alcohol 22 ( $5.368 \mathrm{~g}, 25.56 \mathrm{mmol}, 1$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(225 \mathrm{~mL})$ was added $\mathrm{VO}(\mathrm{acac})_{2}(336 \mathrm{mg}, 1.27 \mathrm{mmol}, 0.05$ equiv.) then $t-$ BuOOH ( $13.1 \mathrm{~mL}, 51.12 \mathrm{mmol}$, 2 equiv. 3.90 M in iso-octane). The reaction was stirred overnight and aqueous solution of $\mathrm{KI}(2 \%)$ and aqueous $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ were added. The mixture was stirred for further 15 minutes and the layers were separated. The aqueous phase was extracted with AcOEt and the combined organic layers were dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vaccuo. The crude mixture was then purified on silica gel ( $\mathrm{Et} \mathrm{t}_{2} \mathrm{O} /$ petroleum ether- $30 \%$ to $50 \%$ ) to afford epoxyalcohol $\mathrm{I}-14(4.476 \mathrm{~g}$, $19.80 \mathrm{mmol}, 77 \%$ ) as clear oil. The diastereoselectivity of the reaction was determined to be <99:1 by GC analysis on the crude material in comparison with a pseudo equimolar mixture of diastereomers obtained by epoxidation with mCPBA. $[\alpha]^{20}{ }_{\mathrm{D}}=$ +20.4 (c = 0.88, $\mathrm{CHCl}_{3}$ ). IR (neat): $v=2168,1249,994,837,759,698,650 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=\delta 3.72$ (ddt, $\left.J=8.3,5.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.17-3.11(\mathrm{~m}, 1 \mathrm{H})$, $3.10-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{qd}, J=7.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.85$ (ddd, $J=14.5,5.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.74 (ddd, $J=14.5,8.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.30$ (d, J = 5.4 Hz , $3 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 107.32,87.80$, 72.87, $54.78,52.17,33.94,32.15,16.74,13.43,0.23$. HRMS (ESI): m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 249.1287$, found 249.1282.


To a solution of epoxyacohol $\mathrm{I}-14(2.772 \mathrm{~g}, 12.26 \mathrm{mmol}, 1$ equiv.) in DMF ( 11 mL ) was added TBSCI ( $2.214 \mathrm{~g}, 14.71 \mathrm{mmol}$, 1.2 equiv.) and imidazole ( $1.66 \mathrm{~g}, 24.52 \mathrm{mmol}, 2$ equiv.). The mixture was stirred overnight at rt , and the reaction was quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was then washed with brine, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified on silica gel ( $\mathrm{Et}_{2} \mathrm{O} /$ petroleum ether: 0 to $5 \%$ ) to yield protected alcohol $\mathrm{I}-15$ $(3.391 \mathrm{~g}, 10.15 \mathrm{mmol}, 83 \%)$ as colorless oil. $[\alpha]^{20}{ }_{\mathrm{D}}=-1.8\left(c=3.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.86$ (ddd, $\mathrm{J}=7.3,4.9$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{qd}, J=7.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 3 H ), 0.90 (s, 9H), $0.12(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=108.86,86.30,72.75,54.81,52.55$, $33.49,31.32,25.90(3 \mathrm{C}), 18.16,14.86,13.43,0.25,-4.34,-4.49$. HRMS (ESI): m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 341.2332$, found 341.2333.

Protected alkyne I-15 (137 mg, 0.402 mmol , 1 equiv.) was dissolved into dry $\mathrm{MeOH}(4 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(277 \mathrm{mg}, 2.01 \mathrm{mmol}, 5$ equiv.) was added in one portion at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 2 h . The reaction was quenched with water, extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organics layers were washed with brine, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated under reduced pressure. Chromatography on silica gel ( $\mathrm{Et}_{2} \mathrm{O} /$ petroleum ether: $5 \%$ ) yielded the terminal alkyne 23 ( $103 \mathrm{mg}, 0.386$ $\mathrm{mmol}, 96 \%$ ) as colorless oil. $[\alpha]^{20}{ }_{\mathrm{D}}=-7.5\left(c=5.8, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=3313,2957,2930,2857,1473,1376,1253,1132,1101$,

## SUPPORTING INFORMATION

833, $774,634 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=3.86$ (ddd, $J=7.0,5.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.08-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.66$ (qdd, $J=7.2$, $4.2,2.5 \mathrm{~Hz}$ ), $2.04(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}$, $3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 86.08,72.71,70.21,54.55,52.42,32.21,31.54,25.90$ (3C), 18.15, 15.11, 13.42, 4.43, -4.49. HRMS (ESI): m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 291.1756, found 291.1749.

Compound 24


To a cooled ( $-78{ }^{\circ} \mathrm{C}$ ) solution of methylphenylsulfone ( $3.18 \mathrm{~g}, 20.36 \mathrm{mmol}$, 2 equiv.) in dry THF ( 100 mL ), was added dropwise $n \mathrm{BuLi}$ ( $8.15 \mathrm{~mL}, 20.36 \mathrm{mmol}, 2$ equiv. 2.5 M in hexanes). After 15 minutes at this temperature, solution of epoxide $\mathbf{2 3}$ ( $2.75 \mathrm{~g}, 10.18 \mathrm{mmol}, 1$ equiv.) in THF ( 20 mL ) was added, followed by $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ( $1.29 \mathrm{~mL}, 10.18 \mathrm{mmol}$, 1 equiv.). After 30 min , the mixture was quenched with saturated solution of $\mathrm{NaHCO}_{3}$, then extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated on reduced pressure. Pentane was added to the crude mixture and excess of unreacted methylphenylsulfone was removed by filtration. Successive purification on silica gel (AcOEt/petroleum ether- $20 \%$ ) afforded desired alcohol l-15 ( 3.08 g , $7.23 \mathrm{mmol}, 71 \%)$, and its regioisomer $\mathrm{I}-16(1.27 \mathrm{~g}, 2.98 \mathrm{mmol}, 29 \%)$ as colorless oil. Compound $\mathrm{I}-16:[\alpha]^{20}{ }_{\mathrm{D}}=+4.6(c=3.6$, $\mathrm{CHCl}_{3}$ ). IR (neat): $v=3400,2976,2930,1447,1303,1148,1085,741,666,623 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.92(\mathrm{~m}, 2 \mathrm{H})$, $7.67-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{ddd}, \mathrm{J}=8.6,7.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, \mathrm{J}=14.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, \mathrm{J}=$ $14.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.59 (qdd, $J=7.0,3.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.41 (s, $1 \mathrm{H}, \mathrm{OH}$ ), 2.21 (dqd, $J=7.7,5.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.05 (d, $J=2.5 \mathrm{~Hz}$, 1 H ), 1.80 (ddd, $J=14.3,7.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.67 (ddd, $J=14.3,8.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.14 (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.11$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$ ), 0.85 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ס 140.19, 133.76, 129.41 (2C), 127.89 (2C), 86.03, 72.52 , $70.55,68.79,57.48,37.93,33.94,32.18,25.91$ (3C), 20.36, 18.08, 13.91, -4.37. HRMS (ESI): m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{SiSNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 447.2001$, found 447.1996. Compound I-17: $[\alpha]^{20}{ }_{\mathrm{D}}=-19.6\left(c=2.9, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=3400,2976,2930,1447,1303$, 1148, 1085, 741, 666, $623 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.96-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 2 \mathrm{H})$, 3.99 (dt, $J=9.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (ddd, $J=9.4,5.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.43(\mathrm{dd}, J=14.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{bs}, 0.6 \mathrm{H}, \mathrm{OH}), 2.93$ (dd, $J$ $=14.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(q d d, J=7.0,3.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dqdd}, J=9.3,7.2,5.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.83$ (ddd, $J=14.3,3.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{brs}, 0.4 \mathrm{H}, \mathrm{OH}), 1.46(\mathrm{dt}, J=14.3,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.29,133.66,129.39(2 \mathrm{C}), 128.00(2 \mathrm{C}), 85.55,74.70$, $74.28,70.75,58.42,35.48,34.99,31.83,25.87$ (3C), 18.02, 17.02, 13.83, -4.15, -4.68. HRMS (ESI): m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{SSiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 447.2001$, found 447.1996 .

Alcohol I-15 ( $3.03 \mathrm{~g}, 7.113 \mathrm{mmol}, 1$ equiv.) was dissolved into dry DMF ( 20 mL ) and TESCI ( $1.6 \mathrm{~g}, 10.7 \mathrm{mmol}, 1.5$ equiv.) was added, followed by imidazole ( $1.93 \mathrm{~g}, 28.4 \mathrm{mmol}, 4$ equiv.). After consumption of the starting material as visualized by TLC monitoring, the mixture was hydrolysed with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were washed with brine, dried over $\mathrm{MgSO}_{4}$, filtered then concentrated in vaccuo. Purification on silica gel ( $\mathrm{Et} \mathrm{t}_{2} \mathrm{O} /$ petroleum ether: $10 \%$ ) yielded TES ether $24(3.68 \mathrm{~g}, 6.81 \mathrm{mmol}, 96 \%)$ as colorless oil. $[\alpha]^{20}{ }_{\mathrm{D}}=-29.7\left(c=1.6, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=2956,2878,1447,1305,1256$, $1149,1110,1084,1004,955,833,774 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.95-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.52$ (m, 2H), 3.74 (ddd, $J=8.2,5.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.57 (dt, $J=8.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=14.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=14.4,9.7$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 2.53 (qdd, $J=6.8,3.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{ddd}, J=13.9,8.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.58$ (ddd, $J=13.9,8.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.54(\mathrm{q}, J$ $=7.9 \mathrm{~Hz}, 6 \mathrm{H}$ ), $0.00(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 140.24,133.61,129.40(2 \mathrm{C}), 128.10$ (2C), 85.94, $72.99,70.56,70.52,57.51,37.14,32.14,31.88,25.88$ (3C), 18.09, 17.02, 14.50, 7.02 (3C), 5.16 (3C), $-4.32,-4.45$. HRMS (ESI): $\mathrm{m} / \mathrm{z}$ : calcd for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 561.2866$, found 561.2859 .

## SUPPORTING INFORMATION

Compound 25


To a solution of alkyne $24(3.60 \mathrm{~g}, 6.607 \mathrm{mmol}$, 1 equiv.) in THF ( 20 mL ) was added trimetylsilyl-tributylstannane ( 2.80 mL , $8.00 \mathrm{mmol}, 1.2$ equiv.) followed by $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(455 \mathrm{mg}, 1.0 \mathrm{mmol}, 0.15$ equiv.) and warmed to reflux during 12 h . After this, the reaction was cooled to room temperature, concentrated and purified on silica gel ( $\mathrm{Et}_{2} \mathrm{O} /$ petroleum ether: 5 to $8 \%$ ) to obtain desired vinylstannane 25 ( $4.7 \mathrm{~g}, 5.20 \mathrm{mmol}, 78 \%$ ) as colorless oil. $[\alpha]^{20}{ }_{\mathrm{D}}=-43.6\left(c=1.4, \mathrm{CHCl}_{3}\right.$ ). IR (neat): $v=2955,2929,2855,1461$, 1306, 1247, 1150, 1084, 1002, 832, 773, $744 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.93-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.55$ $(\mathrm{m}, 2 \mathrm{H}), 6.75\left(\mathrm{~s}, J_{\mathrm{sn}-\mathrm{H}}=187 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.76-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{dd}, J=14.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=14.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{qd}$, $J=6.8,3.8, \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.40-1.24(\mathrm{~m}, 7 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-0.75(\mathrm{~m}$, 36 H ), $0.53(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.97,145.32,140.39$, $133.58,129.37(2 C), 128.01(2 C), 73.34,72.42,57.91,49.93,38.73,32.36,29.43\left({ }^{3} J_{\text {Sn-C }}=19.3 \mathrm{~Hz}, 3 C\right), 27.74\left({ }^{2} J_{\text {Sn-C }}=71 \mathrm{~Hz}\right.$, 3C), 26.17 (3C), $18.34,17.52,17.24,13.82$ (3C), 11.87 (3C), 7.09 (3C), 5.30 (3C), 0.52 (3C), $-3.61,-4.04$. HRMS (ESI): m/z: calcd for $\mathrm{C}_{43} \mathrm{H}_{86} \mathrm{O}_{4} \mathrm{Si}_{3} \mathrm{~S}^{120} \mathrm{SnNa}[\mathrm{M}+\mathrm{Na}]^{+}: 925.4474$, found 925.4479 .

## Compound 26



To a cooled ( $-78{ }^{\circ} \mathrm{C}$ ) solution of vinylstannane $25\left(4.61 \mathrm{~g}, 5.19 \mathrm{mmol}\right.$, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise a solution of iodine ( $5.66 \mathrm{~mL}, 5.66 \mathrm{mmol}, 1.1$ equiv. 1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). After persistent coloration of the solution and consumption of the starting material, the mixture was quenched by a solution of $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. After separation of the phases, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the organic phases were combined, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was then purified on a silica gel column chromatography ( $\mathrm{Et}_{2} \mathrm{O} /$ petroleum ether- $10 \%$ ) to afford vinyl iodine $\mathrm{I}-18(3.64 \mathrm{~g}, 4.94 \mathrm{mmol}, 96 \%$ ) as pale yellow oil. $[\alpha]^{20}{ }_{\mathrm{D}}=-37.1\left(c=1.7, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=2954,1587,1147,1304,1247,1147,1084,1004,833,775,745 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.95(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{dt}, J=9.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (ddd, $J=8.1,5.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.09 (dd, $J=14.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.94(\mathrm{dd}, J=14.1,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{qd}, J=6.8,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.29(\mathrm{~m}, 1 \mathrm{H}), 1.47$ (ddd, $J=14.1,9.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{ddd}, J=14.1,8.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.54(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 140.67,138.01,133.52,129.38$ (2C), 128.05 (2C), 124.20, $73.27,70.95,57.70,56.24,35.59,32.30,25.99$ (3C), 18.13, 17.02, 14.56, 7.05 (3C), 5.18 (3C), -0.94 (3C), $-4.03,-4.28$. HRMS (ESI): m/z: calcd for $\mathrm{C}_{31} \mathrm{H}_{59} \mathrm{O}_{4} \mathrm{SSi}_{3} 1 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 761.2384 , found 761.2382.

To a cooled ( $-30^{\circ} \mathrm{C}$ ) suspension of $\mathrm{Cul}\left(3.89 \mathrm{~g}, 20.47 \mathrm{mmol}, 4.2\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added dropwise $\mathrm{MeLi}(24.3 \mathrm{~mL}$, 38.9 mmol , 8 equiv. 1.6 M in $\mathrm{Et}_{2} \mathrm{O}$ ) over 15 minutes. Cul was dissolving while MeLi was added and the solution turned colorless. After 5 min , a solution of vinyl iodine $\mathrm{I}-18\left(3.60 \mathrm{~g}, 4.86 \mathrm{mmol}, 1\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added. After 20 min, aqueous mixture of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ : concentrated $\mathrm{NH}_{3}(2: 1)$ was added to the reaction. The reaction medium was then extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vaccuo. The crude mixture was then purified on silica gel ( $\mathrm{Et}_{2} \mathrm{O} /$ petroleum ether- 10\%) to give olefin $26(2.95 \mathrm{~g}, 4.69 \mathrm{mmol}, 97 \%)$ as colorless oil. $[\alpha]^{20}{ }_{\mathrm{D}}=-33.3\left(c=0.9, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=2955,2878,2856,1611$, 1412, 1306, 1248, 1150, 1085, 1043, 953, $746 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.92-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.59$ $-7.52(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{ddd}, J=8.1,5.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (ddd, $J=7.4,6.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=14.4,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.83(\mathrm{dd}, J=14.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{qd}, J=7.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.47$ (ddd, $J=15.7,8.1,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.24(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.52(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.07$ (s, 12H), 0.04 (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 156.51,140.40,133.62,129.35$ (2C), 127.97 (2C), 124.84, 73.32, 70.67, $58.11,49.72,36.63,32.41,26.02$ (3C), 21.42, 18.17, 17.02, 13.69, 7.04 (3C), 5.20 (3C), 0.25 (3C), -4.19, -4.31. HRMS (ESI): m/z: calcd for $\mathrm{C}_{32} \mathrm{H}_{62} \mathrm{O}_{4} \mathrm{Si}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 649.3574$, found 645.3566 .


To a solution of compound 26 ( $1.137 \mathrm{~g}, 1.82 \mathrm{mmol}, 1.0$ equiv.) in a mixture of $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(15 / 5 \mathrm{~mL})$ was added N iodosuccinimide ( $613 \mathrm{mg}, 2.73 \mathrm{mmol}, 1.5$ equiv.) and the reaction mixture was stirred 2 h at rt . The reaction mixture was then quenched with a $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x2), dried over $\mathrm{MgSO}_{4}$ and purified on a silica gel column chromatography ( $5-8 \%$ gradient $\mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to give vinyl iodide $\mathbf{6}$ as colorless oil ( $1.21 \mathrm{~g}, 98 \%$ ). $[\alpha]^{20}{ }_{\mathrm{D}}=-35.3$ (c 1.6, $\mathrm{CHCl}_{3}$ ). IR (neat): $v=2956,1461,1305,1254,1150,1069,1043,1004,834,775,742,720,688 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.01-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.51(\mathrm{~m}, 3 \mathrm{H}), 5.95(\mathrm{brs}, 1 \mathrm{H}), 3.79(\mathrm{td}, \mathrm{J}=7.3,5.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, \mathrm{J}=6.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94$ (dd, $J=14.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=14.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{qd}, J=6.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (dqdd, $J=8.6,7.0,3.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.88(\mathrm{~d}, \mathrm{~J}=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{dt}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{dd}, J=14.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.55(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 149.71, 140.33, 133.66, 129.49 (2C), 128.10 (2C), 77.35, 72.64, 70.61, 58.21, 47.94, 36.88, 32.36, 25.98 (3C), 23.82, 18.10, $16.75,14.12,7.04(3 \mathrm{C}), 5.15(3 \mathrm{C}),-4.24,-4.32$. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{53} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{SINa}[\mathrm{M}+\mathrm{Na}]^{+}: 703.2146$, found 703.2159 .

## Compound 27






27

To a solution of sulfone $6(714 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.0$ equiv., dried by azeotropic distillation with toluene, three time) in THF (7 mL ) at $0^{\circ} \mathrm{C}$ was added dropwise LDA [ $2.52 \mathrm{~mL}, 1.26 \mathrm{mmol}, 1.2$ equiv., 0.5 M in THF (prepared as followed: dropwise addition of $n$-BuLi ( $3.125 \mathrm{~mL}, 5.0 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) onto diisopropylamine ( $750 \mu \mathrm{~L}, 5.35 \mathrm{mmol}$ ) in THF ( 6.15 mL ) at $-78^{\circ} \mathrm{C}$, followed by slow warming to rt.)]. After 15 min , the yellow reaction mixture was cooled to $-78^{\circ} \mathrm{C}$, and aldehyde $5(373 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.2$ equiv., dried by azeotropic distillation with toluene, three time) in THF ( 3 mL ) was added. The reaction mixture was slowly warmed to $0{ }^{\circ} \mathrm{C}$, stirred 30 min , quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}$ ( $x 3$ ), dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was purified on a silica gel chromatography ( $8-15 \%$ gradient $\mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to give, by order of elution, recovered sulfone $\mathbf{6 ( 1 4 0 . 3 \mathrm { mg } , 2 0 \% ) \text { and sulfone adduct } \mathrm { I } - 1 9 ( 6 1 8 \mathrm { mg } , 6 0 \% , 7 5 \% \text { brsm) as a complex mixture of four }}$ diastereomers. By consequence, its full characterization was postponed to the next 2 steps. HRMS (ESI) calcd for $\mathrm{C}_{45} \mathrm{H}_{81} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{SINa}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 999.3953 , found 999.3954 .

To a solution of sulfone adduct $\mathrm{I}-19$ ( $600 \mathrm{mg}, 0.744$, 1 equiv.), in a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 2,6$-lutidine mixture ( $10 \mathrm{~mL} / 2 \mathrm{~mL}$ ) was added DessMartin periodinane ( $652 \mathrm{mg}, 1.54 \mathrm{mmol}, 2.5$ equiv). After 1 h at rt , the reaction mixture was quenched with saturated $\mathrm{NaHCO}_{3}$ and a solution of $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. After 15 min the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(\mathrm{x} 3)$, washed with saturated $\mathrm{NaHCO}_{3}$, dried over $\mathrm{MgSO}_{4}$, filtered on a pad of silica gel (elution $\mathrm{Et}_{2} \mathrm{O}$ ) to give crude ketone $\mathbf{l - 2 0}$.

The residue containing crude ketone $\mathrm{l}-20$ was then dissolved in THF ( 10 mL ), cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{Sml}_{2}[20 \mathrm{~mL}, 2.0 \mathrm{mmol}$, $\approx 0.1 \mathrm{M}$ in THF, (prepared as followed: addition of $\mathrm{CHI}_{3}(1.31 \mathrm{~g}, 3.33 \mathrm{mmol})$ to a suspension of Sm powder ( $1.2 \mathrm{~g}, 8.0 \mathrm{mmol}$ ) in THF ( 50 mL ), and stirring 18 h at rt$]$ was added dropwise (until a blue/green colour persists in the reaction mixture). The reaction mixture was then quenched with $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}(x 3)$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was purified on a silica gel column chromatography to give compound 27 ( $283 \mathrm{mg}, 55 \%$ ) as colourless oil. $[\alpha]^{20}{ }_{\mathrm{D}}=+10.1$ (c 1.49, $\mathrm{CHCl}_{3}$. IR (neat): $v=2957,1713,1687,1461,1379,1250,1116,1068,1044,1044,1005,959,838,775,745,724 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.41$ (dd, $J=15.2,11.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.88 (brs, 1 H ), 5.81 (d, $\left.J=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.50(\mathrm{dd}, J=15.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.31 (dq, $J=8.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=15.8,6.3$ $\mathrm{Hz}, 1 \mathrm{H}$ ), $2.48(\mathrm{dd}, \mathrm{J}=15.8,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.34-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.23-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H})$,

## SUPPORTING INFORMATION

$1.75(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.59(\mathrm{q}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 208.59,150.01,135.41,129.78$, $127.93,124.81,82.26,77.35,75.77,75.46,72.37,71.47,49.62,47.59,45.74,37.22,33.33,3240,27.60,26.13,26.04$ (3C), $23.38,18.44,18.14,15.30,15.10,7.14$ (3C), 5.34 (3C), 0.56 (3C), $-4.15,-4.48$. HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{75} \mathrm{O}_{5} \mathrm{Si}_{3} / \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 857.3865, found 857.3862.

## Compound 7



To a solution of stannane $\mathbf{2 8}^{[11]}$ ( $285 \mathrm{mg}, 0.354 \mathrm{mmol}, 1$ equiv.) in THF ( 2 mL ), was added TMSOK ( $140 \mathrm{mg}, 1.06 \mathrm{mmol}, 3$ equiv.) and the reaction mixture was heated at $40{ }^{\circ} \mathrm{C}$ for 90 min . The reaction mixture was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}(\mathrm{x} 3)$, dried over $\mathrm{MgSO}_{4}$, filtered, dried and concentrated under vacuum to afford carboxylic acid $\mathbf{7}$ as a clear oil ( $280 \mathrm{mg}, 100 \%$ ). $[\alpha]^{20}{ }_{\mathrm{D}}=-12.8$ (c 1.32, $\mathrm{CHCl}_{3}$ ). IR (neat): $v=3500-2300$ (br), 2928, 1714, 1461, 1251, 1090, 1069, 834, 777, 660 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.5-8.0(\mathrm{brs}, 1 \mathrm{H}, \mathrm{COOH}), 6.00\left(\mathrm{t}, J=2.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{Sn}-\mathrm{H}}=131.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.26\left(\mathrm{t}, J=2.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{Sn}-\mathrm{H}}\right.$ $=63.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37\left(\mathrm{t}, J=3.5,2.0 \mathrm{~Hz},{ }^{3} J_{S_{n-H}}=21.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.11(\mathrm{dt}, J=10.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{ddd}, J=9.5,6.7,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.61 (dd, $J=7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.64 (dd, $J=15.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.47 (dd, $J=15.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.00 (quint, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.87 (m, 1H), $1.60-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.32(\mathrm{sext}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.25(\mathrm{~m}, 1 \mathrm{H}), 1.07-0.82(\mathrm{~m}, 15 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}$ $\approx 5.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}),-0.00(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.64,153.27,125.87,82.42\left({ }^{2} \mathrm{~J}_{\mathrm{sn}-\mathrm{C}}=59.0\right.$ $\mathrm{Hz}), 80.50,80.14,78.51,40.11,38.99,38.15,29.25\left({ }^{3} J_{\mathrm{Sn}-\mathrm{C}}=18.2 \mathrm{~Hz}, 3 \mathrm{C}\right), 27.62\left({ }^{2} \mathrm{~J}_{\mathrm{Sn}-\mathrm{C}}=59.2 \mathrm{~Hz}, 3 \mathrm{C}\right), 26.41(3 \mathrm{C}), 26.25(3 \mathrm{C})$, 18.65, 18.57, 15.84, 13.85 (3C), 10.19 ( $\left.{ }^{1} J_{\mathrm{Sn}-\mathrm{C}}=321.4,337.1 \mathrm{~Hz}, 3 \mathrm{C}\right),-3.73,-3.97,-4.27$ (2C). HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{72} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 771.3 .3865$, found 771.3844 .

## Compound 29



To a solution of carboxylic acid 7 ( $364 \mathrm{mg}, 0.487 \mathrm{mmol}, 1.5$ equiv) in DMF ( 10 mL ) was added $\mathrm{NaH}(20 \mathrm{mg}, 0.487 \mathrm{mmol}, 1.5$ equiv, $60 \%$ in mineral oil) at rt. After 30 min , a solution of vinyl iodide 27 ( $271 \mathrm{mg}, 0.3245 \mathrm{mmol}, 1.0$ equiv.) in THF ( 2.5 mL ) was added followed by the simultaneous addition of copper (I) diphenylphosphinate ( $363 \mathrm{mg}, 1.298 \mathrm{mmol}, 4$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(168$ $\mathrm{mg}, 0.163 \mathrm{mmol}, 0.5$ equiv.). After 2 h at $50^{\circ} \mathrm{C}$, the reaction mixture was quenched with $\mathrm{HCl} 0.1 \mathrm{~N}(10 \mathrm{~mL})$ and the reaction mixture was vigourously stirred for 2 h at rt . The reaction mixture was filtered on a pad of celite and washed with AcOEt, extracted with AcOEt (x3), washed with brine (x2), dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was loaded on a silica gel column chromatography ( $20-50 \%$ gradient AcOEt/petroleum ether) to give by order of elution, recovered TMS-cleaved compound derived from 27 ( $51.1 \mathrm{mg}, 14 \%$ ) and seco acid $29(254 \mathrm{mg}, 72 \%)$ as light yellow oil. $[\alpha]^{20}{ }_{\mathrm{D}}=+22.7\left(c 1.98, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=$ 3300 (br), 3500-2500 (br), 2956, 1713, 1535, 1461, 1253, 1102, 1072, 1047, 1005, 835, $776 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 6.53 (dd, $J=15.1,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67$ (brs, 1 H$), 5.46(\mathrm{dd}, J=15.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ (brs, 1 H$), 4.95$ (brs, 1H), $4.44-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.11$ (brs, 1 H$), 4.19-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.92-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.64(\mathrm{~m}$, 2 H ), 3.58 (dd, $J=7.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.76 (dd, $J=16.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.65(\mathrm{dd}, J=15.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.41-$ $2.29(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.08(\mathrm{~m}, 4 \mathrm{H}), 2.04-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 6 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.46-$ $1.21(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 8 \mathrm{H}), 0.99(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.85(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.92$ (s, 9H), $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.62(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.03$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 208.67,175.42,145.55,141.44,136.49,129.44,128.12,125.51,124.55,114.76,82.28$, $80.30,80.14,79.13,78.74,75.51,75.06,72.91,71.86,49.12,47.74,45.42,40.20,38.72,38.01,37.63,33.52,32.33,28.07$, 26.24 (3C), 26.09 (4C), 26.05 (3C), 23.97, 18.46 ( $2 \mathrm{Cq}, 1 \mathrm{CH}_{3}$ ), 18.14, 17.30, 16.04, 15.84, 14.35, 7.11, 5.33, -4.16, -4.23, -4.34, 4.40, -4.62 (2C). HRMS (ESI) calcd for $\mathrm{C}_{59} \mathrm{H}_{112} \mathrm{O}_{10} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1115.7230$, found 1115.7231.

Compound 30


To a solution of 2,4,6-trichlorobenzoyl chloride ( $128 \mu \mathrm{~L}, 0.815 \mathrm{mmol}, 3$ equiv.), DMAP ( $148 \mathrm{mg}, 1.22 \mathrm{mmol}, 3$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ ( $170 \mu \mathrm{~L}, 1.22 \mathrm{mmol}, 6$ equiv.) in toluene ( 200 mL ) was added a solution of seco-acid 29 ( $223 \mathrm{mg}, 0.204 \mathrm{mmol}, 1$ equiv.) in toluene $(20 \mathrm{~mL})$ via a syringe pump over 10 h at $50^{\circ} \mathrm{C}$ and the stirring was continued for 6 h . The reaction mixture was quenched with water, and the organic layer was washed with $\mathrm{NH}_{4} \mathrm{Cl}$, dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated. The residue was purified on a silica gel chromatography ( $8-12 \%$ gradient $\mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to give macrolactone 30 ( $89 \mathrm{mg}, 41 \%$ ) as colorless oil. The macrolactone exists as a mixture of at least two major conformers in a $3: 1$ ratio in solution. [ $\alpha]^{25}{ }_{\mathrm{D}}=+37.0$ (c 0.27, $\mathrm{CHCl}_{3}$ ). IR (neat): $v=2958,1743,1720,1253,1127,1099,1069,1004,836,776 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of 2 conformational isomers exists in about $3: 1$ ratio) $\delta 6.51$ (dd, $J=14.8,11.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.04 (brs, 0.75 H , major conformer), 6.00 (brs, 0.25 H , minor conformer), $5.77(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{brt}, J=8.0 \mathrm{~Hz}, 0.75 \mathrm{H}$, major conformer), 5.17 (t, $J=8.5$ $\mathrm{Hz}, 0.25 \mathrm{H}$, minor conformer), 5.05 (brs, 0.75 H , major conformer), 4.92 (brs, 0.25 H , minor conformer), 4.86 (brs, 1 H ), 4.15-4.04 $(\mathrm{m}, 1.75 \mathrm{H}, 1 \mathrm{H}+1$ major conformer), 4.00-3.90(m, 1.25H, 1H +1 minor conformer), 3.90-3.77 ( $\mathrm{m}, 2 \mathrm{H}$ ), 3.65 (brs, 0.25 H , minor conformer), 3.56 (m, 1.75H, $1 \mathrm{H}+1$ major conformer), $3.47(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=17.2,3.0 \mathrm{~Hz}, 0.25 \mathrm{H}$, minor conformer), 2.87 (d, $J$ $=16.4 \mathrm{~Hz}, 0.75 \mathrm{H}$, major conformer), $2.68-2.00(\mathrm{~m}, 11 \mathrm{H}), 1.99-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.47-$ $1.12(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$, $0.83(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2.25 \mathrm{H}$, major conformer), $0.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.75 \mathrm{H}$, minor conformer), $0.59(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H})$, $0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of 2 conformational isomers exists in about 3:1 ratio) $\delta 206.95$, 206.71 ( 2 conformers); 170.57, 169.34 ( 2 conformers); 147.16, 146.55 ( 2 conformers); 141.09; 138.00, 137.93 ( 2 conformers); 131.94, 131.89 ( 2 conformers); 128.94, 128.79 ( 2 conformers); 124.74; 124.30; 114.00, 113.34 (2 conformers); 83.20, 83.03 ( 2 conformers); 80.77; 79.59; 79.09, 78.80 ( 2 conformers); 77.40, 76.78 ( 2 conformers); 76.64, 75.83 ( 2 conformers); 74.32, 73.99 ( 2 conformers); 73.28, 72.94 ( 2 conformers); 72.65, 72.50 (2 conformers); 49.10, 48.08 ( 2 conformers); 46.86, 46.29 ( 2 conformers); 46.49; 38.92, 38.61 (2 conformers); 38.03, 37.86 ( 2 conformers); 37.74, 35.91 ( 2 conformers); 37.39; 33.38; 33.06, 32.37 ( 2 conformers); 28.73, 28.33 (2 conformers), 26.45 (3C); 26.15; 26.07 ( 6 C ); 18.71; 18.59; 18.56, 18.44; 18.16; 16.61, 16.35 (2 conformers); 16.02, 15.80 (2 conformers); 13.48; 7.09 (3C); 5.26 (3C); -4.15, -4.18 (2 conformers); -4.42 (2C); 4.55; -4.63, -4.72 (2 conformers); -4.79, -4.93 (2 conformers). HRMS (ESI) calcd for $\mathrm{C}_{59} \mathrm{H}_{110} \mathrm{O}_{9} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1097.7125$, found 1097.7128.

## SUPPORTING INFORMATION

Compound 31


To a solution of macrolactone $\mathbf{3 0}(34 \mathrm{mg}, 31.7 \mu \mathrm{~mol}$, 1 equiv.) in THF ( $600 \mu \mathrm{~L}$ ) in a plastic vial was added $\mathrm{HF} \cdot$ pyridine [ $500 \mu \mathrm{~L}$, $2.2 \mathrm{mmol}, 70$ equiv., 4.5 M in THF/pyridine (prepared from HF•pyridine complex: pyridine: THF, 0.5:1:2.5 mL)]. After 2 h at rt, the reaction mixture was poured into an erlenmeyer containing saturated $\mathrm{NaHCO}_{3}$. The reaction mixture was then stirred for 5 min and was extracted with $\mathrm{Et}_{2} \mathrm{O}(\mathrm{x} 3)$, dried on $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was purified on a silica gel chromatography ( $20 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to afford macrolactone $\mathbf{I}-21(29.1 \mathrm{mg}, 96 \%)$ as colorless oil. The product is in fact a mixture of three compounds (hydroxylketone l-21 and two hemi-ketals I-22), and each gives probably a mixtures of conformers on NMR spectra. By consequence this compound was hardly characterizable by this technique. Nevertheless, absence of ketone absorption band at $\approx 1715 \mathrm{~cm}^{-1}$ indicates the hemi-ketal is the major form. IR (neat): $v=3400$ (br), 2957, 1738, 1472, 1461, 1361, 1252, 1096, 1077, 835, $775 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{53} \mathrm{H}_{96} \mathrm{O}_{9} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 983.6260$, found 983.6273.

To a solution of a mixture of compound I-21/I-22 ( $14.5 \mathrm{mg}, 14 \mu \mathrm{~mol}$, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added TPAP ( $14.7 \mathrm{mg}, 42 \mu \mathrm{~mol}$, 3 equiv.) in 3 portions over 20 min . After 2.5 h at rt the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered on Celite. After concentration the residue was purified on a silica gel column ( $20 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to give diketone 31 ( $10.8 \mathrm{mg}, 74 \%$ ) as colorless oil. The macrolactone exists as a mixture of more than two conformers into solution. As a consequence characterization of the compound by ${ }^{13} \mathrm{C}$ NMR was difficult and we were not able to identify and attribute clearly all the peaks. $[\alpha]^{20}{ }_{\mathrm{D}}=+8.6$ ( $c 0.7$, $\mathrm{CHCl}_{3}$ ). IR (neat): $v=2956,1740,1706,1461,1253,1073,1036,836,777 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.51$ (dd, $J=15.1$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.98$ (brs, 0.25 H ), 5.75 (brd, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65-5.24(\mathrm{~m}, 1.75 \mathrm{H}), 5.22-4.87(\mathrm{~m}, 3 \mathrm{H}), 4.68-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.33$ $-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.00(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.10-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.80-$ $2.23(\mathrm{~m}, 6 \mathrm{H}), 2.20-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.76(\mathrm{brs}, 9 \mathrm{H}), 1.68-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.39-1.04(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-0.67$ $(\mathrm{m}, 33 \mathrm{H}), 0.15--0.05(\mathrm{~m}, 18 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{59} \mathrm{H}_{110} \mathrm{O}_{9} \mathrm{Si} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 981.6103, found 981.6099.

## SUPPORTING INFORMATION

## Amphidinolide F (1)



Compound $35(8.0 \mathrm{mg}, 8.37 \mu \mathrm{~mol})$ was placed in a polypropylene vial and HF•pyridine in THF [2 mL (prepared from HF-pyridine complex: pyridine: THF, 1:2:1 mL)] was added. After 7 days at rt , the vial was poured into saturated $\mathrm{NaHCO}_{3}$ and washed with AcOEt. The aqueous layer was extracted with AcOEt (x4), and the combined organic phases were dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was purified on a silica gel column ( $20-30 \%$ gradient acetone in hexanes) to give amphidinolide $\mathbf{F}$ (1) ( $1.4 \mathrm{mg}, 27 \%$ ) as a white waxy solid. Spectroscopic data were in agreement with other total syntheses ${ }^{[13,14]}$ and with natural product ${ }^{[15]}[\alpha]^{20}=-65.0\left(c 0.065, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=3400(\mathrm{br}), 2921,1742,1710,1459,1378,1261,1092$, $1018,910,819,800,733 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $800 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1.4 \mathrm{mg}$ in $220 \mu \mathrm{~L}$ ) $\delta 6.52\left(\mathrm{dd}, J=15.0,11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{26}\right), 6.00(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}_{10}\right), 5.77\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{27}\right), 5.35\left(\mathrm{dd}, J=14.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{25}\right), 5.21\left(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{24}\right), 5.17\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{32 c i s}\right), 4.96(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}_{32 \text { trans }}$ ), 4.35 (tdd, $J=8.0,6.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{20}$ ), 4.14 (brs, $1 \mathrm{H}, \mathrm{H}_{8}$ ), $4.09\left(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{23}\right), 3.97-3.87$ (brs, $1 \mathrm{H}, \mathrm{OH}$ ), 3.94 (td, J = 8.9, 2.0 Hz, 1H, H ${ }_{13}$ ), $3.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 3.81$ (td, $\left.J=9.5,2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3}\right), 3.59-3.43(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 3.55\left(\mathrm{brs}, 1 \mathrm{H}, \mathrm{H}_{7}\right)$, 3.13 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{16}$ ), 3.06 (dd, $J=17.6,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{17 \mathrm{a}}$ ), 2.75 (dd, $J=15.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{14 \mathrm{a}}$ ), 2.71 (dd, $J=15.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{19 \mathrm{a}}$ ), $2.54\left(\mathrm{dd}, J=15.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{14 \mathrm{~b}}\right), 2.53\left(\mathrm{dd}, J=15.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2 \mathrm{a}}\right), 2.50\left(\mathrm{dd}, J=15.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{19 \mathrm{~b}}\right), 2.49$ (dd, $J=15.7$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2 \mathrm{~b}}$ ), 2.34 (dd, $J=17.6,4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{17 \mathrm{~b}}$ ), 2.28 (quint, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{12}$ ), $2.09\left(\mathrm{dt}, J=12.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5 \mathrm{a}}\right), 2.08$ (dq, J = 12.1, $6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{21 \mathrm{a}}$ ), 1.93 (dtd, $J=11.7,7.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{22 \mathrm{a}}$ ), $1.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 1.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{29}\right), 1.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{30}\right)$, $1.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{33}\right), 1.70-1.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 1.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{22 \mathrm{~b}}\right), 1.49\left(\mathrm{dq}, J=12.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{21 \mathrm{a}}\right), 1.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5 \mathrm{~b}}\right), 1.09(\mathrm{~d}, J=$ $\left.7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{35}\right), 1.04\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{34}\right), 1.00\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{31}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, reference solvent peak: $77.00 \mathrm{ppm}, 1.4 \mathrm{mg}$ in $220 \mu \mathrm{~L}) \delta 213.76\left(\mathrm{C}_{15}\right), 207.82\left(\mathrm{C}_{18}\right), 171.20\left(\mathrm{C}_{1}\right), 144.41\left(\mathrm{C}_{9}\right), 140.00\left(\mathrm{C}_{11}\right), 138.25\left(\mathrm{C}_{28}\right), 132.02\left(\mathrm{C}_{26}\right)$, $124.54\left(\mathrm{C}_{10}\right)$, $124.15\left(\mathrm{C}_{25}\right), 124.01\left(\mathrm{C}_{27}\right)$, $116.10\left(\mathrm{C}_{32}\right), 81.42\left(\mathrm{C}_{3}\right), 79.91\left(\mathrm{C}_{23}\right), 78.86\left(\mathrm{C}_{6}\right), 77.76\left(\mathrm{C}_{24}\right), 77.00\left(\mathrm{C}_{8}\right), 76.44\left(\mathrm{C}_{7}\right)$, $74.96\left(\mathrm{C}_{20}\right), 70.63\left(\mathrm{C}_{13}\right), 49.34\left(\mathrm{C}_{12}\right), 48.53\left(\mathrm{C}_{19}\right), 46.04\left(\mathrm{C}_{17}\right), 45.50\left(\mathrm{C}_{14}\right), 42.71\left(\mathrm{C}_{16}\right), 39.79\left(\mathrm{C}_{4}\right), 38.67\left(\mathrm{C}_{2}\right), 36.74\left(\mathrm{C}_{5}\right), 31.92$ $\left(\mathrm{C}_{21}\right), 28.38\left(\mathrm{C}_{22}\right), 26.05\left(\mathrm{C}_{29}\right), 18.48\left(\mathrm{C}_{30}\right)$, $16.20\left(\mathrm{C}_{35}\right)$, $15.52\left(\mathrm{C}_{34}\right), 15.38\left(\mathrm{C}_{31}\right), 14.27\left(\mathrm{C}_{33}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{56} \mathrm{O}_{9} \mathrm{NO}_{9}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 634.3955$, found $634.3946 ; \mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{9} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 639.3494$, found 639.3509.

## SUPPORTING INFORMATION

Table S1. Comparison of ${ }^{1} \mathrm{H}$ NMR spectra ${ }^{[a]}$ of our synthetic sample of amphidinolide F with the reported Carter synthetic sample, ${ }^{[12]}$ Furstner synthetic sample ${ }^{[13]}$ and Kobayashi natural sample. ${ }^{[14]}$

| $\begin{aligned} & \text { 두 } \\ & \text { O} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\underline{\text { Ferrié synthesis }}{ }^{[\mathrm{b}]}$ |  | $\underline{\text { Carter synthesis }}{ }^{[c]}$ |  | Fürstner synthesis ${ }^{\text {[d] }}$ |  | Natural Sample ${ }^{[\mathrm{e}]}$ |  | $\Delta$ Nat. sample vs Ferrié | $\Delta$ Nat. sample vs Carter | $\Delta$ Nat. sample vs Fürstner | $\Delta$ Ferrié vs Carter | $\Delta$ Ferrié vs <br> Fürstner |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \delta \\ (\mathrm{ppm}) \end{gathered}$ | multiplicity $J(H z)$ | $\begin{gathered} \delta \\ (\mathrm{ppm}) \end{gathered}$ | multiplicity $J(\mathrm{~Hz})$ | $\begin{gathered} \delta \\ (\mathrm{ppm}) \end{gathered}$ | multiplicity $J(\mathrm{~Hz})$ | $\begin{gathered} \delta \\ (\mathrm{ppm}) \end{gathered}$ | multiplicity $J(\mathrm{~Hz})$ |  |  |  |  |  |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2a | 2.51 | dd 15.7, 9.0 | $2.50{ }^{[f]}$ | m | 2.51 | dd 15.8, 9.0 | 2.49 | m | -0.02 | -0.01 | -0.02 | 0.01 | 0.00 |
| 2b | 2.47 | dd 15.7, 2.4 | $2.50{ }^{[f]}$ | m | 2.48 | dd 15.7, 3.6 | 2.49 | m | 0.02 | -0.01 | 0.01 | -0.03 | -0.01 |
| 3 | 3.79 | td 9.5, 2.3 | 3.80 | dt 9.5, 2.6 | 3.79 | td 9.3, 3.1 | 3.81 | td 6.8, 2.4 | 0.02 | 0.01 | 0.02 | -0.01 | 0.00 |
| 4 | 1.79 | m | 1.79 | m | 1.79 | m | 1.81 | m | 0.02 | 0.02 | 0.02 | 0.00 | 0.00 |
| 5 a | 2.07 | dt 12.1, 6.0 | 2.07 | m | 2.08 | m | 2.11 | m | 0.04 | 0.04 | 0.03 | 0.00 | -0.01 |
| 5b | 1.44 | m | $1.47{ }^{[9]}$ | m | 1.43 | m | 1.39 | m | -0.05 | -0.08 | -0.04 | -0.03 | 0.01 |
| 6 | 3.82 | m | 3.82 | m | 3.79 | td 9.3, 3.1 | 3.78 | td 7.3, 2.1 | -0.04 | -0.04 | -0.01 | 0.00 | 0.03 |
| 7 | 3.53 | brs | 3.52 | brs | 3.53 | dd 6.0, 3.4 | 3.53 | m | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 |
| 8 | 4.12 | brs | 4.13 | brs | 4.12 | m | 4.05 | d 4.0 | -0.07 | -0.08 | -0.07 | -0.01 | 0.00 |
| 9 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 | 5.98 | S | 5.98 | brs | 5.98 | S | 5.98 | brs | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 11 ( 11 mint |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 12 | 2.26 | quint 7.3 | 2.26 | m | 2.25 | dq, 9.0, 6.8 | 2.25 | m | -0.01 | -0.01 | 0.00 | 0.00 | 0.01 |
| 13 | 3.92 | td 8.9, 2.0 | 3.93 | brt 9.0 | 3.92 | td 9.0, 1.7 | 3.93 | td 9.8, 2.0 | 0.01 | 0.00 | 0.01 | -0.01 | 0.00 |
| 14a | 2.73 | dd 15.3, 9.2 | 2.73 | dd 15.2, 9.1 | 2.73 | dd 15.2, 9.4 | 2.74 | dd 15.1, 9.3 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 |
| 14b | 2.52 | dd 15.3, 1.7 | $2.50{ }^{[f]}$ | m | 2.51 | dd 15.4, 2.4 | 2.51 | m | -0.01 | 0.01 | 0.00 | 0.02 | 0.01 |
| 15 |  |  |  |  |  |  |  |  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 16 | 3.11 | m | 3.11 | m | 3.11 | m | 3.15 | m | 0.04 | 0.04 | 0.04 | 0.00 | 0.00 |
| 17a | 3.04 | dd 17.6, 8.9 | 3.04 | dd 17.5, 8.9 | 3.02 | dd 17.5, 9.0 | 3.04 | dd 17.1, 9.3 |  | 0.00 | 0.02 | 0.00 | 0.02 |
| 17b | 2.32 | dd 17.6, 4.2 | 2.32 | m | 2.30 | dd 17.5, 4.1 | 2.29 | m | -0.03 | -0.03 | -0.01 | 0.00 | 0.02 |
| 18 (17) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 19a | 2.69 | dd 15.9, 8.5 | 2.70 | dd 15.8, 8.4 | 2.69 | dd 16.1, 8.4 | 2.73 | dd 16.6, 8.8 | 0.04 | 0.03 | 0.04 | -0.01 | 0.00 |
| 19b | 2.48 | dd 15.9, 3.1 | $2.50{ }^{[f]}$ | m | 2.46 | dd 15.8, 3.0 | 2.50 | m | 0.02 | 0.00 | 0.04 | -0.02 | 0.02 |
| 20 | 4.33 | tdd 8.0, 6.4, 4.0 | 4.33 | m | 4.33 | tdd 8.2, 6.0, 4.0 | 4.36 | m | 0.03 | 0.03 | 0.03 | 0.00 | 0.00 |
| 21a | 2.06 | dq 12.1, 6.0 | 2.07 | m | 2.06 | m | 2.08 | m | 0.02 | 0.01 | 0.02 | -0.01 | 0.00 |
| 21b | 1.47 | dq 12.1, 6.0 | $1.47^{[9]}$ | m | 1.48 | m | 1.47 | m | 0.00 | 0.00 | -0.01 | 0.00 | -0.01 |
| 22a | 1.91 | dtd 11.7, 7.8, 3.8 | 1.92 | m | 1.91 | dddd12.8,8.2,7.2,3.8 | 1.90 | m | -0.01 | -0.02 | -0.01 | -0.01 | 0.00 |
| 22b | 1.58 | m | $1.34{ }^{[\mathrm{h}]}$ | m | 1.58 | m | 1.54 | m | -0.04 | $0.20{ }^{[\mathrm{h}]}$ | -0.04 | $0.24{ }^{[\mathrm{h}]}$ | 0.00 |
| 23 | 4.07 | q 7.3 | 4.07 | dd 14.9, 7.3 | 4.06 | q 7.7 | 4.08 | dd 14.8, 7.8 | 0.01 | 0.01 | 0.02 | 0.00 | 0.01 |
| 24 | 5.19 | t 8.2 | 5.18 | t 8.2 | 5.18 | t 8.2 | 5.17 | $t 7.8$ | -0.02 | -0.01 | -0.01 | 0.01 | 0.01 |
| 25 | 5.33 | dd 14.9, 8.1 | 5.33 | dd 15.0, 8.4 | 5.31 | dd 15.1, 8.6 | 5.31 | dd 14.7, 7.8 | -0.02 | -0.02 | 0.00 | 0.00 | 0.02 |
| 26 | 6.50 | dd 15.0, 11.1 | 6.51 | dd 14.9, 11.0 | 6.50 | dd 15.1, 11.0 | 6.50 | dd 14.7, 11.2 | 0.00 | -0.01 | 0.00 | -0.01 | 0.00 |
| 27 | 5.75 | d 11.1 | 5.75 | brd 11.0 | 5.74 | d 11.1 | 5.76 | brd 11.2 | 0.01 | 0.01 | 0.02 | 0.00 | 0.01 |
| 28 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 29 | 1.75 | S | 1.75 | s | 1.74 | S | 1.75 | S | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 |
| 30 | 1.73 | s | 1.74 | s | 1.73 | S | 1.73 | S | 0.00 | -0.01 | 0.00 | -0.01 | 0.00 |
| 31 | 0.98 | d 6.5 | 0.98 | d 6.5 | 0.97 | d 6.6 | 1.00 | d 6.3 | 0.02 | 0.02 | 0.03 | 0.00 | 0.01 |
| 32a | 5.15 | s | 5.16 | d 1.3 | 5.15 | d 1.6 | 5.14 | brs | -0.01 | -0.02 | -0.01 | -0.01 | 0.00 |
| 32b | 4.94 | s | 4.94 | brs | 4.93 | t 1.4 | 4.93 | brs | -0.01 | -0.01 | 0.00 | 0.00 | 0.01 |
| 33 | 1.70 | S | 1.70 | s | 1.69 | d 1.3 | 1.67 | S | -0.03 | -0.03 | -0.02 | 0.00 | 0.01 |
| 34 | 1.02 | d 6.9 | 1.02 | d 6.9 | 1.02 | d 7.0 | 1.03 | d 7.3 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 |
| 35 | 1.07 | d 7.2 | 1.08 | d 7.2 | 1.07 | d 7.2 | 1.10 | d 6.8 | 0.03 | 0.02 | 0.03 | -0.01 | 0.00 |

[a] solvent $\mathrm{CDCl}_{3}$. [b] Concentration: 1.4 mg in $220 \mu \mathrm{~L}, 800 \mathrm{Mhz}$. All chemical shift were corrected by -0.02 ppm compared to reported values. [c] Concentration: 1.4 mg in $180 \mu \mathrm{~L}, 800 \mathrm{MHz}$. All chemical shift were corrected by -0.04 ppm compared to reported values. Corresponding assignment was deduced from reported chemical shift, multiplicities, and by comparison with our own assignment. [d] Concentration: 5.5 mg in $700 \mu \mathrm{~L}, 600 \mathrm{Mhz}$. [e] Unknow concentration, 500 Mhz . [f] reported as a massif: " $2.49-2.58(\mathrm{~m}, 4 \mathrm{H})$ ", median value was selected for all assigned protons. [g] reported as a massif: "1.47-1.54 ( $\mathrm{m}, 2 \mathrm{H}$ )", median value was selected for all assigned protons. [h] Probable misassignment and/or report of $\mathrm{H}_{22 \mathrm{~b}}$ at 1.34 ppm .

Table S2. Comparison of ${ }^{13} \mathrm{C}$ NMR spectra ${ }^{[a]}$ of our synthetic sample of amphidinolide F with the reported Carter synthetic sample,,${ }^{[12]}$ Furstner synthetic sample ${ }^{[13]}$ and Kobayashi natural sample. ${ }^{[14]}$

| Cposition | Ferrié ynthesis | Carter synthesis ${ }^{[9]}$ | Fürstner ynthesis | Natural sample ${ }^{[\mathrm{e}]}$ | $\Delta$ nat. sample vs Ferrié | $\Delta$ nat. sample vs Carter | $\Delta$ nat. sample vs Fürstner | $\Delta$ Ferrie vs Carter | $\Delta$ Ferrié vs Fürstner |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 171.20 | 171.22 | 171.2 | 171.16 | -0.04 | -0.06 | -0.04 | -0.02 | 0.00 |
| 2 | 38.67 | 38.70 | 38.7 | 38.65 | -0.02 | -0.05 | -0.05 | -0.03 | -0.03 |
| 3 | 81.42 | 81.45 | 81.5 | 81.26 | -0.16 | -0.19 | -0.24 | -0.03 | -0.08 |
| 4 | 39.79 | 39.79 | 39.8 | 39.67 | -0.12 | -0.12 | -0.13 | 0.00 | -0.01 |
| 5 | 36.74 | 36.77 | 36.7 | 36.81 | 0.07 | 0.04 | 0.11 | -0.03 | 0.04 |
| 6 | 78.86 | 78.94 | 78.8 | 79.08 | 0.22 | 0.14 | 0.28 | -0.08 | 0.06 |
| 7 | 76.44 | 76.51 | 76.4 | 76.71 | 0.27 | 0.20 | 0.31 | -0.07 | 0.04 |
| 8 | 77.00 | $76.51{ }^{[f]}$ | 77.0 | 76.71 | -0.29 | $0.20{ }^{[f]}$ | -0.29 | $0.49{ }^{[f]}$ | 0.00 |
| 9 | 144.41 | 144.45 | 144.4 | 144.37 | -0.04 | -0.08 | -0.03 | -0.04 | 0.01 |
| 10 | 124.54 | 124.52 | 124.6 | 124.62 | 0.08 | 0.10 | 0.02 | 0.02 | -0.06 |
| 11 | 140.00 | 140.04 | 140.0 | 140.00 | 0.00 | -0.04 | 0.00 | -0.04 | 0.00 |
| 12 | 49.34 | 49.38 | 49.3 | 49.46 | 0.12 | 0.08 | 0.16 | -0.04 | 0.04 |
| 13 | 70.63 | 70.62 | 70.7 | 70.50 | -0.13 | -0.12 | -0.20 | 0.01 | -0.07 |
| 14 | 45.50 | 45.55 | 45.5 | 45.65 | 0.15 | 0.10 | 0.15 | -0.05 | 0.00 |
| 15 | 213.76 | 213.77 | 213.8 | 213.58 | -0.18 | -0.19 | -0.22 | -0.01 | -0.04 |
| 16 | 42.71 | 42.79 | 42.7 | 42.93 | 0.22 | 0.14 | 0.23 | -0.08 | 0.01 |
| 17 | 46.04 | 46.03 | 46.1 | 45.81 | -0.23 | -0.22 | -0.29 | 0.01 | -0.06 |
| 18 | 207.82 | 207.77 | 207.9 | 207.47 | -0.35 | -0.30 | -0.43 | 0.05 | -0.08 |
| 19 | 48.53 | 48.57 | 48.5 | 48.45 | -0.08 | -0.12 | -0.05 | -0.04 | 0.03 |
| 20 | 74.96 | 75.01 | 75.0 | 74.82 | -0.14 | -0.19 | -0.18 | -0.05 | -0.04 |
| 21 | 31.92 | 31.98 | 32.0 | 31.84 | -0.08 | -0.14 | -0.16 | -0.06 | -0.08 |
| 22 | 28.38 | 28.43 | 28.4 | 28.46 | 0.08 | 0.03 | 0.06 | -0.05 | -0.02 |
| 23 | 79.91 | 79.90 | 79.9 | 79.87 | -0.04 | -0.03 | -0.03 | 0.01 | 0.01 |
| 24 | 77.76 | 77.84 | 77.7 | 77.93 | 0.17 | 0.09 | 0.23 | -0.08 | 0.06 |
| 25 | 124.15 | 124.19 | 124.2 | 123.97 | -0.18 | -0.22 | -0.23 | -0.04 | -0.05 |
| 26 | 132.02 | 132.06 | 132.0 | 132.09 | 0.07 | 0.03 | 0.09 | -0.04 | 0.02 |
| 27 | 124.01 | 124.04 | 124.0 | 124.06 | 0.05 | 0.02 | 0.06 | -0.03 | 0.01 |
| 28 | 138.25 | 138.29 | 138.3 | 138.25 | 0.00 | -0.04 | -0.05 | -0.04 | -0.05 |
| 29 | 26.05 | 26.08 | 26.1 | 26.00 | -0.05 | -0.08 | -0.10 | -0.03 | -0.05 |
| 30 | 18.48 | 18.51 | 18.5 | 18.43 | -0.05 | -0.08 | -0.07 | -0.03 | -0.02 |
| 31 | 15.38 | 15.40 | 15.4 | 15.39 | 0.01 | -0.01 | -0.01 | -0.02 | -0.02 |
| 32 | 116.10 | 116.11 | 116.1 | 116.16 | 0.06 | 0.05 | 0.06 | -0.01 | 0.00 |
| 33 | 14.27 | $13.77{ }^{[9]}$ | 14.3 | 13.94 | -0.33 | $0.17{ }^{[9]}$ | -0.36 | $0.50{ }^{[9]}$ | -0.03 |
| 34 | 15.52 | 15.53 | 15.5 | 15.29 | -0.23 | -0.24 | -0.21 | -0.01 | 0.02 |
| 35 | 16.20 | 16.24 | 16.2 | 16.20 | 0.00 | -0.04 | 0.00 | -0.04 | 0.00 |

[^0]
## References

[1] M. Piotto, M. Bourdonneau, K. Elbayed, J.-M. Wieruszeski, G. Lippens, Magn. Reson. Chem. 2006, 44, 943-947.
[2] Commercially available or prepared from (R)-glutamic acid in 2 steps: a) C. Herdeis, Synthesis 1986, 232-233. b) J. Boukouvalas, Dihydro-5-(hydroxymethyl)-2(3H)-furanone in Encyclopedia of Reagents for Organic Synthesis, John Wiley \& Sons, Ltd, 2001.
[3] S. Itsuno, M. Nakano, K. Miyazaki, H. Masuda, K. Ito, A. Hirao, S. Nakahama, J. Chem. Soc., Perkin Trans. 11985, 2039-2044.
[4] G. Jalce, M. Seck, X. Franck, R. Hocquemiller, B. Figadère, J. Org. Chem. 2004, 69, 3240-3241.
[5] A. Darwish, A. Lang, T. Kim, J. M. Chong, Org. Lett. 2008, 10, 861-864.
[6] H. Oda, T. Kobayashi, M. Kosugi, T. Migita Tetrahedron, 1995, 695-702.
[7] C. Marti, E. M. Carreira J. Am. Chem. Soc. 2005, 127, 11505; b) N. Dussart, H.-V. Trinh, D. Gueyrard Org. Lett. 2016, 18, 4790-4793.
[8] T. Saito, H. Fuwa, M. Sasaki Tetrahedron 2011, 67, 429-445.
[9] P. Fristrup, T. Jensen, J. Hoppe, P.-O. Norrby, Chem. Eur. J. 2006, 12, 5352-5360.
[10] a) W. Zhang, A. Basak, Y. Kosugi, Y. Hoshino, H. Yamamoto, Angew. Chem. Int. Ed. 2005, 44, 4389-4391; b) A. U. Barlan, W. Zhang, H. Yamamoto, Tetrahedron 2007, 63, 6075-6087.
[11] L. Ferrié, B. Figadère Org. Lett. 2010, 12, 4976.
$[12]$ a) S. Mahapatra, R. G. Carter, Angew. Chem. 2012, 124, 8072-8075; Angew. Chem. Int. Ed. 2012, 51, 7948-7951; b) S. Mahapatra, R.G. Carter, J. Am. Chem. Soc. 2013, 135, 10792-10803.
$[13]$ a) G. Valot, C. S. Regens, D. P. O'Malley, E. Godineau, H. Takikawa, A. Fürstner, Angew. Chem. 2013, 125, 9713-9717; Angew. Chem. Int. Ed. 2013, 52, 9534-9538; (b) G. Valot, D. Mailhol, C. S. Regens, D. P. O'Malley, E. Godineau, H. Takikawa, P. Philipps, A. Fürstner, Chem. Eur. J. 2015, 21, 2398-2408.
[14] J. Kobayashi, M. Tsuda, M. Ishibashi, H. Shigemori, T. Yamasu, H. Hirota, T. Sasaki, J. Antibiot. 1991, 44, 1259-261.

Copy of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

(







$8$







(


(



${ }^{1} \mathrm{H}$ NMR 300 MHz






${ }^{1} \mathrm{H}$ NMR 300 MHz




$\stackrel{\infty}{\infty}$

ị
-16.74
-13.43
$\underset{\substack{\text { No } \\ i}}{i}$

TMS
${ }^{13} \mathrm{C}$ NMR 75 MHz
${ }^{1} \mathrm{H}$ NMR 300 MHz



${ }^{13} \mathrm{C}$ NMR 75 MHz



${ }^{13} \mathrm{C}$ NMR 75 MHz










${ }^{1} \mathrm{H}$ NMR 300 MHz


| T | 枵 | $\vdash$ |
| :---: | :---: | :---: |
| N | न- | O |
| $\sim$ | -i | $\stackrel{-}{-}$ |














(

(








[^0]:    [a] solvent $\mathrm{CDCl}_{3}$, reference at 77.0 ppm [b] Concentration: 1.4 mg in $220 \mu \mathrm{~L}$, 200 Mhz [c] Concentration: 1.4 mg in $180 \mu \mathrm{~L}, 175 \mathrm{MHz}$. Corresponding assignment was deduced from reported chemical shifts, multiplicities, and by comparison with our own assignment [d] Concentration: 5.5 mg in $700 \mu \mathrm{~L}, 150 \mathrm{Mhz}$ [e] Unknow concentration, 125 Mhz . [f] misassignment probably due to overlap of C 8 with the solvent peak. [g] Probable confusion with a $\mathrm{CH}_{3}$ grease peak in the assignment of C 33 .

